用户名: 密码: 验证码:
主链含杂环单元的高性能聚酰亚胺的合成及其可纺性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰亚胺是分子主链中含有酰亚胺环结构的一类聚合物。芳香族聚酰亚胺以其良好的热稳定性、力学性能和产品形式的多样性,广泛应用于电子工业,航空航天工业等领域。20世纪60年代以来,为了满足人们对更高性能材料的需求,主链含杂环单元的聚酰亚胺引起了研究者的关注
     本文首先设计、合成了含有苯并噁唑结构和苯并咪唑结构的二胺单体,将其分别与多种二酐反应制备得到了主链含杂环单元的高性能聚酰亚胺;研究聚酰亚胺分子主链引入杂环单元后对聚合物结构与性能的影响;探索了在多聚磷酸中步法合成含杂环单元的聚酰亚胺的方法;通过共聚方式得到了一系列含有苯并咪唑单元的共聚酰亚胺,研究了苯并咪唑单元的引入对共聚酰亚胺的性能及聚酰胺酸热酰亚胺化过程的影响,并对含有苯并咪唑单元的共聚酰亚胺的可纺性进行了初步研究。全文的主要内容如下:
     1.以2-氨基-4-硝基苯酚和对硝基苯甲酰氯为原料,在N-甲基吡咯烷酮(NMP)中高温反应一步成环制备了含有苯并噁唑结构的两硝基化合物;使用Pd/C催化水合肼还原两硝基化合物的方法制备得到了5-氨基-2-(4-氨基苯基)苯并噁唑(BOA)。红外光谱和核磁共振分析证实了BOA的化学结构,元素分析发现还原产物的元素含量与BOA的理论含量相近。以BOA为二胺单体,分别与均苯四甲酸酐(PMDA),3,3′,4,4′-联苯四甲酸二酐(BPDA),3,3′,4,4′-二苯酮四羧酸二酐(BTDA)和4,4'-氧双邻苯二甲酸酐(ODPA)在DMAc中聚合得到聚酰胺酸溶液;聚酰胺酸溶液涂膜后,通过热酰亚胺化得到了主链含有苯并噁唑单元的聚酰亚胺,红外光谱表明聚酰胺酸完全转化成了聚酰亚胺。对含苯并噁唑单元聚酰亚胺的性能研究表明:含苯并噁唑单元聚酰亚胺具有良好的热稳定性,其5wt%失重温度(T5)和10wt%失重温度(T1o)分别在541℃-558℃和582℃-610℃范围内,玻璃化转变温度在319℃-439℃范围内。含苯并噁唑单元聚酰亚胺薄膜具有良好的柔韧性和力学性能,其拉伸强度在230MPa-271MPa范围内,模量则在3.0GPa-4.7GPa范围内。广角X射线衍射(WAXD)测试的结果表明,除PMD A/BOA型聚酰亚胺为无定型聚合物外,其余三种含苯并嗯唑单元聚酰亚胺中均有结晶存在;小角X射线散射(SAXS)勺结果则发现含苯并噁唑单元聚酰亚胺中存在有序结构,并且随分子链刚性的减弱而减少。
     2.以4-硝基邻苯二胺和对硝基苯甲酰氯为原料,在NMP中高温反应一步成环制备了含有苯并咪唑结构的两硝基化合物;使用Pd/C催化水合肼还原两硝基化合物的方法制备了6,4’-二氨基-2-苯基苯并咪唑(BIA)。红外光谱和核磁共振分析证实了BIA的化学结构,元素分析发现还原产物的元素含量与BIA的理论含量相近。以BIA为二胺单体,分别PMDA、BPDA、BTDA和ODPA在DMAc中缩聚制备了聚酰胺酸溶液;聚酰胺酸溶液涂膜后通过热酰亚胺化得到了主链含有苯并咪唑单元的聚酰亚胺,红外光谱分析证实了聚酰胺酸完全转化为了相应的聚酰亚胺。对含苯并咪唑单元聚酰亚胺的性能研究表明:含苯并咪唑单元聚酰亚胺具有良好的热稳定性,其5wt%失重温度(T5)和10wt%失重温度(T1o)分别在536℃-558℃和571℃-590℃之间,玻璃化转变温度在382℃-409℃之间。含苯并咪唑单元聚酰亚胺薄膜的拉伸强度在222MPa-232MPa之间,模量则在3.1GPa-5.6GPa范围内。WAXD的测试结果表明含苯并咪唑单元聚酰亚胺均为无定型聚合物,SAXS的测试结果证实含苯并咪唑单元聚酰亚胺中存在着有序结构;升温红外光谱研究发现,苯并咪唑单元引入聚酰亚胺后,聚合物分子链间存在氢键相互作用,这可能是聚酰亚胺具有良好的力学性能的原因。
     3.使用苯胺和邻苯二甲酸酐可以在多聚磷酸(PPA)中合成得到了含有酰亚胺环结构的模型化合物N-苯基酰亚胺,红外光谱和核磁共振分析证明了N-苯基酰亚胺的化学结构,并发现在较宽的反应条件下:PPA中P205含量为80wt%-84wt%和反应温度在160℃~180℃之间,均能形成酰亚胺环结构。以BOA和BIA为二胺单体与BPDA、BTDA、OPPA在多聚磷酸中分别合成得到了主链含有苯并嗯唑单元的聚酰亚胺(PIBO)和主链含有苯并咪唑单元的聚酰亚胺(PIBI),以BPDA/BOA反应为例讨论了聚合反应的主要影响因素:反应温度,反应单体的固含量以及PPA中的P205的含量等。红外光谱和固相核磁13C证实了PIBO与PIBI的化学结构;WAXD的研究发现合成得到的聚酰亚胺粉末均有尖锐衍射峰,证实了所得聚酰亚胺中存在结晶。
     4.以BIA和对苯二胺(PDA)为混合二胺单体,与BPDA在DMAc中缩聚成功制备了高分子量的BPDA/BIA/PDA共聚酰胺酸溶液,共聚酰胺酸涂膜后经热酰亚胺化可以得到相应的共聚酰亚胺。共聚酰亚胺的力学性能由于苯并咪唑单元的引入而有明显提高,其中当BIA/PDA的比例为50/50时,共聚酰亚胺的力学性能最优;共聚酰亚胺的热稳定性会随着苯并咪唑单元含量的增大而略有降低;而其玻璃化转变温度则随着苯并咪唑单元含量的增大而提高。WAXD分析发现共聚酰亚胺均为无定型聚合物,红外光谱分析表明共聚酰亚胺分子链间存在着氢键相互作用。使用热分析和升温红外光谱对共聚酰胺酸的热酰亚胺化过程进行研究的结果表明:随着BIA用量的增大,共聚酰胺酸的玻璃化转变温度升高,酰亚胺化速度变慢;在热酰亚胺化过程中存在“动力学”中断现象,且随着BIA用量的增大,“动力学”中断现象出现提前。
     5.以共聚酰胺酸溶液为纺丝原液,采用湿法纺丝工艺路线制备聚酰亚胺纤维,对共聚酰亚胺的可纺性进行了初步研究。在凝固浴组成为H2O/DMAc50/50时,凝固浴的凝固能力强而使得共聚酰胺酸纤维表面形成皮层;随着BIA用量的增大,“结皮”现象有所减轻。BPDA/BIA聚酰胺酸的纤维成型性良好,可以得到连续的、结构致密的聚酰胺酸初生纤维。对BPDA/BIA纺丝液的动态流变性能表征发现升高温度能够降低纺丝液的粘度,但是当温度升高到70℃时,溶液出现了凝胶现象。BPDA/BIA聚酰胺酸初生纤维经过热酰亚胺化处理后可以得到热性能良好的聚酰亚胺纤维;进一步对聚酰亚胺纤维进行热牵伸,得到了力学性能提高的聚酰亚胺纤维。当牵伸比达到2.0时,纤维的拉伸强度为9.7cN/dtex,模量为450cN/dtex。聚酰亚胺纤维初始为无定型结构,但是聚酰亚胺纤维在拉伸过程中出现结晶,表现为WAXD图中在20=14°处出现尖锐衍射峰,这可能与热牵伸过程中分子链取向程度的提高有关。对BPDA/BIA聚酰亚胺纤维的热降解使用Kissinger法处理得到的表观活化能为406KJ/mol,使用Flynn-Wall-Ozawa方法处理得到的表观活化能为383KJ/mol。
Polyimides are a series of polymers containing imide moeties in the main chain. Aromatic polyimides in various forms of products have been extensively used in electronic industry and aerospace industry, due to their excellent thermal stability and good mechanical property. To further improve the properties of the polyimides, heterocyclic units have been introduced into the main chains of polyimides since1960s.
     In this work, two diamines containing heterocyclic units were synthesized, and then the polymerizations of the diamines with commercial dianhydrides were carried out via traditional two-step procedure to prepare polyimdes containing heterocyclic units. The structure and properties of polyimides derived from diamines containing benzimidazole and benzoxazole moeties were investigated. One-pot polymerization of polyimides containing heterocyclic units was developed. The copolyimides based on diamines containing benzimidazole moeties were synthesized, and the spinnability of the copolyimides were investigated. The main content of the work is as follows:
     1. A reaction between2-amio-4-nitrophenol and4-nitrobenzoyl chloride produced5-nitro-2-(4-nitrophenyl)benzoxazole (NNBO) and then5-amino-2-(4-aminophenyl)benzoxazole (BOA) was easily prepared by the reduction of NNBO. The composition and structure of the products were confirmed by FTIR, NMR and elemental analysis. A series of polyimides were prepared by the polycondensation of BOA and various dianhydrides, pyromellitic dianhydride (PMDA),3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA),3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA), and4,4'-oxydiphthalic anhydride (ODPA) via traditional two-step procedure. FTIR confirms that polyamic acids (PAAs) completely converted into corresponding polyimides. Polyimides exhibit excellent thermal stability, the5%weight loss temperature (T5) ranges from541℃to582℃, the10%weight loss temperature (T10) ranges from582℃to610℃, and glass transition temperature (Tg) in the range of317℃—439℃. The polyimide films are tough and flexible and possess good mechanical properties with a tensile strength of230MPa—271MPa and a modulus of3.0GPa—4.7GPa without stretching. The polyimide of PMDA/BOA is amorphous and the other three polyimides display crystallinity in wide angle x-ray diffraction (WAXD) patterns, and the existence of molecular aggregation were confirmed by small angle x-ray scattering (SAXS) patterns.
     2. A relatively easy method was developed to prepare6,4'-diamino-2-phenylbenzimidazole (BIA) by the reduction of6,4'-dinitro-2-phenylbenzimidazole (DNBI) synthesized via a reaction between4-nitro-1,2-phenylenediamine and4-nitrobenzoyl chloride in NMP. The composition and structure of the products were confirmed by FTIR, NMR and elemental analysis. A series of polyimides were prepared by the polycondensation of BIA and various dianhydrides, PMDA, BPDA, BTDA and ODPA via traditional two-step procedure. FTIR confirms that PAAs converted into corresponding polyimides. The polyimides exhibit excellent thermal stability, the5%weight loss temperature (T5) ranges from536℃to558℃, and the10%weight loss temperature (T10) ranges from571℃to590℃, and glass transition temperature (Tg) in the range of382℃-409℃. The polyimide films are tough and flexible and possess good mechanical properties of tensile strength of222MPa—232MPa and modulus of3.1GPa—5.6GPa without stretching. The polyimides are amorphous in WAXD patterns, while SAXS patterns show the existence of molecular aggregation. The rigid-rod structure and intermacromolecular hydrogen bond are likely responsible for the excellent properties of the polyimides.
     3. Model compound N-phenylphthalimide was successfully synthesized in polyphosphoric acids (PPA). The chemical structure of N-phenylphthalimide was confirmed by FTIR and1H NMR spectrum. Polyimides containing heterocyclic units were prepared by one-pot polycondensation of diamine BOA and BIA with various commercial dianhydrides of BPDA, BTDA and ODPA in PPA. FTIR and solid state13C NMR spectra confirm the existence of carbonyl of imide ring and the chemical structure of polyimides. The resulting products exhibit crystalline structures in WAXD patterns, which is different from traditional polyimides. Reaction temperature, solid content and P2O5content in PPA have an important effect on the inherent viscocity of products.
     4. Copolyimides containing benzimidazole units were prepared by two-step procedure using BIA, p-phenylenediamine (PDA) and BPDA as monomers. The copolyimides show improved mechanical properties. Copolyimide derived from damines BIA/PDA of50/50exhibits the best mechanical properties. Tgs of copolyimides rise by the increasing loading of BIA, while the addition of BIA results in a little reduce of thermal stability. The WAXD patterns show that all the copolyimides are amorphous. FTIR confirms the existence of hydrogen bond in copolyimides. The results of TMDSC show Tgs of coPAAs rising by increasing loading of BIA, leading to slower imidizaiton. All of the PAAs exhibit kinetic interrupt phenomenon during the thermal imidization process. The higher loading of BIA leads to a sooner coming of kinetic interrupt.
     5. Copolyamic acids were spun into fibers using the wet-spinning method, and the polyimide fibers were thus prepared by heating the above fibers. The SEM images show the BPDA/BIA PAA solution can form fibers with round and less void in cross section at a composition of coagulation bath of H2O/DMAc50/50. Rheological behavior of BPDA/BIA PAA solution indicates that the higher temperature leads to a decreasing viscosity; whereas the temperature of70℃results in the occurrence of gelation. Polyimide fiber with good thermal properties was obtained by the thermal imidization of BPDA/BIA PAA fiber. The mechanical properties can be improved by hot-draw in a hot tube. While the draw ratio is2.0, the fibers exhibit improved mechanical properties with tensile strength9.7cN/dtex and modulus450cN/dtex. The hot-draw induces crystallization in the high performance polyimide fibers. In addition, the fibers demonstrate high thermal stability, and the activation energy of polyimide fiber degradation is406KJ/mol evaluated using Kissinger method and383KJ/mol using Flynn-Wall-Ozawa method.
引文
[1]丁孟贤.聚酰亚胺-化学、结构与性能的关系及材料[M].北京,科学出版社,2006:2-3.
    [2]Hashimoto S, Nagasuna Y. Polyimides based on heterocyclic monomers[J]. Kobunshi Kagaku,1967,24:633-639.
    [3]Sakaguchi Y, Kato Y. Synthesis of polyimide and poly(imide-benzoxazole) in polyphosphoric acid[J]. Journal of Polymer Science Part A:Polymer Chemistry,1993, 31:1029-1033.
    [4]Jin L, Zhang Q H, Xu Y, etc. Homogenous one-pot synthesis of polyimides in polyphosphoric acid[J]. European Polymer Journal,2009,45:2805-2811.
    [5]Kuznetsov A A. One-Pot Polyimide synthesis in carboxylic acid medium[J]. High Performance Polymers,2000,12:445-460.
    [6]Kuznetsov A A, Tsegel' skaya A Yu, Buzin P V. One-pot high-temperature synthesis of polyimides in benzoic acid[J]. Polymer Science Series A,2007,49: 1157-1164.
    [7]Hasanain F, Wang Z Y. New one-step synthesis of polyimides in salicylic acid[J]. Polymer,2008,49:831-835.
    [8]Vygodskii Y S, Lozinskaya E, Shaplov A S. Ionic liquids as novel reaction media for the synthesis of condensation polymers[J]. Macromolecular Rapid Communication,2002,23:676-680.
    [9]金亮,张清华.聚酰亚胺在离子液体中的合成与表征[J].高分子材料科学与工程,2010,26(3):23-26.
    [10]陈玲玲,兰建武,吴乐等.聚酯酰亚胺醚热塑性弹性体的合成及其纤维性能[J].合成纤维,2007(7):30-33,37.
    [11]Dorsey K D, Desai P, Abhiraman A S, etc. Structure and properties of melt-extruded laRC-IA(3,4-ODA4,4-ODPA) polyimide fibers[J]. Journal of Applied Polymer Science,1999,73:1215-1222.
    [12]Clair L S T, Fay C C, Working D C. US 5840828, Polyimide fibers.1997.
    [13]Siochi E J, Working D C, Park C, etc. Melt processing of SWCNT-polyimide nanocomposite fibers[J]. Composite:Part B,2004,35:439-446.
    [14]Endo R, Washitake Y, Hashimoto Y, etc. US 20120015184, Amorphous polyetherimide fiber and heat-resistant fabric,2011.
    [15]Irwin R S, Sweeny W. Polyimide fibers[J]. Journal of Polymer Science Part C, 1969,19:41-48.
    [16]Goel R N, Hepworth A, Deopura B L, etc. Polyimide fibers:structure and morphology[J]. Journal of Applied Polymer Science,1979,23:3541-3552.
    [17]Goel R N, Varma I K, Varmal D S. Preparation and properties of polyimide fibers[J]. Journal of Applied Polymer Science,1979,24:1061-1072.
    [18]Jr Dorogy W E, Clair A K S. Fibers from a soluble, fluorinated polyimide[J]. Journal of Applied Polymer Science,1993,49:501-519.
    [19]许伟,刘向阳,顾宜等.聚酰亚胺纤维的制备及其结构研究[J].合成纤维工业,2006,29(2):1-4.
    [20]黄荣辉,姚果,顾宜等.三元共聚聚酰亚胺纤维的制备[J].合成纤维工业,200730(2):1-4.
    [21]蔡小川,许伟,顾宜等.PPD对PAA溶液性质及其纤维结构的影响[J].合成纤维工业,2009,32(5):1-4.
    [22]Park S K, Farris R J. Dry-jet wet spinning of aromatic polyamic acid fiber using chemical imidization[J]. Polymer,2001,42:10087-10093.
    [23]周伍清,唐婷婷,戴礼兴.三元共聚聚酰亚胺初生纤维结构与性能的研究[J].合成纤维工业,2007,30(5):23-25.
    [24]Su J F, Chen L, Tang T T, etc. Preparation and characterization of ternary copolyimide fibers via partly imidized method[J]. High Performance Polymers,2011, 23:273-280.
    [25]Irwin R S, Smullen C E. US 3415782, Formation of polypyromellitimide filament,1968.
    [26]Irwin R S, Del W. US 4640972, Filament of polyimide from pyromellitic acid dianhydride and 3,4-oxydianiline,1987.
    [27]吴叙勤,丁有容,李世瑨.芳族聚酰亚胺纤维的研究[J].上海化工学院学报,1980,(1):1-11.
    [28]吴叙勤,丁有容,陈石等.聚酰亚胺纤维的耐热性[J].华东化工学院学报,1981,(3):67-76.
    [29]Nah C, Han S H, Lee M H, etc. Characteristics of polyimide ultrafine fibers prepared through electro sp inning [J]. Polymer International,2003,52:429-432.
    [30]Huang C B, Reneker D H, Hou H Q, etc. High-strength mats from electrospun poly(p-phenylene Biphenyltetracarboximide) nanofibers[J]. Advanced Materials, 2006,18:668-671.
    [31]Chen F, Reneker D H, Hou H Q, etc. Mechanical characterization of single high strength electrospun polyimide nanofibres[J]. Journal of Physics D:Applied Physics, 2008,41:025308/1-8.
    [32]Eshoo M, Buckley L J, Clair A K S. Fibers from a low dielectric constant fluorinated polyimide Solution spinning and morphology control[J]. Journal of Polymer Science Part B:Polymer Physics,1997,35:173-185.
    [33]黄忠,向红兵,陈蕾等.三元共聚酰亚胺初生纤维结构与性能的研究[J].高科技纤维与应用,2010,35(5):37-40.
    [34]Xiang H B, Huang Z, Liu L Q, etc. Structure and properties of polyimide (BTDA-TDI/MDI co-polyimide) fibers obtained by wet-spinning macromolecular research[J]. Macromolecular Research,2011,19:645-653.
    [35]Kaneda T, Katsua T, Nakagawa K, etc. High-Strength-High-Modulus polyimide fibers I. one-step synthesis of spinnable polyimides[J]. Journal of Applied Polymer Science,1986,32:3133-3149.
    [36]Kaneda T, Katsua T, Nakagawa K, etc. High-Strength-High-Modulus polyimide fibers II. spinning and properties of fibers[J]. Journal of Applied Polymer Science, 1986,32:3153-3176.
    [37]Cheng S Z D, Wu Z, Eashoo M, etc. A high-performance aromatic polyimide fibre 1. structure, properties and mechanical-history dependence[J]. Polymer,1991, 32:1803-1810.
    [38]Eashoo M, Shen D X, Cheng S Z D, etc. High-performance aromatic polyimide fibres 2. thermal mechanical and dynamic properties [J]. Polymer,1993,34:3209-3215.
    [39]Eashoo M, Wu Z Q, Cheng S Z D, etc. High performance aromatic polyimide fibers 3. a polyimide synthesized from 3,3',4,4'-biphenyltetracarboxylic dianhydride and 2,2'-dimethyL4,4'-diarninobiphenyl[J]. Macromolecular Chemistry and Physics, 1994,195:2207-2225.
    [40]Harris F W, Cheng S Z D. US 5378420, Process for preparing aromatic polyimide fibers,1995.
    [41]张春玲,邱雪鹏,薛彦虎等.牵伸倍率对联苯型聚酰亚胺纤维形貌、取向及性能的影响[J].高等学校化学学报,2011,32(4):952-956.
    [42]张清华,罗伟强,张春华等.聚酰亚胺初生纤维的形态结构[J].合成纤维工业,2003,26(3):9-11.
    [43]张清华,罗伟强,高连勋等.联苯型聚酰亚胺纤维的动态力学行为[J].功能 高分子学报,2004,17(3):72-74.
    [44]Zhang Q H, Dai M, Ding M X, etc. Mechanical properties of BPDA-ODA polyimide fibers[J]. European Polymer Journal,2004,40:2487-2493.
    [45]Zhang Q H, Dai M, Ding M X, etc. Morphology of polyimide fibers derived from 3,3'4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydianiline[J] Journal of Applied Polymer Science,2004,93:669-675.
    [46]Zhang Q H, Luo W Q, Gao L X, etc. Thermal mechanical and dynamic mechanical property of biphenyl polyimide fibers[J]. Journal of Applied Polymer Science,2004,92:1653-1657.
    [47]Liu X Y, Xu W, Ye G D, etc. Novel aromatic polyimide fiber with biphenyl side-groups:dope synthesis and filament internal morphology control[J]. Polymer Engineering and Science,2006,46:123-128.
    [48]Vogel H, Marvel C S. Polybenzimidazoles, new thermally stable polymers [J]. Journal of Polymer Science,1961,50:511-539.
    [49]Wolfe J F, Loo B H, Arnold F E. Rigid-rod polymers.2. synthesis and thermal properties of para-aromatic polymers with 2,6-benzobisthiazole units in the main chain[J]. Macromolecules,1981,14:915-920.
    [50]Wolfe J F, Arnold F E. Rigid-rod polymers.1. synthesis and thermal properties of para-aromatic polymers with 2,6-benzobisoxazole units in the main chain[J]. Macromolecules,1981,14:909-915.
    [51]Sikkema D J. Design, synthesis and properties of a novel rigid rod polymer, PIPD or'M5'high modulus and tenacity fibres with substantial compressive strength[J]. Polymer,1998,39:5981-5986.
    [52]Mikroyannidis J A. Aromatic polyamides and polyimides with benzoxazole or benzothiazole pendent groups prepared from 5-(2-Benzoxazole)-or 5-(2-Benzothiazole)-1,3-phenylenediamine[J]. Macromolecules,1995,28:5177-5183.
    [53]Mikroyannidis J A. Aromatic polyamides and polyimides with benzimidazole or benzoxazinone pendent groups prepared from 5-(2-benzimidazole)-or 5-(2-benzoxazinone)-1,3-phenylenediamine[J]. Polymer,1995,37:2715-2721.
    54杨进,詹怀宇,周雪松等.新型苯并噁唑侧基聚酰亚胺的合成、结构与性能研 究[J].化学学报,2009,67(8):875-878.
    [55]Dalman D A, Hwang W F, Hamis W J, etc. Self-reinforced dielectric substrates based on PIBO film. International Symposium on Advanced Packaging Materials, 1997,6-10.
    [56]Wang S, Zhou H W, Dang G D, etc. Synthesis and characterization of thermally stable, high-modulus polyimide containing benzimidazole moieties[J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47:2024-2031.
    [57]Rusanov A L, Batirov I. Polyimide based on heterocyclic monomers[J]. Russia Chemical Reviewers,1980,49:1204-1215.
    [58]Kurita K, Williams R L. Heat-resistant polymers containing bipyridyl units. I. polyimides[J]. Journal of Polymer Science Chemistry Edition,1973,11:3125-3150.
    [59]Hariharan R, Bhuvana S, Malbi M A, etc. Synthesis and characterization of polyimides containing pyridine moiety[J]. Journal of Applied Polymer Science,2004, 93:1846-1853.
    [60]Subramaniam P, Srinivasan M. Synthesis and characterization of polyimides containing heterocyclic units[J]. Journal of Polymer Science, Part A:Polymer Chemistry,1988,26:1553-1560.
    [61]Fukuzaki N, Higashihara T, Ando S, etc. Synthesis and characterization of highly refractive polyimides derived from thiophene-containing aromatic diamines and aromatic dianhydrides[J]. Macromolecules,2010,43:1836-1843.
    [62]Hamciuc E, Hamciuc C, Bruma M, etc. Poly(1,3,4-oxadiazole-imide)s containing dimethylsilane groups[J]. European Polymer Journal,2005,41:2989-2997.
    [63]Rusu R D, Damaceanu M D, Marin L, etc. Copoly(peryleneimide)s containing 1,3,4-oxadiazole rings:synthesis and properties [J]. Journal of Polymer Science, Part A:Polymer Chemistry,2010,48:4230-4242.
    [64]Preston J. Heterocylic intermediates for the Preparation of thermally stable polymers (1)[J]. Journal of Heterocylic Chemistry,1965,2:441-446
    [65]Preston J, Dewinter W, Hofferbet W L. Heterocylic intermediates for the Preparation of Thermally Stable Polymers.Ⅱ. benzoxazoles and benzothiazoles[J]. Journal of Heterocylic Chemistry,1968,5:269-273.
    [66]Preston J, Dewinter W, Hofferbet W L. Heterocyclic intermediates for the preparation of thermally stable polymers.Ⅲ. unsymmetrical benzoxazole, benzothiazole and benzimidazole diamines[J]. Journal of Heterocylic Chemistry,1969, 6:119-121.
    [67]Preston J, Black W B. New high temperature polymers. VI. ordered heterocycle copolymers[J]. Journal of Polymer Science, Part A:Polymer Chemistry, 1967,5:2429-2439.
    [68]Preston J, Dewinter W F, Black W B. New high-temperature polymers.Ⅷ. ordered benzoxazole- and benzothiazole-imide copolymers[J]. Journal of Polymer Science, Part A:Polymer Chemistry,1969,7:283-296.
    [69]Preston J, Dewinter W F, Black W B, etc. New high-temperature polymers.ⅩⅢ. thermally stable benzheterocycle imide and amide copolymers of limited order[J]. Journal of Polymer Science, Part A:Polymer Chemistry,1969,7:3027-3037.
    [70]Hergenrother P M, Harvens S J. Polyimides containing quinoxaline and benzimidazole Units[J]. Macromolecules,1994,27:4659-4664.
    [71]Berrada M, Carriere F, Abboud Y, etc. Preparation and characterization of new soluble benzimidazole-imide copolymers [J]. Journal of Materials Chemistry,2002, 12:3551-3559.
    [72]Chung I S, Park C E, Ree M, etc. Soluble Polyimides containing benzimidazole rings for interlevel dielectrics[J]. Chemistry of Materials,2001,13:2801-2806.
    [73]Choi H S., Chung I S, Hong K, etc. Soluble polyimides from unsymmetrical diamine containing benzimidazole ring and trifluoromethyl pendent group[J]. Polymer, 2008,49:2644-2649.
    [74]Liu J P, Zhang Q H, Xia Q M, etc. Synthesis, characterization and properties of polyimides derived from a symmetrical diamine containing bis-benzimidazole rings [J]. Polymer Degradation and Stability,2012,97:987-994.
    [75]Padma S, Mahadevan V, Srinivisan M. Synthesis of novel benzothiazolimides[J]. Journal of Polymer Science, Part A:Polymer Chemistry,1989,27:733-736.
    [76]孙维林,卢凤才.1,4-双-[4-(2-氨基-5-苯基)噻哗基]苯及其共聚酰亚胺的合成及性能[J].高分子学报,1999,(5):600-605.
    [77]Kimura K. Synthesis and characterization of novel pply(benzobisthiazole-imide)s [J]. Journal of Polymer Science, Part A:Polymer Chemistry,1994,32:181-185.
    [78]Mukai S, Nozawa S, Kimura M, etc. An hetrocyclic aromatic polymer and its mechenical properties. Materials Research Society Symposium Proceedings,1988, 134:167-172.
    [79]Hedrick J L. Imide-aryl ether benzothiazole copolymers[J]. Polymer Bulletin, 1990,24:371-377.
    [80]Dalman D A, Mich M. US 5670262, Printing wiring board(s) having polyimide-benzoxazole dielectric layer(s) and the manufacture thereof,1997.
    [81]孟祥丽,黄玉东,于虹.含噁唑环均苯型聚酰亚胺的制备和表征[J].化学与粘合,2007,29(5):347-350.
    [82]孟祥丽,黄玉东,吕祖舜等.含嗯唑环聚酰亚胺的制备及性能[J].高分子材料科学与工程,2010,26(5):136-139.
    [83]Meng X L, Huang Y D, Yu H, etc. Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units[J]. Polymer Degradation and Stability,2007,92: 962-967.
    [84]Xia A X, Lu G H, Qiu X P, etc. Syntheses and properties of novel polyimides derived from 2-(4-aminophenyl)-5-aminopyrimidine[J]. Journal of Applied Polymer Science,2006,102:5871-5876.
    [85]夏爱香,吕光华,邱雪鹏等.基于2,5-二(4-氨基苯)嘧啶聚酰亚胺的合成及性能表征[J].高分子学报,2007,(3):262-266.
    [86]Preston J. Self-regulating polycondensations. IV. ordered oxadiazoldmide copolymers[J]. Journal of Polymer Science:Part A-1,1972,10:3373-3386.
    [87]Dokoshi N, Tohyama S, Fujita S, etc. Cyclopolycondensation.ⅩⅢ. new synthetic route to fully aromatic poly(heterocyclic imides) with alternating repeating units[J]. Journal of Polymer Science:Part A-1,1970,8:2197-2217.
    [88]Frost L W, Bower G M, Freeman J H, etc. Benzimidazole and oxadiazole modified aromatic polyimides[J]. Journal of Polymer Science:Part A-1,1968,6: 215-233.
    [89]Liou G S. New rigid-rod poly(benzoxazole-imide)s containing chloro-substituted p-phenylene units in the main chain[J]. Journal of Polymer Science Part A:Polymer Chemistry,1999,37:4151-4158.
    [90]Liou G S. New rigid-rod and strictly alternating poly(benzoxazole-imide)s containing methyl-substituted p-phenylene units in the main chain[J]. Macromolecular Chemistry and Physics,2000,201:1141-1147.
    [91]Tullos G L, Mathias L J. Unexpected thermal conversion of hydroxy-containing polyimides to polybenzoxazoles[J]. Polymer,1999,40:3463-3468.
    [92]Chang J H, Park K M, Lee S M, etc. Two-step thermal conversion from poly(amic acid) to polybenzoxazole via polyimide their thermal and mechanical properties[J]. Journal of Polymer Science Part B:Polymer Physics,2000,38: 2537-2545.
    [93]高原,张茂根,王炳祥等DDM-PMDA-HAB噁唑酰亚胺共聚物的合成及其耐热性[J].应用化学,2006,23(9):1027-1031.
    [94]Hodgkin J H, Dao B N. Thermal conversion of hydroxy-containing polyimides to polybenzoxazoles. Does this reaction really occur?[J]. European polymer Journal, 2009,45:3081-3089.
    [95]Preston J, Dewinter W, Black W B. Benzheterocycle-imide and amide-imide fibers derived from diacid chlorides containing preformed imide groups[J]. Journal of Polymer Science:Part A-1,1972,10:1377-1389.
    [96]Sukhanova T E, Baklagina Y G, Kudryavtsev V V, etc. Morphology, deformation and failure behaviour of homo- and copolyimide fibres.1. Fibres from 4,4'-oxybis(phthalic anhydride) (DPhO) and p-phenylenediamine (PPh) or/and 2,5-bis(4-aminophenyl)-pyrimidine (2,5PRM)[J]. Polymer,1999,40:6265-6276.
    [97]Mikhailovich M G. RU 2394947, Method for polyamic acid solution spinning, 2008.
    [98]Gao G Q, Dong L, Gu Y, etc. Structure and properties of novel PMDA/ODA /PABZ polyimide fibers[J]. Polymer Engineering and Science,2008,48:912-917.
    [99]Liu X Y, Gao G Q, Dong L, etc. Correlation between hydrogen-bonding interaction and mechanical properties of polyimide fibers[J]. Polymers Advanced Technologies,2009,20:3623-366.
    [100]Yoshida S, Hay A S. Polyimides containing a quinazolinone moiety[J]. Macromolecules,1997,30:5979-5985.
    [101]Niu H Q, Qi S L, Han E L, etc. Fabrication of high-performance copolyimide fibers from 3,3',4,4'-biphenyltetracarboxylic dianhydride, p-phenylenediamine and 2-(4-aminophenyl)-6-amino-4(3H)-quinazolinone[J]. Materials Letters,2012,89: 63-65.
    [1]Wolfe J F, Arnold F E. Rigid-rod polymers.1. Synthesis and thermal properties of para-aromatic polymers with 2,6-benzobisoxazole units in the main chain[J]. Macromolecules,1981,14:909-915.
    [2]Choe E W, Kim S N. Synthesis, Spinning, and fiber mechanical properties of poly(p-phenylenebenzobisoxazole)[J]. Macromolecules,1981,14:920-924.
    [3]Liou G S. New rigid-rod poly(benzoxazole-imide)s containing chloro-substituted p-phenylene units in the main chain[J]. Journal of Polymer Science Part A:Polymer Chemistry,1999,37:4151-4158.
    [4]Liou G S. New rigid-rod and strictly alternating poly(benzoxazole-imide)s containing methyl-substituted p-phenylene units in the main chain[J]. Macromolecular Chemistry and Physics,2000,201:1141-1147.
    [5]Tullos G L, Mathias L J. Unexpected thermal conversion of hydro xy-containing polyimides to polybenzoxazoles[J]. Polymer,1999,40:3463-3468.
    [6]Chang J H, Park K M, Lee S M, etc. Two-step thermal conversion from poly(amic acid) to polybenzoxazole via polyimide Their thermal and mechanical properties[J]. J ournal of Polymer Science Part B:Polymer Physics,2000,38:2537-2545.
    [7]高原,张茂根,王炳祥等DDM-PMDA-HAB (?)噁唑酰亚胺共聚物的合成及其耐热性[J].应用化学,2006,23(9):1027-1031
    [8]Hodgkin J H, Dao B N. Thermal conversion of hydroxy-containing polyimides to polybenzoxazoles. does this reaction really occur?[J]. European polymer Journal, 2009,45:3081-3092.
    [9]Preston J, Dewinter W F, Black W B. New high-temperature polymers. VIII. ordered benzoxazole- and benzothiazole-imide copolymers[J]. Journal of Polymer Science Part A:Polymer Chemistry,1969,7:283-296.
    [10]Preston J, Dewinter W F, Black W B, etc. New high-temperature polymers. XIII. thermally stable benzheterocycle imide and amide copolymers of limited order[J]. Journal of Polymer Science Part A:Polymer Chemistry,1969,7:3027-3037.
    [11]孟祥丽,黄玉东,于虹.含噁唑环均苯型聚酰亚胺的制备和表征[J].化学与粘合,2007,29(5):347-350.
    [12]孟祥丽,黄玉东,吕祖舜等.含噁唑环聚酰亚胺的制备及性能[J].高分子材料科学与工程,2010,26(5):136-139.
    [13]Meng X L, Huang Y D, Yu H, etc. Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units[J]. Polymer Degradation and Stability,2007,92: 962-967.
    [14]Dalman D A, Hwang W F, Hamis W J, etc. Self-reinforced dielectric substrates based on PIBO film. International Symposium on Advanced Packaging Materials, 1997:6-10.
    [15]Dalman D A, Mich M. US 5670262, Printing wiring board(s) having polyimide-benzoxazole dielectric layer(s) and the manufacture thereof,1997.
    [16]Preston J, Dewinter W, Hofferbet W L. Heterocyclic intermediates for the preparation of thermally stable polymers.Ⅲ. unsymmetrical benzoxazole, benzothiazole and benzimidazole diamines[J]. Journal of Heterocylic Chemistry,1969, 6:119-121.
    [17]梁栎桦,杨光,刘超.5-氨基2-(对氨基苯基)苯并噁唑的合成[J].化学试剂,2008,30(1):33-34,45.
    [18]Nair Reghunadhan C P, Sebastian T V, Nema S K, etc. Thermally stable polymers based on addition-type imidobenzoxazoles; synthesis and characterization of polybismaleimidobenzoxazoles and polybiscitraconimidobenzoxazoles[J]. Journal of Polymer Science Part A:Polymer Chemistry,1986,24:1109-1132.
    [19]姜佳一,庞立营.5-氨基-2-(4-氨基苯)苯并噁唑合成研究[J].精细化工中间体,2008,38(6):52-54.
    [20]Brekner M J, Feger C. Curing studies of a polyimide precursor [J]. Journal of Polymer Science Part A:Polymer Chemistry,1985,25:2005-2020.
    [21]Preston J, Dewinter W F, Black W B. New high-temperature polymers. VIII. ordered benzoxazole- and benzothiazole-imide copolymers[J]. Journal of Polymer Science Part A:Polymer Chemistry,1969,7:283-296.
    [22]Isoda S, Shimada H, Kochi M, etc. Molecular aggregation of solid aromatic polymers. I. small-angle x-ray scattering from aromatic polyimide film[J]. Journal of Polymer Science:Polymer Physics,1981,19:1293-1312.
    [23]Wang S, Zhou H W, Dang G D, etc. Synthesis and characterization of thermally stable, high-modulus polyimide containing benzimidazole moieties[J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47:2024-2031.
    [1]Vogel H, Marvel C S. Polybenzimidazoles, new thermally stable polymers[J]. Journal of Polymer Science,1961,50:511-539.
    [2]Vogel H, Marvel C S. Polybenzimidazoles.Ⅱ[J]. Journal of Polymer Science Part A:Polymer Chemistry,1963,1:1531-1541.
    [3]Plummer L, Marvel C S. Polybenzimidazoles. Ⅲ[J]. Journal of Polymer Science Part A:Polymer Chemistry,1964,2:2559-2569.
    [4]Preston J, Black W B. New high temperature polymers.Ⅵ. ordered heterocycle copolymers[J]. Journal of Polymer Science, Part A:Polymer Chemistry, 1967,5:2429-2439.
    [5]Preston J, Dewinter W F, Black W B. New high-temperature polymers.Ⅷ. ordered benzoxazole- and benzothiazole-imide copolymers[J]. Journal of Polymer Science, Part A:Polymer Chemistry,1969,7:283-296.
    [6]Berrada M, Carriere F, Abboud Y, etc. Preparation and characterization of new soluble benzimidazole-imide copolymers[J]. Journal of Materials Chemistry,2002, 12:3551-3559.
    [7]Chung I S, Park C E, Ree M, etc. Soluble Polyimides containing benzimidazole rings for interlevel dielectrics[J]. Chemistry of Materials,2001,13:2801-2806.
    [8]Choi H S., Chung I S, Hong K, etc. Soluble polyimides from unsymmetrical diamine containing benzimidazole ring and trifluoromethyl pendent group[J]. Polymer, 2008,49:2644-2649.
    [9]Wang S, Zhou H W, Dang G D, etc. Synthesis and characterization of thermally stable, high-modulus polyimide containing benzimidazole moieties[J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47:2024-2031.
    [10]Preston J, Dewinter W, Hofferbet W L. Heterocyclic intermediates for the preparation of thermally stable polymers. III. unsymmetrical benzoxazole, benzothiazole and benzimidazole diamines[J]. Journal of Heterocylic Chemistry,1969, 6:119-121.
    [11]Ayala V, Munoz D M, Lozalo A E, etc. Synthesis, characterization, and properties of new sequenced poly(ether amide)s based on 2-(4-aminophenyl)-5-aminobenzimidazole and 2-(3-aminophenyl)-5- aminobenzimidazolc[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44:1414-1423.
    [12]Chung I S, Kim S Y. Synthesis and characterization of poly(amide imides) containing benzimidazole-rings[J]. Polymer Bulletin,1997,38:627-644;
    [13]Brekner M J, Feger C. Curing studies of a polyimide precursor[J]. Journal of Polymer Science Part A:Polymer Chemistry,1985,25:2005-2020.
    [14]Isoda S, Shimada H, Kochi M, etc. Molecular aggregation of solid aromatic polymers.Ⅰ. small-angle x-ray scattering from aromatic polyimide film[J]. Journal of Polymer Science:Polymer Physics,1981,19:1293-1312.
    [15]Guerra G, Choe S, Williams D J, etc. Fourier transform infrared spectroscopy of some miscible polybenzimidazole/polyimide blends[J]. Macromolecules,1988,21: 231-234.
    [16]Musto P, Karasz F E, MacKnight W J. Hydrogen bonding in polybenzimidazole/ poly(ether imide) blends:a spectroscopic study[J]. Macromolecules,1991,24: 4762-4769.
    [17]Ahn T K, Kim M, Choe S. Hydrogen-bonding strength in the blends of polybenzimidazole with BTDA-and DSDA-based polyimides[J]. Macromolecules, 1997,30:3369-3374.
    [18]Teo L S, Chen C Y, Kuo J F. Fourier transform infrared spectroscopy study on effects of temperature on hydrogen bonding in amine-containing polyurethanes and poly(urethane-urea)s[J]. Macromolecules,1997,30:1793-1799.
    [19]Coleman M M, Skrovanek D J, Hu J B, etc. Hydrogen bonding in polymer blends.1. FT-IR studies of urethane-ether blends[J]. Macromolecules,1988,21: 59-65.
    [20]Coleman M M, Lee K H, Skrovanek D J, etc. Hydrogen bonding in polymers.4. Infrared temperature studies of a simple polyurethane[J]. Macromolecules,1986,19: 2149-2157.
    [1]Kuznetsov A A. One-Pot Polyimide synthesis in carboxylic acid medium[J]. High Performance Polymers,2000,12:445-460.
    [2]Hasanain F, Wang Z Y. New one-step synthesis of polyimides in salicylic acid[J]. Polymer,2008,49:831-835.
    [3]Vygodskii Y S, Lozinskaya E, Shaplov A S. Ionic liquids as novel reaction media for the synthesis of condensation polymers[J]. Macromolecular Rapid Communication,2002,23:676-680.
    [4]金亮,张清华.聚酰亚胺在离子液体中的合成与表征[J].高分子材料科学与工程,2010,26(3):23-26.
    [5]Kulkarni M, Potrekar R, Kulkarni RA, etc. Synthesis and characterization of novel polybenzimidazoles bearing pendant phenoxyamine groups[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46:5776-5793.
    [6]Wolfe J F, Arnold F E. Rigid-rod polymers.1. synthesis and thermal properties of para-aromatic polymers with 2,6-benzobisoxazole units in the main chain[J]. Macromolecules,1981,14:909-915.
    [7]Wolfe J F, Loo B H, Arnold F E. Rigid-rod polymers.2. synthesis and thermal properties of para-aromatic polymers with 2,6-benzobisthiazole units in the main chain[J]. Macromolecules,1981,14:915-920.
    [8]Sikkema D J. Design, synthesis and properties of a novel rigid rod polymer, PIPD or 'M5' high modulus and tenacity fibres with substantial compressive strength[J]. Polymer,1998,39:5981-5986.
    [9]Hashimoto S, Nagasuna Y. Polyimides based on heterocyclic monomers[J]. Kobunshi Kagaku,1967,24:633-639.
    [10]Sakaguchi Y, Kato Y. Synthesis of polyimide and poly(imide-benzoxazole) in polyphosphoric acid[J]. Journal of Polymer Science Part A:Polymer Chemistry,1993, 31:1029-1033
    [11]陈向群,孙秋,王福平.CN101016381A,聚苯并噁唑-酰亚胺及其纤维的制备方法,2007.
    [12]Jin L, Zhang Q H, Xu Y, etc. Homogenous one-pot synthesis of polyimides in polyphosphoric acid[J]. European Polymer Journal,2009,45:2805-2811.
    [13]Havens J R, Ishida H, Koenig J L. High-resolution carbon-13 nuclear magnetic resonance study of conjugation in solid polyimides [J]. Macromolecules,1981,14: 1327-1333.
    [14]Martinez-Richa A, Graziano R V. A solid-state NMR study of aromatic polyimides based on 4,4'-diaminotriphenylmethane[J]. Journal of Applied Polymer Science,1998,70:1053-1064.
    [15]Varner S J, Vold R L, Hoatson G L. Characterization of polyimides by 13C and 1H solid state nuclear magnetic resonance[J]. Solid State Nuclear Resonance 1998,12: 71-85.
    [16]Chow A W, Bitler S P, Penwell P E, etc. Synthesis and solution properties of extended chain poly (2,6-benzothiazole) and poly (2,5-benzoxazole)[J]. Macromolecules,1989,22:3514-3520.
    [1]Dalman D A, Hwang W F, Hamis W J, etc. Self-reinforced dielectric substrates based on PIBO film. International Symposium on Advanced Packaging Materials, 1997,6-10.
    [2]Wang S, Zhou H W, Dang G D, etc. Synthesis and characterization of thermally stable, high-modulus polyimide containing benzimidazole moieties[J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47:2024-2031.
    [3]Liu J P, Zhang Q H, Xia Q M, etc. Synthesis, characterization and properties of polyimides derived from a symmetrical diamine containing bis-benzimidazole rings[J] Polymer Degradation and Stability,2012,97:987-994.
    [4]. Yoshida S, Hay A S. Polyimides containing a quinazolinone moiety[J]. Macromolecules,1997,30:5979-5985.
    [5]Xia A X, Lu G H, Qiu X P, etc. Syntheses and properties of novel polyimides derived from 2-(4-aminophenyl)-5- aminopyrimidine[J]. Journal of Applied Polymer Science,2006,102:5871-5876.
    [6]夏爱香,吕光华,邱雪鹏等.基于2,5-二(4-氨基苯)嘧啶聚酰亚胺的合成及性能表征[J].高分子学报,2007,(3):262-266.
    [7]Gao G Q, Dong L, Gu Y, etc. Structure and properties of novel PMDA/ODA /PABZ polyimide fibers[J]. Polymer Engineering and Science,2008,48:912-917.
    [8]Sukhanova T E, Baklagina Y G, Kudryavtsev V V, etc. Morphology, deformation and failure behaviour of homo- and copolyimide fibres.1. fibres from 4,4'-oxybis(phthalic anhydride) (DPhO) and p-phenylenediamine (PPh) or/and 2,5-bis(4-aminophenyl)-pyrimidine (2,5PRM)[J]. Polymer,1999,40:6265-6276.
    [9]Niu H Q, Qi S L, Han E L, etc. Fabrication of high-performance copolyimide fibers from 3,3',4,4'-biphenyltetracarboxylic dianhydride, p-phenylenediamine and 2-(4-aminophenyl)-6-amino-4(3H)-quinazolinone[J]. Materials Letters,2012,89: 63-65.
    [10]Brostow W, Chiu R, Kalogeras I M, etc. Prediction of glass transition temperature:binary bleads and copolymers[J]. Materials Letters,2008,62: 3152-3155.
    [11]Guerra G, Choe S, Williams D J, etc. Fourier transform infrared spectroscopy of some miscible polybenzimidazole/polyimide blends[J]. Macromolecules,1988,21: 231-234.
    [12]Musto P, Karasz F E, MacKnight W J. Hydrogen bonding in polybenzimidazole/ poly(ether imide) blends:a spectroscopic study[J]. Macromolecules,1991,24: 4762-4769.
    [13]Ahn T K, Kim M, Choe S. Hydro gen-bonding strength in the blends of polybenzimidazole with BTDA- and DSDA-based poly imide s[J]. Macromolecules, 1997,30:3369-3374.
    [14]Teo L S, Chen C Y, Kuo J F. Fourier transform infrared spectroscopy study on effects of temperature on hydrogen bonding in amine-containing polyurethanes and poly(urethane-urea)s[J]. Macromolecules,1997,30:1793-1799.
    [15]Liu X Y, Gao G Q, Dong L, etc. Correlation between hydrogen-bonding interaction and mechanical properties of polyimide fibers[J]. Polymers Advanced Technologies,2009,20:3623-366.
    [16]Snyder R W, Thomson B, Bartges B, etc. FTIR studies of polyimides:thermal curing[J]. Macromolecules,1989,22:4166-4172.
    [17]Dickinson P R, Sung C S P. Kinetics and mechanisms of thermal imidization studies by UV-visible and fluorescence spectroscopic techniques[J]. Macromolecules, 1992,25:3758-3768.
    [18]Johnson C, Wunder S L. FT-Raman investigation of the thermal curing of PMDA/OD A polyamic acids[J]. Journal of Polymer Science Part B:Polymer Physics, 1993,31:677-692.
    [19]Brekner M J, Feger C. Curing studies of a polyimide precursor [J]. Journal of Polymer Science Part A:Polymer Chemistry,1987,25:2005-2020.
    [20]Brekner M J, Feger C. Curing studies of a polyimide precursor. II. polyamic acid[J]. Journal of Polymer Science Part A:Polymer Chemistry,1987,25:2479-2491.
    [21]路庆华,王宗光,孙立民等.聚酰亚胺的热酰亚胺化动力学研究[J].上海交通大学学报,1997,31(7):148-150.
    [22]Kotera M, Nishino T, Nakamae K. Imidization processes of aromatic polyimide by temperature modulated DSC[J]. Polymer,2000,41:3615-3619.
    [23]高爱娟,王强,常冠军等.含氟聚酰胺酸亚胺化反应动力学[J].功能高分子学报,2008,21(2):223-225.
    [24]高爱娟,刘华,董殿权等.热重法研究含氟聚酰胺酸的亚胺化反应动力学[J].高分子材料科学与工程,2008,24(11):138-140.
    [25]Pryde C A. IR studies of polyimides.I.effects of chemical and physical changes during cure[J]. Journal of Polymer Science Part A:Polymer Chemistry,1989,27: 711-754.
    [26]丁孟贤.聚酰亚胺-化学、结构与性能的关系及材料[M].北京,科学出版社,2006:52.
    [27]程茹,郭立红,王伟等.聚酰胺酸热环化过程热分析[J].塑料工业,2005,33(12):32-34.
    [28]Seo Y S, Lee S M, Kim D Y, etc. Kinetic study of the imidization of a poly(ester amic acid) by FT-Raman spectroscopy[J]. Macromolecules,1997,30:3747-3753.
    [29]王少峰,朱梦冰,蒋远媛等.聚酰胺酸薄膜表面热酰亚胺化动力学研究[J].高校化学工程学报,2009,23(5):796-800.
    [1]Irwin R S, Sweeny W. Polyimide fibers[J]. Journal of polymer science Part C, 1969,19:41-48.
    [2]Irwin R S, Smullen C E. US 3415782, Formation of polypyromellitimide filament, 1968.
    [3]Goel R N, Hepworth A, Deopura B L, etc. Polyimide fibers:structure and morphology[J]. Journal of Applied Polymer Science,1979,23:3541-3552.
    [4]Goel R N, Varma I K, Varmal D S. Preparation and properties of polyimide fibers[J]. Journal of Applied Polymer Science,1979,24:1061-1072.
    [5]Jr Dorogy W E, Clair A K S. Fibers from a soluble, fluorinated polyimide[J]. Journal of Applied Polymer Science,1993,49:501-519.
    [6]Kaneda T, Katsua T, Nakagawa K, etc. High-Strength-High-Modulus polyimide fibers Ⅰ.one-step synthesis of spinnable polyimides[J]. Journal of Applied Polymer Science,1986,32:3133-3149.
    [7]Kaneda T, Katsua T, Nakagawa K, etc. High-Strength-High-Modulus polyimide fibers Ⅱ.spinning and properties of fibers[J]. Journal of Applied Polymer Science, 1986,32:3153-3176.
    [8]Cheng S Z D, Wu Z, Eashoo M, etc. A high-performance aromatic polyimide fibre 1.structure, properties and mechanical-history dependence[J]. Polymer,1991,32: 1803-1810.
    [9]张清华,罗伟强,张春华等.聚酰亚胺初生纤维的形态结构[J].合成纤维工业,2003,26(3):9-11.
    [10]张清华,罗伟强,高连勋等.联苯型聚酰亚胺纤维的动态力学行为[J].功能高分子学报,2004,17(3):72-74.
    [11]Zhang Q H, Dai M, Ding M X, etc. Mechanical properties of BPDA-ODA polyimide fibers[J]. European Polymer Journal,2004,40:2487-2493.
    [12]Zhang Q H, Dai M, Ding M X, etc. Morphology of polyimide fibers derived from 3,3'4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydianiline[J] Journal of Applied Polymer Science,2004,93:669-675.
    [13]Zhang Q H, Luo W Q, Gao L X, etc. Thermal mechanical and dynamic mechanical property of biphenyl polyimide fibers[J]. Journal of Applied Polymer Science,2004,92:1653-1657.
    [14]Sukhanova T E, Baklagina Y G, Kudryavtsev V V, etc. Morphology, deformation and failure behaviour of homo- and copolyimide fibres.1. fibres from 4,4'-oxybis(phthalic anhydride) (DPhO) and p-phenylenediamine (PPh) or/and 2,5-bis(4-aminophenyl)-pyrimidine (2,5PRM)[J]. Polymer,1999,40:6265-6276.
    [15]Gao G Q, Dong L, Gu Y, etc. Structure and properties of novel PMDA/ODA /PABZ polyimide fibers[J]. Polymer Engineering and Science,2008,48:912-917.
    [16]Niu H Q, Qi S L, Han E L, etc. Fabrication of high-performance copolyimide fibers from 3,3',4,4'-biphenyltetracarboxylic dianhydride, p-phenylenediamine and 2-(4-aminophenyl)-6-amino-4(3H)-quinazolinone[J]. Materials Letters,2012,89: 63-65.
    [17]Brekner M J, Feger C. Curing studies of a polyimide precursor[J]. Journal of Polymer Science, Part A:Polymer Chemistry,1985,25:2005-2020.
    [18]许伟,刘向阳,顾宜等.聚酰亚胺纤维的制备及其结构研究[J].合成纤维工业,2006,29(2):1-4.
    [19]张春玲,邱雪鹏,薛彦虎等.牵伸倍率对联苯型聚酰亚胺纤维形貌、取向及性能的影响[J].高等学校化学学报,2011,32(4):952-956.
    [20]Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry,1957,29:1702-1706
    [21]Doyle C D. Kinetic analysis of themogravimetric data[J]. Journal of Applied Polymer Science,1961,5:285-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700