用户名: 密码: 验证码:
位场数据处理的高精度方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位场数据处理是利用位场资料进行地质-地球物理综合解释的重要组成部分,伴随着人们对地质目标精细解释的迫切需求,位场数据处理的高精度方法研究已成为地球物理工作者日益重视的一项课题。
     目前,位场数据处理大多是在波数域中进行的,然而某些数据转换诸如向下延拓、高阶导数、低纬度化极等计算,由于在波数域中表现为转换因子对某些频率成分的显著放大,导致FFT理论计算结果不稳定。为此,学者们提出了一系列提高计算稳定性和计算精度的改进方法,其中迭代法具有较好的应用效果,在近些年来受到了普遍重视。
     笔者以迭代法的思想为前提,针对向下延拓的不适定问题,提出了Taylor级数迭代法。证明了该方法的收敛性,分析了方法的收敛速度,同时指出当迭代通式中所取项数N=0时,与波数域的积分迭代法模式完全一致。模型试验表明,当向下延拓深度较大且项数N取1和0时,如果它们迭代的延拓误差相等,那么N=1时的迭代次数远小于N=0的,且N=1时的迭代结果具有更强的保幅能力。
     针对一些位场数据处理方法在计算过程中存在的不稳定性问题,提出了统一的迭代模式—迭代滤波法,给出了一种可以解决迭代法最佳迭代次数的选取方案。在此基础之上,探讨了迭代次数对迭代计算结果的影响机制,并按迭代次数的递增,将迭代结果依次划分为信号压制区、最佳迭代区和局部干扰区等三个计算区域。导数换算、向下延拓和水平磁化化极的含噪模型试验表明,本文的迭代滤波法相对于其他迭代模式具有较好的计算稳定性和较高的计算精度,试验结果也验证了最佳迭代次数选取方案的正确性。
     笔者还将迭代法引入到了位场分离、重力归一化总梯度、常密度界面反演等方法中。位场分离的迭代滤波法是针对异常分离不彻底时给出一种改进方案,其方法是:当分离出的局部异常中含有较多区域场成分时,对局部场进行逐次剥离,并将剥离出的成分“返还”给区域场,以此达到分离场的目的。针对重力归一化总梯度,提出了截止圆滑滤波,该滤波算子可以有效地压制高频干扰,保留低频有用信号;模型试验表明:该方法相对于常规计算方法而言,具有参数试算时间少,计算分辨能力高的优势。在密度界面反演中,提出了线性迭代法,该方法是将界面深度变化值与异常值之间建立线性关系,通过逐次迭代实现界面反演;模型检验表明了该算法相对于常规的Parker-Oldenburg法具有计算稳定性强、精度高和对迭代次数依赖弱的优点。
     利用位场资料进行地质体边界检测是本文研究的另一个重点。应用位场数据识别地质体边界是地质-地球物理综合解释的一项重要工作。位场异常中包含有场源边界的信息,但边界信息的提取需要进行相关的数据处理。近些年来地球物理工作者们提出了许多基于位场梯度的边界检测方法。然而大多边界识别方法均存在着边界识别模糊和易受高频干扰影响等缺点。针对于此,文中提出了识别地质体边界的归一化均方差比法、归一化差分法、垂向梯度最佳自比值法以及改进型边界识别方法。
     归一化均方差法是针对边界点异常具有方向性和均方差可衡量数据波动性提出的,该方法对不同深度的地质体边界都有较好的探测效果;归一化差分法是根据位场异常三个方向的差分算子与构造边界位置对位关系,给出的突出异常梯级带的归一化差分表达式,通过选择不同的差分阶次和差分半径可以识别出不同级别的断裂构造,有利于对断裂构造带平面位置的厘定和盆地内各级构造单元的划分。
     垂向梯度最佳自比值法是为了有效消除高阶导数中的干扰成分和提高边界识别能力而提出的。笔者对自比值进行了数值分析,阐述了该算法检测地质体边界的物理机制。最佳自比值法不仅可以进行地质体边界的精细检测,还可以对地质体引起的异常进行有效的圈定。
     改进型边界识别方法是针对常规边界识别方法存在识别能力差或识别边界发散等缺点提出的,文中给出了水平总梯度、tilt angle、tilt angle的水平总梯度、Theta map和归一化标准差、归一化均方差比等六种方法的改进型,并通过模型试验验证了改进型边界识别方法可以较好地弥补原方法的不足,有效地提高地质体边界的识别能力和定位精度。
     将上述新算法和常规方法同时应用于地质条件较为复杂的鸭绿江盆地位场数据中,处理结果进一步证实了新方法具有较强的计算稳定性和较高的计算精度。根据数据处理计算结果和已知地质资料,对研究区的重、磁场、剩余场以及垂向二阶导数的特征进行了描述;依据多种边界识别方法对重力异常处理的结果,在研究区划分出了32条断裂构造,其中12条断裂被盆地内三条视电阻率断面图所佐证;采用线性迭代界面反演方法对分离出的浅部重力异常进行了低密度地层底界面的反演,预测了两个隐伏凹陷;在此基础上,结合研究区的地质资料,将盆地构造划分成4个一级构造单元和11个二级构造单元。
Potential-field data processing is an important part of potential-field data for geological-geophysicalinterpretation. with the imminence requirement for high resolution data and fine division of geological bodies,to study methods of high-precision in potential-field data processing has become an topic paid more attentionby geophysicists.
     Processed data of potential-field is mostly completed in wave number domain. However, the results ofsome calculations such as downward continuation, derivative calculation, reduction to the pole of magneticanomaly and so on, are unstable at times using directly from FFT as their transformation factors cansignificantly amplify some wave number signals. In order to solve this problem, geophysicists proposed aseries of methods to improve computational stability and raise the precision of calculation, and iterativemethod is attached widespread attention because of better results in applications than others.
     Based on the previous research works and the idea of iterative method, firstly, this paper presents Taylorseries iteration for downward continuation of potential-field to solute its intrinsic ill-posed problem. Theconvergence of this method is proved, the convergence speed of the term N=0and N=1is comparativeanalyzed. When Taylor series expansion term equals zero, Taylor series iteration is concordant with theintegral-iteration method in wave number domain. Model tests indicate that the iteration method of N=1hasvery fewer iteration times and better preserved amplitude than N=0when the depth of downward continuationis large and the continuation error of the term N=1equals N=0.
     Secondly, In order to improve calculation accuracy of some methods whose calculation is unstable inpotential-field, the paper gives a unified iterated mode called iterative filtering method. And what’s more, ascheme to resolve the problem of choosing the optimal number of iteration, is called the difference of twodifference cross-correlation coefficients. On this basis, I discuss the effect mechanism of calculation resultseffected by using different iterative times. According to the number of iteration increasing, the results can bedivided into three calculation zones including suppression zone, balance zone and interference zone. Modeltests of derivative calculation, downward continuation, and the reduction to the pole, are indicate that resultsof the iterative filtering presented in this paper has stronger stability and higher precision than other proposediterative methods. Meanwhile, the results further test and verify the validity of the method for selecting theoptimal number of iteration.
     And then, the iterative method is introduced into potential-field anomaly separation, normalized totalgradient of gravity, and inversion of density interface. Separating potential-field anomaly using the iterativefiltering, is a modified method in allusion to the local field which has a part of component of the regional field. The idea comes from iteration, but its physical mechanism is different from iterative filtering aboved. Modeltest of potential-field separation verifies the validity of using iterative filtering to separate potential-fieldanomaly. Normalized total gradient of gravity can be used to detect oil and gas reservoir. Using cut-offsmoothing method to calculate normalized total gradient of gravity is presented under enlightenment ofiterative method. This method can preserve more low frequency signals and suppress stronger high frequencyinterference than conventional methods, and model tests prove that cut-off smoothing has the advantages ofshorter trial computation and higher resolution than general methods. In order to avoid downwardcontinuation influence on density interface inversion, a new method called linear iterative inversion, has goodpoints about strong stability, high percison and low dependence to the number of iteration, proved by modeltests.
     Moreover, edge detection is also an important research content in this paper. Edge detection ofpotential-field is commonly used in recognizing edges of geological bodies. Potential-field anomalies have theinformation of field sources’ edges, but the information extraction relies on data processing. At present, thereare many methods can used to recognize edges, but almost of these existent methods have the disadvantagesthat the detected edges are blurred and the results are susceptible to interference. In this situation, The paperproposes normalized mean square error ratio, normalized differential, optimal auto-ratio of vertical gradient,and modified edge-detection methods.
     Normalized mean square error ratio based on the directionality of boundary anomaly and the datavolatility evaluated by mean square error, and it can display the edges of geological bodies on different deepsimultaneously.
     Normalized differential is according to the relationship between three-directional difference and thecharacter of potential-field anomaly in position of structured edges, and faulted structures with differentgrades can be recognized by using different radius and different order.
     The optimal auto-ratio of vertical gradient is used to clear interference and improve the ability of edgerecognition. Mathematical implication of the auto-ration is elaborated and physical meaning of this method isexplained. The optimal auto-ratio method can not only finely detect edges of field sources, but also candelineate different kinds of anomaly from geological bodies.
     The paper gives six modified edge-recognition methods including the total horizontal gradient, tilt angle,the total horizontal gradient of tilt angle, Theta map, normalized standard deviations, and normalized meansquare error ratio. Model tests indicate that modified methods can improve the ability of edge recognitionrelative to the original methods.
     At last, new methods presented in this paper and the conventional methods are applied to gravity andmagnetic anomalies of Yalujiang basin whose geological conditions are very complex, the data processingresults further confirmed that new methods can improve the precision of data processing. And according to theabove results, geological data, and electric data,32faulted structures including12faults can proved by three two-dimensional resistivity inversion section is detected and the basin is divided into four first-order tectonicunits and11second-order tectonic units including2concealed depressions.
引文
[1]徐宝慈,李春华.位场数据处理理论与问题[M].长春:吉林大学出版社,1995.
    [2]王谦身,安玉林,张赤军等.重力学[M].北京:地震出版社,2003,258-263.
    [3]罗孝宽,郭绍雍.应用地球物理教程—重磁勘探[M].北京:地质出版社,1991.
    [4]陈善.重力勘探[M].北京:地质出版社,1986.
    [5]张凤旭.高精度重力异常数据处理方法、技术研究[D].长春:吉林大学,2006.
    [6] Dean W C, Frequency analysis for gravity and magnetic interpretation[J]. Geophysics,1958,23:97-127.
    [7] Cooley J W, Tukey J W, An algorithm for the machine calculation of complex Fourier series [J].Mathematics of Computation,1965,297-301.
    [8]侯重初.利用位场转换建立一个重磁异常解释系统[J].物探与化探,1979,3:1-10.
    [9] Blakely R J, Potential theory in gravity and magnetic application[M]. Cambridge University Press,1995,313-319.
    [10]熊光楚.矿产预测中重磁异常变换的若干问题:向上延拓的作用及问题[J].物探与化探,1992,16(5):358-364.
    [11]王建明.重磁异常变换中的延拓问题[J].新疆有色金属,2006,2:11-13.
    [12] Jacohsen B H. A case for upward continuation as a standard separation filter for potential-field maps[J].Geophysics,1987,52:1138-1148.
    [13]曾华霖,许德树.最佳向上延拓高度的估计[J].地学前缘,2002,9(2):499-504.
    [14] Pawlowski R S. Preferential continuation for potential-field anomaly enhancement[J]. Geophysics,1995,60:890-898.
    [15]许德树,曾华霖.优选延拓技术及其在中国布格重力异常图处理上的应用.现代地质,2000,14(2):215-222.
    [16] Zeng H L, Xu D S. Discussion on “Preferential continuation for potential-field anomaly enhancemen”[J]. Geophysics,2001,66:695-697.
    [17] Meng X H, Guo L H, Chen Z X, et al. A method for gravity anomaly separation based on preferentialcontinuation and its application[J]. Applied Geophysics,2009,6(3):217-225.
    [18]汪炳柱.用样条函数法求重力异常二阶垂向导数和向上延拓计算.石油地球物理勘探,1996,31(3):415-422.
    [19]耿耀辉,孟昭和.重力场向上延拓的边界单元法.大庆石油地质与开发,1996,15(1):62-65.
    [20] Tikhonov A H, et al. Solution of Ⅲ-posed problem[M]. New York: John Wiley&Arsenin Press.1977,81-128.
    [21]重磁资料数据处理问题编写组.重磁资料数据处理问题[M].北京:地质出版社,1977,83-103.
    [22]栾文贵.位场解析延拓的稳定化算法[J].地球物理学报,1983,26:263-273.
    [23]梁锦文.位场向下延拓的正则化方法[J].地球物理学报,1989,32(5):600-608.
    [24]安玉林,管志宁.滤除高频干扰的正则化稳定因子[J].物探化探计算技术,1985,7(1):13-23.
    [25] Ma T, Wu P, Hu X P, et al. A regularization method for downward continuation of potential fields[J].Applied Mechanics and Materials,135-136:132-139.
    [26]王兴涛,石磐,朱非洲.航空重力测量数据向下延拓的正则化算法及其谱分解.测绘学报,2004,33(1):33-38.
    [27] Bateman H. Some integral equation of potential theory[J]. J. ofAppl. Physics,1946,17:91-102.
    [28] Peters L J. The direct approach to magnetic interpretation and its practical application[J]. Geophysics,1949,14:290-320.
    [29] Fedi M, Florio G. A stable downward continuation by using the ISVD method. Geophy. J. Int.,2002,151(1):146-156.
    [30] Cooper G. The stable downward continuation of potential field data[J]. Geophysics,2004,35:260-265.
    [31] Oldham C G H. The (sin x)/x.(sin y)/y method for the continuation of potential fields[J]. MiningGeophysics,2:591-605.
    [32] Clarke G K C. Optimum second-derivative and downward continuation filters[J]. Geophysics,1969,34:424-437.
    [33] Ku C C, Telford W M, Lim S H. The use of linear filtering in gravity problems[J]. Geophysics,1971,36:1171-1203.
    [34] Baranov V. Potential fields and their transformations in applied geophysics[M]. Berlin: Borntraeger Press,1975,62-74.
    [35]毛小平,吴蓉元,曲赞.频率域位场向下延拓的振荡机制及消除方法[J].石油地球物理勘探,1998,33(2):230-237.
    [36]王延忠,熊光楚.位场向下延拓组合滤波器的设计和应用[J].地球物理学报,1985,28(5):537-543.
    [37]杨文采.用于位场数据处理的广义反演技术[J].地球物理学报,1986,29(2):284-291.
    [38]陈生昌,肖鹏飞.位场向下延拓的波数域广义逆算法[J].地球物理学报,2007,50(6):1816-1822.
    [39]周凤桐.勘查地球物理勘查地球化学文集[M]:王万银等,位场向下延拓的自适应滤波方法.北京:地质出版社,2004,30-35.
    [40]姚长利,管志宁,黄卫宁.位场转换的抽样分组法[J].石油地球物理勘探,1997,32(5):696-702.
    [41]汪炳柱,王硕儒.二维位场向上延拓和向下延拓的样条函数法[J].物探化探计算技术,1998,20(2):125-129.
    [42]刘保华,焦湘恒,王重德.位场向下延拓的边界单元法[J].石油地球物理勘探,1990,25(4):495-499.
    [43] Bhattacharyya B K, Chan K C, Reduction of magnetic and gravity data on an arbitrary surface acquiredin a region of high topographic relief[J], Geophysics,1977,42(7):1411-1430
    [44]徐世浙,沈晓华,邹乐君等.将航磁异常从飞行高度向下延拓至地形线[J].地球物理学报,2004,47(6):1127-1130.
    [45] Strakhov A V, Devitsyn V N. The reduction of observed values of a potential field to values at aconstant leve1[J]. Proceeding of the Academy of Sciences. Physics of the Earth (in Russian),1965,4:60-72.
    [46]徐世浙.位场延拓的积分一迭代法[J].地球物理学报,2006,49(4):1176-1182.
    [47] Xu S Z, Yang J Y, Yang C F, et al. The iteration method for downward continuation of a potential fieldfrom a horizontal plane[J]. Geophysical Prospecting,2007,55:883-889.
    [48]徐世浙.迭代法与FFT法位场向下延拓效果的比较[J].地球物理学报,2007,50(1):285-289
    [49]徐世浙,余海龙.位场曲化平的插值一迭代法[J].地球物理学报,2007,50(6):1811-1815.
    [50]曾小牛,李夕海,刘代志等.积分迭代法的正则性分析及其最优步长的选择[J].地球物理学报,2011,55(11):2943-2950.
    [51]陈龙伟,张辉,郑志强等.水下地磁辅助导航中地磁场延拓方法[J].中国惯性科技学报,2007,15(6):693-697.
    [52]王顺杰,朱海,栾禄雨.水下地磁导航中位场积分迭代法收敛性分析[J].地球物理学进展,2009,24(3):1095-1097.
    [53]陈龙伟,徐世浙,胡小平等.位场向下延拓的迭代最小二乘法[J].地球物理学进展,2011,26(3):894-901.
    [54]张志厚,吴乐园.位场向下延拓的相关系数法[J].吉林大学学报:地球科学版,2012,42(6):1912-1919.
    [55]侯重初.一种压制干扰的频率域滤波方法[J].物探与化探,1979,5:50-54.
    [56]侯重初.补偿圆滑滤波方法[J].石油物探,1981,2:22-29.
    [57]侯重初.位场频率域向下延拓方法[J].物探与化探,1982,6(1):33-40.
    [58]刘东甲,洪天求,贾志海等.位场向下延拓的波数域迭代法及其收敛性[J].地球物理学报,2009,52(6):1599-1605.
    [59]于波,翟国君,刘雁春等.利用航磁数据向下延拓得到海平面磁场的方法[J].测绘学报,2009,38(3):202-209.
    [60]张辉,陈龙伟,任治新等.位场向下延拓迭代法收敛性分析及稳健向下延拓方法研究[J].地球物理学报,2009,42(4):1107-1113.
    [61]于波,翟国君,刘雁春等.噪声对磁场向下延拓迭代法的计算误差影响分析[J].地球物理学报,2009,52(4):2182-2188.
    [62]王彦国,张凤旭,王祝文等.位场向下延拓的泰勒级数迭代法[J].石油地球物理勘探,2011,46(4):657-662.
    [63] Wang Y G, Zhang F X, Wang Z W, et al. The stable downward continuation of potential fields usingTaylor series iteration method[J]. Oil Geophysical Prospecting,46(2):110-115.
    [64]王彦国,王祝文,张凤旭等.位场向下延拓的导数迭代法[J].吉林大学学报:地球科学版,2012,42(1):240-245.
    [65]高玉文,骆遥,文武.补偿向下延拓方法研究及应用[J].地球物理学报,2012,55(8):2747-2756.
    [66]骆遥.位场迭代法向下延拓的地球物理含义—以可下延异常逐次分离过程为例[J].地球物理学进展,2011,26(4):1197-1200.
    [67]姚长利,李宏伟,郑元满等.重磁位场转换计算中迭代法的综合分析与研究[J].地球物理学报,2012,55(6):2062-2078.
    [68]李宏伟.位场转换计算中迭代法与其滤波特性的综合分析与研究[D].北京:中国地质大学,2012.
    [69] Evjen H M. The place of the vertical gradient in gravity interpretation[J]. Geophysics,1936,1:127-136.
    [70] Henderson R G, Zietz I. The computation of second vertical derivatives of geomagnetic fields[J].Geophysics,1949,14:508-516.
    [71] Elkins TA. The second derivative method of gravity interpretation[J]. Geophysics,1951,16:29-50.
    [72] Rosenbach O. A contribution to the computation of the second derivative from gravity data[J].Geophysics,1953,16:894-912.
    [73] MeskoA. Two dimensional filtering and second derivative method[J]. Geophysics,1966,31:606-617.
    [74] Agarwal B N P, Tarkeshwar L. Calculation of the second vertical derivative of gravity field[J]. Pure andApplied Geophysics,1969,76(5):5-16.
    [75]雷林源.论位场垂向二阶偏导数的几何意义与物理实质[J].桂林冶金地质学院学报,1981,2:17-24.
    [76]田舍,宋宇辰.重力高阶方向导数的可视化你和及其应用[J].物探化探计算技术,2007,29(3):205-208.
    [77]刘保华,张维冈,孟恩.重力异常垂向一阶导数的一种简便算法.青岛海洋大学学报,1995,25(2):233-238.
    [78]王硕儒,于涛,孙家昌.用B样条函数计算位场垂向高偶阶导数[J].石油物探,1987,26(2):105-115.
    [79]姜效典,王硕儒.任意曲线上二维重磁位场转换的B样条函数法[J].地球物理学报,1989,32(3):351-355.
    [80] Wang B Z, Krebes E S, Ravat D. High-precision potential-field and gradient-component transformationsand derivative computations using cubic B-splines[J]. Geophysics,2008,73(5):135-142.
    [81]王宜昌,杨辉.重力异常四次导数的计算及应用[J].地球物理学报,1986,29(1):69-83.
    [82]杨辉,王宜昌.复杂形体重力异常高阶导数的正演计算[J].石油地球物理勘探,1998,33(2):278-283.
    [83]崔瑞华,谷社峰,李成立.位场垂向导数的稳定算法[J].物探化探计算技术,2009,31(5):426-430.
    [84]杨辉.应用计算机“推导”位场水平导数公式的方法及程序[J].物探化探计算技术,1997,19(3):246-251.
    [85]吴宣志,刘光海,薛光奇等.富里叶变换和位场谱分析方法及其应用[M].北京:测绘出版社,1987.
    [86] Kevin L Michus, Juan Homero Hinojosa.The complete gravity gradient tensor derived from thevertical component of gravity: A Fourier transform technique[J]. Journal of Applied Geophysics,2001,46:159-l74.
    [87] Lourenco J S, Morrison H F, Vector magnetic anomalies derived from measurements of singlecomponent of the field[J]. Geophysics,1973,38:395-368.
    [88]蔡宗熹,陈维雄,姜兰.位场数据求导精度的提高及其方法[J].物探化探计算技术,1991,13(1):47-52.
    [89]张凤旭,孟令顺,张凤琴等.重力位谱分析及重力异常导数换算新方法—余弦变换[J].地球物理学报,2006,49(1):244-248.
    [90]张凤旭,张凤琴,孟令顺等.基于离散余弦变换的磁位谱分析及磁异常导数计算方法[J].地球物理学报,2007,50(1):297-304.
    [91]王彦国.高精度重力归一化总梯度法的研究及应用[M].长春:吉林大学,2010.11-12.
    [92] Baranov V. A new method for interpretation of aeromagnetic maps: Pseudogravimetric anomalies [J].Geophysics,1957,22(2):359-383.
    [93] Silva J B C. Reduction to the pole as an inverse problem and its application to low-latitudeanomalies[J]. Geophysics,1986,30(5):829-857.
    [94] Li Y, Oldenburg D W. Stable reduction to the pole at the magnetic equator[J]. Geophysics,2001,66(2):571-578.
    [95]骆遥,薛殿军.基于概率成像技术的低纬度磁异常化极方法[J].地球物理学报,2009,52(7):1907-1914.
    [96] Hansen R O, Pawlowski R S. Reduction to the pole at low latitudes by Wiener filtering[J]. Geophysics,1989,54(12):1607-1613.
    [97] Keating P, Zerbo L. An improved technique for reduction to the pole at low latitudes[J]. Geophysics,1996,61(1):131-137.
    [98] Ansari A H, Alamdar K. Reduction to the pole of magnetic anomalies using analytic signal[J]. WorldApplied Sciences Journal,2009,7(4):405-409.
    [99] Mendonca C A, Silva J B C. A stable truncated series approximation of the reduction-to-the-poleoperator[J]. Geophysics,1993,58:1084-1089.
    [100] Cooper J R C. Differential reduction to the pole of magnetic anomalies using Taylor’s seriesexpansion[J]. Computer and Geosciences,2005,45(4):359-378.
    [101]方迎尧,张培琴,刘浩军.低磁纬度地区T异常解释的途径与方法[J].物探与化探,2006,30(1):48-53.
    [102]吴健生,王家林.用高阻方向滤波器提高低磁纬度地区磁异常化极效果[J].石油地球物理勘探,1992,27(5):670-677.
    [103] Macleod I N, Jones K, Dai T F.3-D analytic signal in the interpretation of total magnetic field data atlow magnetic latitudes[J]. Exploration Geophysics,1993,24(4):679-688.
    [104] Li X. Magnetic reduction-to-the-pole at low latitudes: Observations and considerations. The LeadingEdge,2008,27(8):990-1002.
    [105]石磊,郭良辉,孟小红等.低纬度磁异常化极的伪倾角方法改进[J].地球物理学报,2012,55(5):1775-1783.
    [106]姚长利,管志宁,高德章等.低纬度磁异常化极方法-压制因子法[J].地球物理学报,2003,46(5):690-696.
    [107]姚长利,黄卫宁,张聿文等.直接阻尼法低纬度磁异常化极技术[J].石油地球物理勘探,2004,39(5):600-606.
    [108]林晓星,王平.一种改进的低纬度磁场化极方法—变频双向阻尼因子法[J].地球物理学报,2012,55(10):3477-3484.
    [109]骆遥,薛典军.磁赤道化极方法[J].地球物理学报,2010,53(12):2998-3004.
    [110] Clanclara B and Marcak H. Geophysical anomaly interpretation of potential fields by means ofsingular points method and filtering[J]. Geophysical prospecting,1979,27(1):251-260.
    [111]别列兹金BM.物探数据的总梯度解释法[M].北京:地质出版社,1994,31-51.
    [112]肖一鸣.重力归一化总梯度法[J].石油地球物理勘探,1981,3:47-57.
    [113]肖一鸣.重力归一化总梯度法在寻找油气中的应用[J].石油地球物理勘探,1984,3:247-254.
    [114]侯重初,施志群.实现重磁异常规格化总梯度的傅式积分法[J].石油勘探,1986,25(3):75-86.
    [115]王宝仁,王芳.归一化总梯度法的计算新技术[J].物探化探计算技术,1991.13(2):139-147.
    [116]张凤琴,张凤旭,刘财等.利用DCT法计算重力归一化总梯度.吉林大学学报:地球科学版,2007,37(4):804-808.
    [117]高铁.重力归一化总梯度研究及应用[M].长春:吉林大学,2007.
    [118] Zeng H L, Meng X H, Yao C L, et al. Detection of reservoirs from normalized full gradient of gravityanomalies and its application to Shengli oil field, east China[J]. Geophysics,2002,67(4):1138-1147.
    [119]吴文鹂,管志宁.三度体重力归一化总梯度的计算方法[J].物探化探计算技术,1996,18(2):47-51.
    [120]张凤琴,张凤旭,刘财等.利用重力归一化总梯度及相位法研究断裂构造[J].吉林大学学报:地球科学版,2005,35(1):123-127.
    [121]张凤旭,孟令顺,张凤琴等.利用Hilbert变换计算重力归一化总梯度[J].地球物理学报,2005,48(3):704-709.
    [122]肖鹏飞,李明,徐世浙等.重力归一化总梯度的稳定解法[J].石油地球物理勘探,2006,41(5):596-600.
    [123]张凤旭,孟令顺,张凤琴等.波数域重力归一化总梯度中的圆滑滤波因子[J].物探与化探,2005,29(3):248-252.
    [124]郭灿灿,张凤旭,王彦国等.基于泰勒级数迭代的重力归一化总梯度[J].世界地质,2012,31(4):824-830.
    [125]袁业培,金文丽.重力归一化总梯度法探测油气藏的新成果[J].河南石油,1994,8(4):12-18.
    [126]曾华霖,李小孟等.改进的重力归一化总梯度法及在胜利油区油气藏探测中的应用效果[J].1999,26(6):1-6.
    [127]刘沈衡.重力归一化总梯度法在呼伦湖地区的应用效果[J].有色金属矿产勘查,1993,2(6):364-368.
    [128]曹辉,张光华.综合物探方法直接找油气的尝试[J].石油地球物理勘探,1996,31(4):546-551.
    [129]贾学天.重力归一化总梯度计算法在苏州西部地区的应用[J].江苏地质,1991,2:110-113.
    [130]孟平.归一化总梯度法在松南油气藏检测中的应用[J].1996,35(1):118-123.
    [131]孟平,李满树.应用多种重力处理方法进行油气检测的试验及其效果[J].石油物探,1998,37(2):125-132.
    [132] Thompson D T. EUlDPH: A new technique for making computer assisted depth estimates frommagnetic data[J]. Geophysics,1982,47(1):31-37.
    [133] Reid A B, Allsop J M, Granser H, et al. Magnetic interpretation in three dimensions using Eulerdeconvolution[J]. Geophysics,1990,55(1):80-91.
    [134] Salem A, Ravat D. A combined analytic signal and Euler method (AN-EUl) for automaticinterpretation of magnetic data[J]. Geophysics,2003,68:1952-1961.
    [135] Salem A, Ravat D, Gamey T J, et al. Analytic signal approach and its applicability in environmentalmagnetic investigations[J]. Journal ofApplied Geophysics,2002,49:231-244.
    [136]张季生,高锐,立秋生等.欧拉反褶积与解析信号相结合的位场反演方法[J].地球物理学报,2011,54(6):1634-1641.
    [137]马国庆,李丽丽,杜晓娟.磁张量数据的边界识别和解释方法[J].石油地球物理勘探,2012,47(5):815-821.
    [138] Salem A, Williams S, Fairhead D, et al. Interpretation of magnetic data using tilt-angle derivatives[J].Geophysics,2008,71(1):1-10.
    [139]王明,郭志宏,骆遥等. Tilt-Euler方法在位场数据处理及解释中的应用[J].物探与化探,2012,36(1):1-7.
    [140]马国庆,杜晓娟,李丽丽.解释位场全张量数据的张量局部波数法及其与常规波数法的比较[J].地球物理学报,2012,55(7):2450-2461.
    [141] Reid A B. Euler deconvolution, past, present and future: Areview[C]. SEG Expanded Abstracts,1995:861-863.
    [142] Neil C, Whaler K A, Reid A B. Extensions to Euler’s method for three-dimensional potential fieldinterpretation[C].53rdEAEG meeting, Florence, Italy, Expanded Abstracts,1991:416-417.
    [143]范美宁,孙运生,田庆君.关于欧拉反褶积方法计算中的一点改进[J].物探化探计算技术,2005,27(2):171-174.
    [144] Marson I, Klingele E E. Advantages of using the vertical gradient of gravity for3-D interpretation[J].Geophysics,1993,58(11):1588-1595.
    [145] Stavrev P. Euler deconvolution using differential similarity transformations of gravity or magneticanomalies[J]. Geophysics Prospect,1997,45(2):207-246.
    [146] Barbosa V C F, Silva J B C, Medeiros W E. Stability analysis and improvement of structural indexestimation in Euler deconvolution[J]. Geophysics,1999,64(1):48-60.
    [147] Pierre B K. Weighted Euler decomvolution of gravity data[J]. Geophysics,1998,63(5):1595-1603.
    [148] Barbosa V C F, Silva J B C, et al. Finite-difference Euler deconvolution algorithm applied to theinterpretation of magnetic data from northern Bulgaria[J]. Pure and Applied Geophysics,2005,162(3):591-608.
    [149]刘金兰,李庆春,赵斌.位场场源边界识别新技术及其在山西古构造带与断裂探测中的应用研究[J].工程地质学报,2007,15(4):569-574.
    [150]钟清,孟小红,刘士毅.重力资料定位地质体边界问题的探讨[J].物探化探计算技术,2007,29(增刊):35-38.
    [151]刘展,班丽,魏巍等.济阳坳陷花沟地区火成岩重磁成像解释方法[J].中国石油大学学报:自然科学版,2007,31(1):30-34.
    [152]王彦国,张凤旭,王祝文等.位场归一化差分法的边界检测技术[J].吉林大学学报:地球科学版,2013,43(2):592-602.
    [153]张恒磊,刘天佑,杨宇山.各向异性标准化方差计算重磁源边界[J].地球物理学报,2011,54(7):1921-1927.
    [154] Cordell L. Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin[C].New Mexico: New Mexico Geological Society,30th Field Conference.1979:59-64.
    [155] Miller H G, V Singh. Potential tilt–a new concept for location of potential field sources[J]. Journal ofApplied Geophysics,1994,32:213-217.
    [156] Verduzco B, Fairhead J D, and GreenC M, et al. The mete reader-new insights into magneticderivatives for structural mapping[J]. The Leading Edge,2004,23:116-119.
    [157] Wijns C, Perez C, Kowalczyk P. Theta Map: Edge detection in magnetic data[J]. Geophysics,2005,70(4):39-43.
    [158] Cooper G R J, Cowan D R. Edge enhancement of potential-field data using normalized statistics[J].Geophysics,2008,73(3):1-4.
    [159]骆遥,王明,罗峰等.重磁场二维希尔伯特变换—直接解析信号解析方法[J].地球物理学报,2011,54(7):1912-1920
    [160]王彦国,王祝文,张凤旭等.基于均方差比归一化垂向梯度法的位场边界检测[J].中国石油大学学报:自然科学版,2012,36(2):86-90.
    [161]杨高印.位场数据处理的一项新技术—小子域滤波法[J].石油地球物理勘探,1995,30(2):240-244
    [162]马涛,王铁成,王雨.一种改进的网格数据保持梯度滤波方法[J].石油地球物理勘探,2007,42(2):198-201.
    [163]肖锋,吴燕冈,孟令顺.位场数据处理中小子域滤波的改进[J].石油地球物理勘探,45(1):136-139.
    [164]张凤旭,张凤琴,刘财等.断裂构造精细解释技术—三方向小子域滤波[J].地球物理学报,2007,50(5):1543-1550.
    [165]张凤旭,刘万崧,张兴洲等.用重力三方向小子域滤波解释伊通盆地断裂[J].地球科学-中国地质大学学报,34(4):665-672.
    [166]张凤旭,张兴洲,张凤琴等.中国东北地区重力场研究—利用改进的三方向小子域滤波划分主构造线及大地构造单元[J].地球物理学报,2010,53(6):1475-1485.
    [167] Afif H S. Understanding gravity gradients-a tutorial[J]. The leading Edge,2006,25(8):942-947.
    [168] Pedersen L B, Rasmussen T M. The gradient tensor of potential field anomalies: some implications ondata collection and data processing of maps[J]. Geophysics,1990,55(2):1558-1566.
    [169]朱自强,曾思红,鲁光阴.重力张量数据的目标体边缘检测方法探讨[J].石油地球物理勘探,2011,46(3):482-488.
    [170]高立坤,蒋甫玉,黄麟云.利用重力梯度张量研究黑龙江省虎林盆地的断裂构造[J].高校地质学报,2011,17(2):281-286.
    [171] Blakely R J, Simpson R W. Approximating edges of source bodies from magnetic or gravityanomalies[J], Geophysics,1986,51:1494-1498.
    [172] Craig M. Analytic signals for multivariate data[J]. Mathematical Geology,1996,28:315-330.
    [173] Li X. Understanding3D analytic signal amplitude[J]. Geophysics,2006,71(2): L13-16.
    [174]徐世浙,曹洛华,姚敬金.重力异常三维反演—视密度成像方法技术的应用[J].物探与化探,2007,31(1):25-28.
    [175]徐世浙,余海龙,姚敬金等.新疆色尔特能地区视密度和视磁性反演[J].物探化探计算技术,2007,29(suppl.):12-16.
    [176]杨金玉,徐世浙,余海龙等.视密度反演在东海及邻区重力异常解释中的应用[J].地球物理学报,2008,51(6):1909-1916.
    [177]肖鹏飞,陈生昌.稳定的频率域变深度视密度反演方法[J].地球物理学进展,2008,3(4):1254-1260.
    [178]余海龙.位场异常三维视物性快速反演[D].杭州:浙江大学,2009.
    [179]徐世浙,余海龙,李海侠等.基于位场分离与延拓的视密度反演[J].地球物理学报,2009,52(6):1592-1598.
    [180]徐世浙,王华军,余海龙等.普光气田重力异常的视密度反演[J].地球物理学报,2009,52(9):2357-2363.
    [181] Mauriello P, Patella D. Location of maximum-depth gravity anomaly sources by a distribution ofequivalent point masses[J]. Geiphysics,2011,66:1431-1437.
    [182] Iuliano T, Mauriello P, Patella D. Looking inside mount vesuvius by potential fields integratedprobability tomographies[J]. Journal of Volcanology and Geothermal Research,2002,113:363-378.
    [183] Abdelrahman E M, Bayoumi A I, Abdelhay Y E, et al. Gravity interpretation using correlation factorsbetween successive least-squares residual anomalies[J]. Geophysics,1989,54:1614-1621.
    [184]郭良辉,孟小红,石磊等.重力和重力梯度数据三维相关成像[J].地球物理学报,2009,52(4):1098-1106.
    [185]郭良辉,孟小红,石磊等.磁异常T三维相关成像[J].地球物理学报,2010,53(2):435-441.
    [186]孟小红,刘国峰,陈召曦等.基于剩余异常相关成像的重磁物性反演方法[J].地球物理学报,2012,55(1):304-309.
    [187] Curtis A, Snieder R. Reconditioning inverse problems using the genetic algorithm and revisedparameterization[J]. Geophysics,1997,62(4):1524-1532.
    [188] Smith M L, Scales J A, Fischer T L. Global search and genetic algorithm[J]. The leading Edge ofExploration,1992,11(1):22-23.
    [189]侯俊胜,管志宁.遗传算法在磁异常反演中的应用[J].物探与化探,1996,20(3):203-207.
    [190]陈超,刘江平,余丰.求解位场反演问题的混合编码遗传算法[J].地球物理学报,2004,47(1):119-126.
    [191]杨文采.地球物理反演的遗传算法[J].石油物探,1995,34(1):116-122.
    [192]管志宁,侯俊胜,黄临平等.重磁异常反演的拟BP神经网络方法及其应用[J].地球物理学报,1998,41(2):242-251.
    [193]重力异常的BP神经网络三维物性反演[J].地球物理学进展,2012,27(2):409-416.
    [194]陈东敬,张新兵.带模拟退火的拟BP神经网络在伊朗某地区重力资料反演中的应用[J].2005,28(3):215-218.
    [195] Mottl J, Mottlova L. Solution of the inverse gravimetric problem with the aid of integer linearprogramming[J]. Geoexploration,1976,1:53-62.
    [196] Safon C, Vasseur G, Cuer M. Some applications of linear programming to the inverse gravityproblem[J]. Geophyscis,1977,42(6):1215-1229.
    [197]申宁华,高锐.重磁异常反演的线性规划法[J].物探与化探,1983,2:84-95.
    [198]于德武.用超定方程求磁异常线性反演[J].吉林大学学报:地球科学版,1982,2:115-128.
    [199] Salem A, Williams S, Fairhead J D, et al. Tilt-depth method: A simple depth estimation method usingfirst-order magnetic derivatives[J]. The Leading Edge,2007,26(12):1502-1505.
    [200] Fairhead J D, Salem A, Cascone L, et al. New developments of the magnetic tilt-depth method toimprove structural mapping of sedimentary basins[J]. Geophysical Prospecting,2011,59(6):1072-1086.
    [201]郭华,熊盛青,于长春. Tilt-depth方法的应用[J].物探与化探,2009,33(5):583-586.
    [202]张恒磊,胡祥云,刘天佑.基于二阶导数的磁源边界与顶部深度快速反演[J].地球物理学报,2012,55(11):3839-3847.
    [203] Parker R L. The rapid calculation of potential anomalies[J]. Geophys. J. R. asrtr. Soc.,1973,31:447-455.
    [204] Oldenburg D W. The inversion and interpretation of gravity anomalies[J]. Geophysics,1974,39(4):526-536.
    [205]相鹏,刘展.双界面模式Parker算法磁性界面正反演方法[J].中国石油大学学报:自然科学版,2009,33(1):37-43.
    [206]柯小平,王勇,许厚泽.基于变密度模型的位场界面反演[J].地球物理学进展,2006,21(3):825-829.
    [207]索洛金.重力测量学与重力勘探[M].北京:地质出版社,1956.
    [208]周国藩,张永英.解三度密度界面的U函数法[J].物探化探计算技术,1985,7(4):293-299.
    [209]杨再朝.应用FFT计算u函数的界面反演方法[J].石油物探,1989,28(2):91-100.
    [210]杨再朝.应用快速褶积计算U函数的界面反演法[J].石油地球物理勘探,1989,24(1):80-87.
    [211]刘元龙,王谦身.用压缩质面法反演重力资料以估计地壳构造[J].地球物理学报,1977,20(1):59-69.
    [212]沈剑平,王和明.用于反演不等点距重力资料经予调整的压缩质面法[J].山东海洋学院学报,1981,11(2):90-100.
    [213]李乃胜.用压缩质面法估算海区地壳厚度的几点认识[J].海洋科学,1986,10(2):8-12.
    [214]孟平,秦瞳,吴云海.关于归一化总梯度异常多解性问题的研究[J].石油物探,2003,42(2):252-255.
    [215]段本春,徐世浙.磁(重力)异常局部场与区域场分离处理中的扩边方法研究[J].物探化探计算技术,1997,19(4):298-304.
    [216]程方道,刘东甲,咬汝信.划分重力区域场与局部场的研究[J].石油地球物理勘探,1987,9(1):1-9.
    [217]郭良辉,孟小红,石磊等.优化滤波方法及其在中国大陆布格重力异常数据处理中的应用[J].2012,55(1):4078-4088.
    [218] Spector A. Grant F S. Statistical models for interpreting aeromagnetic data[J]. Geophysics,1970,35(2):293-302.
    [219] Pwalowski R S, Hansen R O. Gravity anomaly speration by Wiener filtering[J]. Geophysics,1990,55(5):539-548.
    [220] Pwalowski R S. Green’s equivalent-layer concept in gravity band-pass filter design[J]. Geophysics,1994,59(1):69-76.
    [221]王万银,邱之云,杨永等.位场边缘识别方法研究进展[J].地球物理学进展,2010,25(1):196~210.
    [222]穆石敏,申宁华,孙运生.区域地球物理数据处理方法及其应用[M].吉林科学技术出版社,1990,29-45.
    [223]李继伟,陈秀有,王宝海.板石沟铁矿控矿因素初步分析与找矿靶区预测[J].矿业快报,2007,(1):77-78.
    [224]路恩兰,高明珠,高艳等.白山市板石沟铁矿地质特征及找矿方向[J].吉林地质,2012,31(2):45-49.
    [225]宿晓静,臧兴运.吉林省白山市板庙子金矿床地质特征及成因分析[J].地质找矿论从,2010,25(4):326-330.
    [226]何保.浑江煤田推覆构造特征、演化及找煤远景区预测[D].沈阳:东北大学,2009,49-62.
    [227]吉林省一〇一煤田地质勘探队.浑江煤田构造分析及远景预测[J].煤田地质与勘探,1976,5:21-36.
    [228]胡建中,谭应佳,张平等.塔里木盆地西南缘山前带逆冲推覆构造特征[J].地学前缘,2008,15(2):222-229.
    [229]柏道远,邹宾微,赵龙辉等.湘东太湖逆冲推覆构造基本特征研究[J].中国地质,2009,36(1):53-60.
    [230]张玉珠,张鹏.韩台煤田福兴井田逆冲推覆构造及成因探讨[J].山东煤炭科技,2009,3:10-106.
    [231]张泓,郑玉柱,郑高升等.安微淮南煤田阜凤推覆体之下的伸展构造及其形成机制[J].煤田地质与勘探,2003,31(3):1-4.
    [232]许有金,刘军正.汝州煤田逆冲推覆、滑覆构造的形态特征[J].中国煤田地质,2007,19(5):13-15.
    [233]殷长建,周晓东,陈跃军.吉南浑江坳陷南缘重力滑覆构造特征.吉林地质,1999,18(3):28-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700