用户名: 密码: 验证码:
泥石流危险度评价指标的提取与等级划分
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥石流多发生在山区坡地或山区沟谷深壑中,在地质构造,地形地貌,气象水文,人类经济活动等因素的综合作用下,突发的一种破坏力强、发生时间短且复发频率高的自然灾害现象。我国地质构造,地形条件相对复杂,泥石流灾害暴发频繁,对山区城镇,能源基地,水电工程,交通道路,生态环境和人民生命财产安全都造成了巨大灾难。为了减轻泥石流灾害造成的直接间接损失,保护国家和人民生命财产安全,对泥石流进行研究已成为一个亟待解决的重要课题。泥石流危险度评价是一项环境保护和减灾的非工程措施,可有效地反映泥石流现在所处的状态以及未来的发展趋势。
     论文以金沙江乌东德水电站库坝区泥石流为研究对象,详细的调查研究区的地理地形条件,地层岩性条件,构造地质条件,气象水文条件,植被条件等。根据研究区泥石流的地域特点、现场调查经验与3S技术遥感解译结合,获取泥石流9项评价指标的初步选取结果。9项评价指标为流域切割密度,主沟床弯曲系数,泥砂补给段长度比,植被覆盖率,流域内人口密度,24小时最大降雨量,主沟平均比降,单位面积物源量和轮廓圆度。
     然后根据粗糙集理论和逐步判别分析理论分别对所选取的评价指标进行优化提取约简,得到5组评价指标约简组合。而后,应用层次分析法和因子分析法的组合赋权方法,计算5组评价指标约简组合权重值。结合各评价指标的赋值标准,建立泥石流危险性评价的可拓学模型,对研究区泥石流危险度等级进行划分。且建立传统的刘希林模型,对研究区的泥石流危险性进行评价。同时,以初步选取的评价指标为组合,不进行评价指标的约简,与可拓理论相结合来评价泥石流的危险度等级。通过野外仔细调查的7条泥石流危险度,对所有模型进行验证分析对比,对研究区的泥石流危险性进行评价,以便更好的指导实践。
     粗糙集理论选取出主沟床弯曲系数,泥砂补给段长度比,主沟平均比降,单位面积物源量,轮廓圆度的一组组合,与可拓理论相结合的模型;逐步判别分析理论-可拓理论模型:这两种模型泥石流危险度评价结果与地质原型验证吻合,将研究对象、评价指标和量值结合为一体,建立泥石流危险度整体评价的可拓物元模型,较准确地评价泥石流危险度,反映研究区泥石流的实际情况,实现对泥石流的动态评价和预测。
Debris flow, which has the strong destructiveness, is a kind of more complex fluidwith ferocious momentum, fast speed, large flow, strong destructive power, short timeof occurrence and high recurrence rate. These sudden natural disasters tend to occur inthe slopes or valleys of the mountainous area. Under the comprehensive effect of allkinds of natural factors and human factors including geological structure, topography,geomorphology, meteorology, hydrology and human economic activities, etc, in ashort period of time there will be a lot of sediment and rock dumped outside themountains, causing a huge disaster to human production and life, hinderingengineering economic construction of the mountainous area.
     Thus, debris flow has already become a danger to mountainous towns, the energybase, water conservation and hydro-power engineering, road traffic, the ecologicalenvironment and the safety for people's lives and property. In order to alleviate thedirect and indirect damages caused by debris flow and protect the safety for people'slives and property, studying on debris flow has become a critical problem to beaddressed.
     This dissertation is based on the debris flow as the research object which is locatedon the downstream of Jinsha river Wudongde hydropower station, analyzed theoverall development condition of debris flow combined with the local datainformation and field investigation. The dissertation builded the three-dimensionalmodel and interpret the three-dimensional characteristic geometrical parameters of the27debris flows, applied remote sensing images, DEM and GIS technology. Throughfield investigation and3S remote sensing, the dissertation obtained the initial indices selection of debris flow assessment according to regional characteristics of debrisflow in the study area and field investigation.
     Then extract and reduct the evaluation index selection respectively according torough sets and stepwise discriminant analysis. Apply rough sets to reduct as4groupsof evaluation index, avoiding the repetitive factors. Apply stepwise discriminantanalysis to extract1group of evaluation index. The factors we selected have sufficientinformation which can reflect the hazard degree of debris flow. Apply the5groups ofevaluation index extracted by two kinds of nonlinear method, and calculate thecombination weighting by analytic hierarchy process and factor analysis. Accordingto the classification criteria of all evaluation indexes, build a extenics model of debrisflow susceptibility assessment respectively, and divide rating for the hazard degree ofdebris flow in the study area.
     At the same time, this dissertation built the traditional Liuxilin model and evaluatedthe debris flow susceptibility in the study area in contrast with rough sets-extensiontheory model and stepwise discriminant analysis-extension theory model. Considerthe initial indices selection as a combination which did not extract the evaluationindices, then combine with extension theory to rate for debris flow hazard assessment.
     It turned out that two models are built: one is extension theory combined with agroup of the evaluation index extracted by rough sets including the main channeltortuosity, length proportion of the debris supplement section, average main channelgradient, material per square kilometer and contour roundness; another is stepwisediscriminant analysis–extension theory model. The two models of debris flow hazardassessment is in accordance with the geological model, and they can reflect the actualsituation of debris flow in the study area.
引文
[1]刘希林,莫多闻.泥石流风险评价[M].成都:四川科技出版社,2003.
    [2]韦方强,谢洪,钟敦伦,等.西部山区城镇建设中的泥石流问题与减灾对策[J].中国地质灾害与防治学报,2002,13(4):23-28.
    [3]陈宁生,周海波,卢阳,杨玲,吕立群.西南山区泥石流防治工程效益浅析[J].成都理工大学学报(自然科学版),2013,40(1):50-58.
    [4]费祥俊,舒安平.泥石流运动机理与灾害防治[M].北京:清华大学出版社,2004.
    [5]唐川,朱静.城市泥石流风险评价探讨[J].水科学进展,2006,17(3):383-388.
    [6]梅岩.四川省北川县5.12强震区泥石流危险性评价[D].成都理工大学,2011.
    [7]罗元华,陈崇希.泥石流堆积数值模拟及泥石流灾害风险评估方法.北京:地质出版社,2000.
    [8] Twidale C R.“Analysis of Landformas,”[M]. NewYork: John Wiley&Sons Incor Poration,1976, l-572.
    [9] Butzer K W.“Geornor Phology from the Earth,”[M]. Newyork: Harper&Row Publisher,1976, l-463.
    [10] Derbyshire E.“Geomor Phology and Climate,”[M]. London: John wiliey&SonslneorPoration,1976,1-512.
    [11] Embletonc., Thornes J.,“Proeess in Geomo Phology,”[M]. London: Edward ArnoldPublishers Limited,1979, l-436.
    [12] Takahashi. T, Tsujimoto. H. Delineation of the Debris Flow Hazardous Zone by A NumericalSimulation Method[C]//Proceeding of International Symposium on Erosion, Debris Flowand Disaster Prevention. Tsukuba: Japan of Erosion Comtrol Engineering Society,1985:457-462.
    [13]杜榕桓,康志成,陈循谦,等.云南小江泥石流综合考察与防治规划研究[M].重庆:科学技术出版社重庆分社,1987.
    [14] Tamotsu, Takahashi. Debris Flow. Published for International Association for HydraulicResearch by A. A. Balkma[M]. Rotterdam Brookfield,1991.
    [15] C. M.弗莱施曼著,姚德基译.泥石流[M].北京:科学出版社,1986.
    [16] Iverson R M, Reid M E, Lahusen R G. Debris flow mobilization from landslides[J]. AnnualReview of Earth Planetary Sciences,1997,25:85-138.
    [17]杜榕桓.泥石流[A].中国科学院《中国自然地理》编辑委员会.中国自然地理(地貌)[C].北京:科学出版社,1980,301-312.
    [18]田连权,张信宝,吴积善.试论泥石流的形成过程[A].泥石流论文集(1)[C],科学技术文献出版社重庆分社,1981,54-59.
    [19]钱宁,王兆印.泥石流运动机理的初步探讨[J].地理学报,1984,39(1):34-43.
    [20]吴积善,田连权,康志成,等.泥石流及其综合治理[M].北京科学出版社,1993.
    [21]陈德明.泥石流与主河水流交汇机理及其河床响应特征[D].中国水利水电科学研究院博士学位论文,2000.
    [22] Blackwelder E. Mudflow as a geologic agent in semi-arid mountains[J]. Geological Societyof America Bulletin,1928,39:465-487.
    [23] Fryxell F. M. and Horberg L.. Alpine mudflows in Grand Teton national Park, Wyoming[J].Geological Society of America Bulletin,1943,54:457-472.
    [24] Sharp R. P. and Nobles L. H.. Mudflow of1941at Wrightwood, southern California[J].Geological Society of America Bulletin,1953,64:547-560.
    [25] Curry R. R.. Observations of alpine mudflows in the Ten mile range, central Colorado[J].Geological Society of America Bulletin,1966,77:771-776.
    [26] Johnson A. M., Rahn P. H.. Mobilization of debris flows[J]. Zeitschrift fur Geomorphologie,1970,9(S):168-186.
    [27] Hunt B. Newtonian fluid mechanics treatment of debris flows and avalanche[J]. Journal ofHydraulic Engineering,1994,120(12):125-129.
    [28] Innes J L. Debris flows[J]. Progress in Physical Geography,1983,7(1):469-501.
    [29] Costa J E. Physical geomorphology of debris flows[A]. In: J. E. Costa and P. J. Fleisher et al.Developments and Applications of Geomorphology[C]. Berlin: Springer-Verlag,1984,268-317.
    [30] Iverson R M. The physics of debris flows[J]. Reviews of Geophysics,1997,35(3):245-296.
    [31]施雅风,杨宗辉,谢自楚,杜榕桓.西藏古乡地区的冰川泥石流[J].科学通报,1964,15(6):542-544.
    [32]唐邦兴,杜榕桓,康志成,章书成.我国泥石流研究[J].科学通报,1964,6:542-544.
    [33]中科院山地所.云南小江流域泥石流综合考察与防治规划研究[M].重庆:科技文献出版社重庆分社,1987.
    [34]王劲光.大渡河黄金坪水电站近坝库区叫吉沟泥石流发育特征及危险性评价[D].西安:西安交通大学硕士学位论文,2005.
    [35]陈宁生等.泥石流勘察技术[M].北京:科学出版社,2011.
    [36]候凯.陕西省宝鸡市贾村镇泥石流风险评价[D].北京:中国地质大学(北京)硕士学位论文,2010.
    [37]张梁.地质灾害风险评价理论与方法[J].中国地质矿产经济,1996,4:40-45.
    [38] Ayala I A. Geomorphology, natural hazards, vulnerability and prevention of natural disastersin developing countries[J]. Geomorphology,2002,47:107-124.
    [39]刘传正,李铁锋,程凌鹏,等.区域地质灾害评价预警的递进分析理论与方法[J].水文地质与工程地质,2004,4:1-8.
    [40]唐川.云南怒江流域泥石流敏感性空间分析[J].地理研究,2005,24(2):178-183.
    [41]邱海军.区域滑坡崩塌地质灾害特征分析及其易发性和危险性评价研究-以宁强县为例
    [D].西安:西北大学博士学位论文,2012.
    [42]足立胜治,德山九仁夫,中筋章人,二宫寿男,大八木俊治.土石流发生危险度の判定にフやて[J].新砂防,1977,30(3):7-16.
    [43] Eldeen M T, Predisaster Physical Planning: Inteqration of Disaster Risk Analysis intoPhysical Planning: A Case Study in Tunisia[J]. Disasters,1980,4(2):211-222.
    [44] Hollingsworth R. and G. S. Kovacs. Soil slumps and debris flows: Prediction andprotection[J]. Bulletin of the Association of Engineering Geologists,1981,18(1):17-28.
    [45]高桥保,中川一,佐藤宏章.扇状地にぉける土砂泛滥灾害危险度の评价[J].京都大学防灾研究所年报,1988,31(B-2):655-676.
    [46]久保田哲也,正务章,板垣昭彦.流域の任意地点における短时间降雨预测手法と土石流发生危险度判定图の开发[J].新砂防,1990,42(6):11-17.
    [47] Han G Q, Wang D G. Numerical modeling of Anhui debris flow[J]. J Hydr Engr, ASCE,1996,122(5):262-265.
    [48]胡浩鹏.北京市泥石流灾害风险评估指标体系及方法研究[D].北京:中国地质大学(北京)硕士学位论文,2007.
    [49] Gomez H, Kavzoglu T. Assessment of shallow landslide susceptibility using artificial neuralnetworks in Jabonosa River Basin, Venezuela[J]. Engineering Geology,2005,78:11-27.
    [50]王礼先.关于荒溪分类[J].北京林学院学报,1982,3(3):94-107.
    [51]谭炳炎,泥石流沟严重程度的数量化综合评判[J].水土保持通报,1986,6(1):51-57.
    [52]谭炳炎,靳番,荆绍华.泥石流的判别方法和数量化综合评判[A]//泥石流防治理论和实践[C].西安:西安交通大学出版社,1991:45-71.
    [53]刘希林.泥石流危险度判定的研究[J].灾害学,1988,3:10-15.
    [54]姚江.航空遥感在成昆线沙湾至泸沽段泥石流沟发展趋势分析中的应用[J].铁道航测,1990,4:23-26.
    [55]杨发相,穆桂金,陈亚宁,等.天山阿拉沟泥石流危险度的划分研究[J].干旱区地理,1991,14(50):90-98.
    [56]徐瑞瑚,杨礼茂.巴东信陵镇泥石流的危险度判别[J].中国地质灾害与防治学报,1993,4(1):69-73.
    [57]易顺民.泥石流堆积物的分形结构特征[J].自然灾害学报,1994,3(2):91-96.
    [58]张春山.北京地区泥石流灾害危险性评价[J].地质灾害与环境保护,1995,5(3):33-40.
    [59]刘丽,王士革.滑坡、泥石流区域危险度二级模糊综合评判初探[J].自然灾害学报,1996,1996,5(3):51-59.
    [60]刘洪江,唐川.东川城区泥石流数字减灾系统的开发[J].自然灾害学报,2007,16(3):7-11.
    [61]唐川.金沙江流域(云南境内)山地灾害危险性评价[J].山地学报,2004,22(4):451-460.
    [62]汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006.
    [63]韩金华.基于GIS的白龙江流域泥石流危险性评价研究[D].兰州大学,2010.
    [64]黎小东,杨武年,罗智勇,等.基于RS和GIS的震后汶川县移民选址方法[J].四川大学学报(工程科学版),2010,42(5):83-91.
    [65]汪明武,金菊良,李丽.投影寻踪新方法在泥石流危险度评价中的应用[J].水土保持学报,2002,16(6):79-81.
    [66]张成杰,王常明,王钢城,黄静莉.灰色关联法在泥石流危险性评价中的应用[J].吉林地质,2005,24(4):111-120.
    [67]原立峰.基于SVM的泥石流危险度评价研究[J].地理科学,2008,28(2):296-300.
    [68]张文,陈剑平,秦胜伍,等.基于主成分分析的FCM法在泥石流分类中的应用[J].吉林大学学报(地球科学版),2010,40(2):368-372.
    [69]谷复光,王清,张晨.基于投影寻踪与可拓学方法的泥石流危险度评价[J].吉林大学学报(地球科学版),2010,40(2):373-377.
    [70]谷秀芝,陈洪凯,刘厚成.泥石流危险性SIGA-BP神经网络评价方法及应用[J].重庆交通大学学报(自然科学版),2010,29(1):98-102.
    [71]王学良,李建一.基于层次分析法的泥石流危险性评价体系研究[J].中国矿业,2011,20(10):113-117.
    [72]安玉华,王清,张晨,赵传海.基于突变模型的泥石流危险度评价[J].吉林大学学报(自然科学版),2012,42(S1):355-361.
    [73]王滨,王维早,齐剑锋,于开宁.基于耦合协同理论的泥石流危险性评价研究[J].地球与环境,2012,40(3):405-411.
    [74]赵鑫,程尊兰,刘建康,刘大翔,时亮.云南东川地区单沟泥石流危险度评价研究[J].灾害学,2013,28(1):102-106.
    [75]田伟.乌东德水电站近坝库岸泥石流的影响研究[D].长春:吉林大学,2009.
    [76]陈龙.乌东德水电站库坝区驾车河泥石流发育特征及危险性评价[D].长春:吉林大学,2010.
    [77]黄芮.基于PPA的乌东德水电站库区泥石流流速模型建立与计算[D].长春:吉林大学,2011.
    [78]张恒.乌东德电站近坝区水环境特征及建站对水环境影响研究[D].成都:成都理工大学,2005.
    [79] Huang C C. Critical rainfall for typhoon-induced debris flows in the Western Foothills,Taiwan[J]. Geomorphology,2013,185:87-95.
    [80]张晨.基于非线性系统的金沙江攀西河段水系形态及泥石流危害研究[D].长春:吉林大学,2011.
    [81]奚蓉.金沙江乌东德水电站评价区陆生植物资源现状与潜力评价研[D].武汉:华中师范大学,2011.
    [82]吴吉民.金沙江乌东德库区(库首~龙川江河口段)岸坡地质灾害发育分布规律及库岸稳定性评价[D].成都:成都理工大学,2009.
    [83]王治华.滑坡、泥石流遥感回顾与新技术展望[J].国土资源遥感,1999,41(3):10-15.
    [84]唐川,朱静.城市泥石流灾害风险评价探讨[J].水科学进展,2006,17(3):67-71.
    [85]杨金香.遥感在地质灾害研究中的应用[J].煤田地质与勘探,2005,33(S):30-32.
    [86]石菊松,吴树仁,石玲.遥感在滑坡灾害研究中的应用进展[J].地质评论,2008,54(4):505-514.
    [87]郑著彬.遥感技术在漾濞县泥石流灾害解译中的应用研究[J].江西理工大学学报,2010,31(3):25-27.
    [88]秦园.基于SPOT5的土地信息提取技术研究[D].大连:大连理工大学,2010.
    [89]陈治,郑永胜,王莹.泥石流危险度的分类评价[J].中国地质灾害与防治学报,1997,8(1):27-31.
    [90]刘希林,王全才,孔纪名,等.都(江堰)汶(川)公路泥石流危险性评价及活动趋势[J].防灾减灾工程学报,2004,24(1):41-46.
    [91]周必凡,李基德,罗德富,等.泥石流防治指南[M].北京:科学出版社,1991.
    [92] Liu C N, Dong J J, Peng Y F, Huang H F. Effects of strong ground motion on thesusceptibility of gully type debris flows[J]. Engineering Geology,2009,104:241-253.
    [93] Lin P. S., Lin J. Y., Hung J. C., Yang M. D.. Assessing debris-flow hazard in a watershed inTaiwan[J]. Engineering Geology,2002,66:295-313.
    [94] Ohlmacher G. C., Davis J. C.. Using multiple logistic regression and GIS technology topredict landslide hazard in northeast Kansas, USA[J]. Engineering Geology,2003,69:331-343.
    [95] Lan H. X., Zhou C. H., Wang L. J., Zhang H. Y., Li R. H.. Landslide hazard spatial analysisand prediction using GIS in the Xiaojiang watershed, Yunnan, China[J]. EngineeringGeology,2004,76(1):109-128.
    [96] Catani F., Casagli N., Ermini L., Righini G., Menduni G.. Landslide hazard and risk mappingat catchment scale in the Arno River basin[J]. Landslides,2005,2:329-342.
    [97] Chang T. C., Chao R. J.. Application of back-propagation networks in debris flowprediction[J]. Engineering Geology,2006,85:270-280.
    [98] Chang T. C.. Risk degree of debris flow applying neural networks[J]. Nature Hazards,2007,42:209-224.
    [99] Lu G. Y., Chiu L. S., Wong D. W.. Vulnerability assessment of rainfall-induced debris flowsin Taiwan[J]. Nature Hazards,2007,43:223-244.
    [100]Lee S., Pradhan B.. Landslide hazard mapping at Selangor, Malaysia using frequency ratioand logistic regression models[J]. Landslides,2007,4:33-41.
    [101]Chang T. C., Chien Y. H.. The application of genetic algorithm in debris flows prediction[J].Environmental Geology,2007,53:339-347.
    [102]Tiranti D., Bonetto S., Mandrone G.. Quantitative basin characterisation to refine debris-flowtriggering criteria and processes: an example from the Italian Western Alps[J]. Landslides,2008,5:45-57.
    [103]Tunusluoglu M. C., Gokceoglu C., Nefeslioglu H. A., Sonmez H.. Extraction of potentialdebris source areas by logistic regression technique: a case study from Barla, Besparmak andKapi mountains (NW Taurids, Turkey)[J]. Environmental Geology,2008,54:9-22.
    [104]Ranjan K. D., Shuichi H., Atsuko N., Minoru Y., Takuro M., Katsuhiro N.. GIS basedweights-of-evidence modelling of rainfall-induced landslides in small catchments forlandslide susceptibility mapping[J]. Environmental Geology,2004,54:311-324.
    [105]Akgun A., Dag S., Bulut F.. Landslide susceptibility mapping for a landslide-prone area(Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combinationmodels[J]. Environmental Geology,2008,54:1127-1143.
    [106]Wan S, Lei T C, Huang P C, Chou T Y. The knowledge rules of debris flow event: a casestudy for investigation Chen Yu Lan River, Taiwan[J]. Engineering Geology,2008,98:102-114.
    [107]匡乐红,徐林荣,刘宝琛.基于可拓方法的泥石流危险性评价[J].中国铁道科学,2006,27(5):1-6.
    [108]Kuang Y H, Xu L R, Liu B C, Yao J C. A new method for choosing zonation indicators ofmudflow danger degrees based on the rough set theory[J]. J Geomech,2006,12:236-241.
    [109]Liu T, Zhang H J, Wu J D, Hou X F, Zheng G Q, Ye Z H. Application of analytic hierarchyprocess in debris flow risk degree assessment–a case study of Miyun County, Beijing City[J].Bull Soil Water Conserve,2008,28:6-10.
    [110]Liu X L, Mo D W. Debris flow risk and site-specific debris flow risk assessment[J]. J EngGeol2002,10:266-273.
    [111]Liu X L, Ni H Y, Zhao Y S, Peng C. Research on the6.1debris flow hazards in Meigucounty of Liangshan state, Sichuan[J]. J Eng Geol,2006,14:152-158.
    [112]Benda L E, Cundy T W. Predicting deposition of debris flows in mountain channels[J]. CanGeotech J,1990,27:409-417.
    [113]张春山,李国俊,张业成,等.黄河上游地区崩塌滑坡泥石流地质灾害风险评价[J].地质力学学报,2006,12(2):211-218.
    [114]Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences,1982,11(2):341-356.
    [115]Pawlak Z. Vagueness and uncertainty: A Rough sets Prospective[J]. International Journal ofComputer Intelligence,1995,11(2):227-232.
    [116]许琦.粗糙集理论在旋转机械故障诊断技术上应用的研究[D].南京:南京工业大学,2003.
    [117]陈燕.数据挖掘技术与应用[M].北京:清华大学出版社,2011.
    [118]A. hrn, J. Komorowski. ROSETTA: A Rough Set Toolkit for Analysis of Data, Proc. ThirdInternational Joint Conference on Information Sciences, Fifth International Workshop onRough Sets and Soft Computing (RSSC'97). Durham, NC, USA,1997, March1-5, Vol.3, pp.403-407.
    [119]A. hrn, J. Komorowski, A. Skowron, P. Synak. The Design and Implementation of aKnowledge Discovery Toolkit Based on Rough Sets: The ROSETTA System, In Rough Setsin Knowledge Discovery1: Methodology and Applications, L. Polkowski and A.Skowron(eds.), Studies in Fuzziness and Soft Computing,1998, Vol.18, Chapter19, pp.376-399,Physica-Verlag. ISBN3-7908-1119-X.
    [120]A. hrn, J. Komorowski, A. Skowron, P. Synak. The ROSETTA Software System, In RoughSets in Knowledge Discovery2: Applications, Case Studies and Software Systems, L.Polkowski and A. Skowron (eds.), Studies in Fuzziness and Soft Computing,1998, Vol.19,pp.72-576, Physica-Verlag. ISBN3-7908-1130-3.
    [121]A. hrn. Discernibility and Rough Sets in Medicine: Tools and Applications, PhD thesis,Department of Computer and Information Science, Norwegian University of Science andTechnology (NTNU), Trondheim, Norway. NTNU report1999:133, IDI report1999:14,ISBN82-7984-014-1.239.
    [122]A. hrn. ROSETTA Technical Reference Manual, Department of Computer and InformationScience, Norwegian University of Science and Technology (NTNU),2000, Trondheim,Norway.66.
    [123]A. hrn. The ROSETTA C++Library: Overview of Files and Classes, Department ofComputer and Information Science, Norwegian University of Science and Technology(NTNU),2000, Trondheim, Norway.45.
    [124]J. Komorowski, A. hrn, A. Skowron. The ROSETTA Rough Set Software System, InHandbook of Data Mining and Knowledge Discovery, W. Kl sgen and J. Zytkow (eds.),2002, ch. D.2.3, Oxford University Press. ISBN0-19-511831-6.
    [125]张菊莲,沈明荣.基于逐步判别分析的砂土液化预测研究[J].岩土力学,2010,31(S1):298-302.
    [126]Shi Z, Cheng J L, Huang M X, Zhou L Q. Assessing reclamation levels of coastal salinelands with integrated stepwise discriminant analysis and laboratory hyperspectral data[J].Soil Science Society of China,2006,16:154-160.
    [127]孟凡奇,李广杰,李明,马建全,汪茜.逐步判别分析法在筛选泥石流评价因子中的应用[J].岩土力学,2010,31(9):2925-2929.
    [128]Baevsky R M, Chernikova A G, Funtova II, Tank J. Assessment of individual adaptation tomicrogravity during long term space flight based on stepwise discriminant analysis of heartrate variability parameters[J]. Acta Astronautica,2011,69:1148-1152.
    [129]Petalas C, Anagnostopoulos K. Application of stepwise discriminant analysis for theidentification of salinity sources of groundwater[J]. Water Resources Management,2006,20:681-700.
    [130]贾卫军.基于组合赋权的变压器状态模糊综合评估模型及其专家系统[D].北京:华北电力大学,2010.
    [131]Zhang Wen, Chen Jian-ping, Wang Qing, et al. Susceptibility analysis of large-scale debrisflows based on combination weighting and extension methods[J]. Natural Hazards,2013,66(2):1073-1100.
    [132]冯庆高,周传波,傅志峰,章广成.基坑支护方案的灰色模糊可变决策模型[J].岩土力学,2010,31(7):2226-2231.
    [133]汪克夷,栗金昶,武慧硕.基于组合客观赋权法的科技评价研究[J].科技进步与对策,2009,26(6):129-132.
    [134]Satty A L.Measuring the fuzziness of sets[J]. Journal of Cybernetics,1974,4(4):53-61.
    [135]许树柏.层次分析法原理[M].天津:天津大学出版社,1986.
    [136]Saaty T. The Analytic Hierarchy Process[M]. Mcgraw-Hill Inc, New York,1980.
    [137]Saaty T L. A scaling method for priorities in hierarchical structures[J]. J Math Psychol,1977,15:234-281.
    [138]M. Emin Ocal, Emel Laptali Oral, Ercan Erdis, et al. Industry financial ratios—applicationof factor analysis in Turkish construction industry[J]. Building and Environment,2007,42,385-392.
    [139]李文生,许士国.基于因子分析定权的水质评价模型[J].辽宁工程技术大学学报(自然科学版),2008,27(3):444-446.
    [140]杜强,贾丽艳. SPSS统计分析从入门到精通[M].北京:人民邮电出版社,2009.
    [141]任净,车贵堂.影响辽宁传统优势产业技术创新的制度性因素分析及对策研究[J].辽宁师范大学学报(社会科学版),2007,30(6):35-37.
    [142]朱建平,殷瑞飞. SPSS在统计分析中的应用[M].北京:清华大学出版社,2007.
    [143]吴振玲,史得道,吕江津,等.利用欧氏距离函数评估海河流域暴雨灾害[J].灾害学,2012,27(3):48-53.
    [144]薛薇. SPSS统计分析方法及应用[M].北京:电子工业出版社,2004.
    [145]朱静,周矩乾.泥石流判释与危险度综合评价研究[A]//云南省滑坡泥石流重点区域预测预报与评价方法研究[C].昆明:云南科技出版社,1995,94-109.
    [146]杨春燕,蔡文.可拓工程方法[M].北京:科学出版社,2007.
    [147]蔡文.可拓逻辑初步[M].北京:科学出版社,2004.
    [148]贾超,肖树芳,刘宁.可拓学理论在洞室岩体质量评价中的应用[J].岩石力学与工程学报,2003,22(5):751-756.
    [149]Jun Y. Application of extension theory in misfire fault diagnosis of gasoline engines[J].Expert Systems with Applications,2009,36:1217-1221.
    [150]蔡文,石勇.可拓学的科学意义与未来发展[J].哈尔滨工业大学学报,2006,38(7):1079-1086.
    [151]Mahmoud A, Abu-Zeid. Water and Sustainable Development: the Vision for World WaterLife and the Environment[J]. Water Policy,1998,(1):9-19.
    [152]高洁,戴建新,王雪红.可拓决策方法综述[J].系统工程理论方法应用,2004,13(3):264-271.
    [153]Rubin L R. Unbounded sets of maps and compactification in extension theory[J]. Topologyand its applications,2007,155:82-91.
    [154]Liu Q, Button E, Klima K. Investigation for probabilistic prediction of shear strengthproperties of clay-rich fault gouge in the Austrian Alps[J]. Engineering geology,2007,94:103-121.
    [155]刘希林,唐川.泥石流危险性评价[M].北京:科学技术出版社,2004.
    [156]刘希林,张松林,唐川.中国西南山区沟谷暴雨泥石流危险度判定的基本原理和方法[J].云南地理环境研究,1993,5(2):62-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700