用户名: 密码: 验证码:
黄土边坡冲刷破坏特征及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土在我国分布广泛,黄土边坡的降雨冲刷问题一直是工程界和学术界关心的问题之一。本文在总结并进一步深入研究了辽西地区黄土的工程地质特性的基础上,进行了室内人工模拟降雨边坡模型冲刷试验,并使用ABAQUS有限元软件、PFC3D颗粒流软件以及元胞自动机理论、数学方法建模,对室内模型试验进行了多角度的数值模拟,从不同侧面和室内模拟数据进行了对比分析。研究了坡面降雨冲刷侵蚀的演变过程和侵蚀机理,尤其对细沟侵蚀的起因、发展以及对坡面侵蚀过程的水、沙运移做了进一步研究,对侵蚀过程进行了细致的描述,为建立辽西地区黄土边坡侵蚀预报物理模型提供了一定的理论依据。主要研究工作及成果如下:
     1.总结并进一步研究了辽西黄土的工程地质特性,阐明了黄土的成因特征、物质组成、物理力学性质及其微观结构的特征。研究了黄土湿陷前后微观结构特征的变化规律,从孔隙数量及其分形特征等方面进一步揭示了黄土的湿陷机理。辽西地区黄土粒径主要分布在0.005~0.05mm区间内,重碳酸盐为易溶盐主要成分;随着土层深度的增加孔隙结构逐渐变化,经历支架大孔隙微胶结结构→支架微孔-镶嵌微孔半胶结→絮凝状胶结→凝块状胶结的变化过程;通过SEM图像计算出辽西黄土二维分维值在1.31左右,发现湿陷前后试样SEM图像灰度分布直方图具有双峰、单峰的显著特点,利用MATLAB对SEM图像的数字信息进行提取,并重建了试样三维微观形态。
     2.研制了室内模拟边坡降雨冲刷试验的物理模型及监控系统,根据最优含水率,制作边坡模型,试验得到了降雨过程中不同时刻边坡坡面形态变化的数字图像、坡体内部含水率变化及TSS值曲线等试验数据。根据试验结果,分析了侵蚀性降雨对边坡坡面稳定性的影响因素。研究表明边坡降雨冲刷过程可分为:溅蚀(片蚀)——细沟侵蚀——切沟侵蚀——坍塌破坏四个阶段。得出不同降雨强度-坡面产流、降雨强度-产沙关系曲线,冲刷破坏时间与坡度近似成线性关系,通过理论计算和试验结果对比总结出,辽西地区黄土边坡临界坡脚在36°~44°范围内。
     3.在边坡降雨冲刷模拟试验基础上建立了考虑非饱和土土—水特征曲线的流—固耦合有限元数值模型。计算分析表明:①试验过程分为自重应力下的沉降变形及降雨条件下的非饱和流—固耦合。在降雨入渗的情况下,由于重力场的作用,降雨入渗过程中坡体位移基本沿重力方向,水平位移均较小,竖向位移沿坡面水平向坡体内部逐渐减小。坡面及浅层坡体易发生位移和破坏,并分别从坡趾和坡顶开始经过坡面向相反方向延伸。②边坡整体含水率增大,饱和度增大,孔隙水压力上升,对应基质吸力的降低渐渐趋近于零。表现为边坡的抗剪强度降低,坡面稳定性下降,尤其坡脚处土体强度下降较大,位移明显。同时含水率的增加使得坡面土体的自重增大,更加便于产生滑动和位移。③通过不同降雨强度的试验得知,降雨强度和水平、垂直方向的位移基本成良好的线性关系,即降雨强度对坡体位移的影响存在一个比例因子。
     4.采用PFC3D颗粒流程序对坡脚为40°、70°的边坡冲刷破坏特征及其机理进行了研究。降雨过程中颗粒的受力与粒径、孔隙率、水流与颗粒之间的相对流速、流体密度等因素有关。流固耦合模型在考虑水土相互作用的同时也考虑了流体单元中颗粒运动、孔隙率、流速等参数的变化对整个系统的影响。三维颗粒流程序在模拟边坡大变形的同时获得了宏观试验中难以测得的如颗粒坐标、孔隙率、流速等重要参数,这些参数反映了坡体被侵蚀程度和水流侵蚀能力在边坡内的分布:坡顶处侵蚀最为强烈、水流侵蚀能力最强,且两者随高度降低呈减小趋势,与室内物理模拟试验结果一致。
     5.根据元胞自动机的数学理论和方法,建立了坡面细沟侵蚀破坏的CA模拟模型。对不同降雨强度坡面冲刷破坏过程进行数值模拟,得到不同时刻细沟发展情况的数字数据。统计不同降雨强度细沟条数、细沟密度和细沟总长度等信息,对比得出不同降雨强度,坡面粗糙度条件下细沟发育速率的结果,发现进行到500时步侵蚀基本停止,细沟形态及密度趋于稳定。CA数值模拟结论与野外调查结果十分相近,为建立辽西地区黄土冲刷破坏预报模型奠定了基础。
Loess is widely distributed in China, the problem of rainfall damage of loess slope hasbeen concerned by engineering and academia. Current researches are mainly on the issue forthe overall destruction of slope, and more concentrated in the northwestern region. Theresearches are relatively few in northeast of China,especially in the region of loess of westernLiao Ning province. Based on the summarising and further studing on the engineeringgeologic characteristics of loess region of western Liao Ning province, doing the simulatedrainfall model slope erosion experiment, using the ABAQUS finite element software, using thePFC3Dparticle flow software, and Cellular Automaton modeling theory establishedmathematical models. Doing three perspectives numerical simulation of indoor simulation test,doing comparative analysis to data of indoor simulation test. Studied the evolution process ofslope erosion by rainfall and erosion mechanism. Especially on the cause and development ofrill erosion, making the fruther studies on flow and sediment transport of soil erosionprocesses, doing detailed description of erosion process. Provides a theoretical basis forestablishing loess erosion prediction model of western Liao Ning province. Main content asfollows:
     1. Summarising and studing further on the engineering geologic characteristics of loessregion of western Liao Ning province. Clarifies the cause characteristics of loess, materialcomposition, physical and mechanical properties and its microstructure characteritics.Obtained the stress-strain relationship of different loads and different moisture content.Studied microstructure the changing law before and post collapse of loess. Revealed themechanism of loess collapsibility from pore number and fractal characteristics: silt is the asthe main content, and different granulometric composition with loess of northwest China.Learn the range of variation of the natural density, dry density, natural moisture content, voidratio, c, values.
     2. Design the indoor rainfall simulation model system for slope erosion, and finished therainfall model slope erosion experiment in three different rainfall intensities and five differentslope gradients. Draw the conclusion that the critical slope of rainfall erosion is in the range of36.5°~44°in Liaoxi area. Do real-time monitoring on slope surface water infiltration, particle movement on slope and the change of slope shape. Get the result that changing law ofmoisture close to slope surface. Summarize that the slope surface erosion process consists ofsheet erosion-rill erosion-gully erosion, characteristics and evolution of each stage.
     3. Doing numerical simulation of simulated rainfall model slope erosion experiment withABAQUS finite element program. Analysis the evolution law of rainfall intiltration and slopedeformation in different rainfall intenstity and slope gradient conditions using water-soilmechanics coupling mechanism. In one slope condition, the duration of rainfall on slopesurface has more affected on the degree saturation of soil. The flow speed direction near theslope surface has the opposite direction to the slope normal, except the top slope and footslope that the reason is boundary conditions restrictions and different direction of rainfall.Different rainfall intensity has much influence on energy of slope runoff. Increasing of rainfallintensity is made of Rainfall and raindrop speed. The result is that the energy and velocityincreasing of runoff has influence on the degree of erosion damage. On same slope and rainfallintensity, pore pressure velocity has increased as the rainfall continued. As the matric suctiondecreased, shear strength of soil has reduced. So the stability decreased.
     4. A series of experiments of slope rainfall erosion were done in laboratory for steep loessslope with70°under a rainfall intensity of2.7mm/min. According to the experiments it wasfound that as the rainfall lasting the energy and erosion intensity of water flow increased. Theerosion pattern was then changed from splash and sheet erosion to rill erosion and finallyevolved into gully erosion and collapse on top of the slope. Based on the experiment,simulated the slope erosion process with PFC3Dwith fluid-soil coupling method, observed thelarge deformation of particles, simultaneously obtained microcosmic parameters such asparticle motion trace, porosity, water flow rate in fluid cells, from their quantitative changeprocess got the distribution of degree of erosion and erosion intensity of water flow in slope, itindicated that the degree of erosion and the erosion intensity of water flow on top of the slopewere strongest and both reduced as the height decrease, which was consistent to the indoormodel experiment.
     5. According to the mathematical theory of cellular automata, establishing CA slopeerosion damage simulation model. Simulated the erosion damage process of different rainfallintensity. Obtained the digital data of rill erosion in different time. Statistic the rill number,rillintensity and rill total length of different rainfall intensity. Obtained rill evolution rates ofdifferent rainfall intensity and surface roughness. Found that erosion stoped at step500. Rill morphology and density tends to be stable.
引文
[1]李家春.公路边坡降雨灾害评价方法与指标研究[D].长安大学,2005.
    [2]汪益敏.路基边坡工程理论与实践综述[J].中外公路.2001,21(6):31-35.
    [3]熊山铭.公路边坡灾害成因及防治技术[J].华东公路,2011,4:69-72.
    [4]罗斌.路基边坡坡面冲刷研究.长安大学博士后研究报告.2002,2.
    [5]江玉林,杜娟.高等级公路生态环境保护问题与对策[J].公路.2000,(8):68-72.
    [6]郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟[M].西安:陕西人民出版社,2000.
    [7]李圃林,王常明,张立新.阜新-朝阳高速公路段黄土三轴剪切特性研究[J].水文地质与工程地质,2008,(2):49-53.
    [8]邢玉东,朱浮声,王常明.辽西黄土的物质组成与结构特征[J].岩土工程技术,2008,22(3):155-159.
    [9]]邢玉东,王常明,张立新,匡少华.阜新-朝阳高速公路段湿陷性黄土路基处理方法及效果[J].吉林大学学报(地球科学版),2008,38(1):98-104.
    [10]王常明,马栋和,林容等.辽西地区黄土的强度与本构特性[J].吉林大学学报(地球科学版),2010,40(5):1104-1109.
    [11]王常明,林容,陈多才等.辽西黄土湿陷变形特性及湿陷后微观结构变化[J].吉林大学学报(地球科学版),2011,41(2):471-477.
    [12]高速公路丛书编委会,刘书套主编.高速公路环境保护与绿化[M].北京:人民交通出版社,2001,35-42.
    [13]钱宁,万兆慧.泥沙动力学[M].科学出版社.1991.
    [14]罗斌.清连公路路堑边坡坡面冲刷影响因素分析[J].路基工程,2000,89(2):11-13.
    [15]李志刚,吴伟,陈云鹤.高速公路路堤边坡冲刷防护临界高度初探[J].公路交通科技,2003,20(2):24-27.
    [16]张擎,沈波,艾翠玲.黄土路基坡面侵蚀影响因素试验研究[J].公路交通科技,2005,22(9):20-22.
    [17]张岩,朱清科.黄土高原侵蚀性降雨特征分析[J].干旱区资源与环境,2006,20(6):99-103.
    [18]武红娟.气候变化对甘肃黄土地区公路边坡侵蚀影响及防治技术研究[D].长安大学,2010.
    [19] Quansah C. The effect of soil type, slope, rain intensity and their interactions on splashdetachment and transport[J].J. of Soil Sci,1981,32(2):215-224.
    [20] Julian P Y. The Soil erosion on the hill-slope[J].The Fourth International Symposium onRiver Sedimentation, Beijing,1989.
    [21] Wischemier W H, Smith D D. Predicting rainfall erosion losses: A guide to conservationplanning[M]. U. S. Dep. Agric., Agric. Handbook.1978.
    [22]焦菊英,王万中,郝小品.黄土高原不同类型暴雨的降水侵侵蚀特征.[J].干旱区资源与环境.1999,13(1):34-42.
    [23]王万忠,焦菊英等.中国降雨侵蚀R值的计算与分布[J].土壤侵蚀与水土保持学报,1996,2(l):29-39.
    [24]张攀,沈波,艾翠玲.黄土路基坡面侵蚀影响因素试验研究[J].公路交通科技.2005,9(22):20-22.
    [25]曹文洪.土壤侵蚀的坡度界限研究[J].水土保持通报.1993,13(4).
    [26]靳长兴.论坡面侵蚀的临界角度[J].地理学报.1995,50(3):234-238.
    [27] Carson M.A., Kirkby M.J. Hillslope Form and Process. Cambridge University Press.1972.
    [28]刘志,江善忠.降雨因素和坡面对片蚀影响的研究[J].水土保持通报.1994,14(6).
    [29]黎四龙,蔡强国,吴淑安.坡长对径流及侵蚀的影响[J].干旱区资源与环境.1998,12(1):29-35.
    [30]蔡强国.坡长对坡耕地侵蚀产沙过程的影响[J].云南地理环境研究.1998,10(1):34-43.
    [31]王占礼,黄新会,张振国等.黄土裸坡降雨产沙过程试验研究[J].水土保持通报.2005,25(4):1-4.
    [32]孔亚平,张科利.黄土坡面侵蚀产沙沿程变化的模拟试验研究[J].泥沙研究.2003,1:33-38.
    [33] G. Govers(1991): Rill erosion on arable land in Central Belgium: Rates, controls andpredictability. Catena,18:133-155.
    [34] J. E. Gilley, D. A. Woolhiser, D. B. McWHORTER(1995): Interrill soil erosion-paret Ⅱ:testing and use of model equations. Transactions of the ASAE,28(1):154-159.
    [35] C. K. Mutchler and J. D. Greer(1980): Effect of slope length on erosion from low slopes.Transactions of the ASAE,23(4):866-869.
    [36]朱显谟.甘肃中部土壤侵蚀调查报告[M].土壤专报,1958年32号.
    [37]曹银真.黄土地区梁峁坡的坡地特征与土壤侵蚀[J].地理研究,1983,2(3):19-29.
    [38]罗斌,王秉纲,王选仓.路基边坡坡面冲刷基本理论[J].公路交通科技,2002,19(4):27-29.
    [39]吴普特,周佩华.黄土坡面薄层水流侵蚀试验研究[J].土壤侵蚀与水土保持学报,1996,2(1):40-45.
    [40]张科利,秋吉康宏.坡面细沟侵蚀发生的临界水力条件研究[J].土壤侵蚀与水土保持学报,4(1):41-46.
    [41]张科利等.坡面径流冲刷及泥沙输移特征的试验研究[J].地理研究,1998,17(2):163-170.
    [42]李万东,柴渊等.第二次全国土地调查可用遥感数据调查[J].国土资源信息化,2006(06).
    [43]唐克丽.中国水土保持[M].北京:科学出版社:2004.
    [44]史培军,刘宝元,张科利.土壤侵蚀过程与模型研究[J].资源科学,1999,21(5):9-18.
    [45]倪晋仁,张剑,韩鹏.基于自组织理论的黄土坡面细沟形成机理模型[J].水力学报,2001,(12):1-7.
    [46]陈力,刘青泉,李家春.坡面细沟侵蚀的冲刷试验研究[J].水动力学研究与进展,2005,20(6):761-766.
    [47]李君兰,蔡国强,孙莉英.细沟侵蚀影响因素和临界条件研究进展[J].地理科学进展,2010,29(11):1319-1324.
    [48]杨文治,吴钦孝.黄土高原水土保持目标及对策[J].1999,6(2):76-80.
    [49]吴普特,汪有科.21世纪中国水土保持科学的创新与发展[J].中国水土保持,2001,1(2):84-87.
    [50]朱显谟.黄土高原流水侵蚀的主要类型及有关因素[J].水土保持通报,1982,(1):1-9.
    [51]张科利,蔡永明,刘元宝.黄土高原地区土壤可蚀性及其应用研究[J].生态学报,2001,21(10):1687-1695.
    [52] Forster G R, Meyer L D, Onstad C A. An erosion equation derived from basic erosionprinciples[J]. Trans. of ASAE,1987,20(4):678-682.
    [53]郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟[M].西安:陕西人民出版社,2000.
    [54]郑子成,何淑勤,吴启发.降雨对地表粗糙度影响的研究[J].水土保持研究,2003,10(2):151-154.
    [55] Magunda M K, Larson W E, Linden D R. Changes in microrelief and their effects oninfiltration and erosion during simulated rainfall. Soil Technology,1997,10(1):57-67.
    [56] Huang C, Gascuel-OdouxC, Cros-CayotS. Hillslope topographic and hydrologic effects onoverland flow and erosion. Cayena,2001,46(2/3):177-188.
    [57]辽宁省地质局水文地质大队.辽宁第四纪[M],北京:地质出版社,1983.
    [58]刘东生.黄土与环境[M],北京:科学出版社,1985.
    [59]孙建中.黄土学[M],香港:香港考古学会出版,2005.
    [60]刘乐军等.鲁中黄土粒度特征及其成因探讨[J].海洋地质与第四纪地质,2000,20(1):95-99.
    [61]雷祥义.秦岭黄土的粒度分析及其成因初步探讨[J].地质学报,1998,72(2):387-391.
    [62]朱俊杰等.陇西盆地最老的风成黄土沉积—兰州烟洞沟剖面[J].地理科学,1996,16(4):14-17.
    [63]刘冰等.阜新朝阳高速公路湿陷性黄土地基处理研究[J].北方交通,2006,(5):44-46.
    [64] Kondner R L. Hyperbolic Stress Strain Response: Cohesive Soils[J]. Soil Mech Found Div,2001,(89):23-28.
    [65]刘东生.黄土的物质成分和结构[M],北京:科学出版社,1966.
    [66]王永焱,林在贯.中国黄土的结构特性及物理力学性质[M],北京:科学出版社,1990.
    [67]王勇智.数字图像的二值化处理技术探究[J].湖南理工学院学报,2005,18(1):31-33.
    [68]吕俊哲.图像二值化算法研究及其实现[J].科技情报开发与经济,2004,14(12):266-267.
    [69]王坤明,朱双东,张超.自动选取阈值方法比较研究[J].抚顺石油学院学报,2002,22(2):70-73.
    [70]张济忠.分形[M],北京:清华大学出版社,1995.
    [71]陕西省计划委员会. GB50025-2004,湿陷性黄土地区建筑规范[S],北京:中国建筑工业出版社,2004.
    [72]李生林,秦素娟,薄遵昭,等.中国膨胀土工程地质研究[M].南京:江苏科学技术出版社,1992:1-17.
    [73]王常明,林容.辽西黄土湿陷变形特性及湿陷后微观结构变化[J].吉林大学学报(地球科学版),2011,41(2):471-477.
    [74]卞云康.合成孔径雷达的成像系统仿真与相干斑噪声特性研究[D].南京理工大学硕士学位论文,2009.
    [75] Song P R, Wang Ch M. A Method to Calculate Porosity of Loess Based SEM and ItsApplication[J]. Applied Mechanics and Materials,2013(179):256-259.
    [76]黄毅,曹忠杰.单喷头变雨强模拟侵蚀降雨装置研究初报[J].水土保持研究,1997,4(4):105-110.
    [77]刘素媛,韩奇志,聂振刚等. SB-YZCP人工降雨模拟装置特性及应用研究[J].土壤侵蚀与水土保持学报,1998,4(2):47-53.
    [78]高小梅,李兆麟,贾雪等.人工模拟降雨装置的研制与应用[J].辐射防护,2000,20(1/2):86-90.
    [79]陈文亮,唐克丽. SR型野外人工模拟降雨装置[J].水土保持研究,2000,7(4):106-110.
    [80]周中,傅鹤林,刘宝琛等.土石混合体边坡人工降雨模拟试验研究[J].岩土力学,2007,28(7):1391-1396.
    [81]徐向舟,刘大庆,张红武等.室内人工模拟降雨试验研究[J].北京林业大学学报,2006,28(5):52-58.
    [82]汪益敏.路基边坡坡面冲刷特性与加固材料性能研究[D].西安:长安大学公路学院,2003.
    [83]郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀的发生-发展和防治途径的探讨[J].水土保持学报,1987,1(1):36-48.
    [84]陈永宗,曹银真,张胜利,牟金泽.略谈大理河流域的产沙方式[J].中国水土保持,1982,6:36-40.
    [85]唐克丽,孙清芳,郑世清.杏子河流域的土壤侵蚀方式及其分布规律[J].水土保持通报,1984,5:10-19.
    [86]李青海.粉质土路基边坡降雨稳定性研究[D].湖南:湖南大学土木工程学院,2007.
    [87]郭梅.公路土质边坡损坏的水力冲刷机理研究[D].长春:吉林大学交通学院,2007.
    [88]交通部第二公路勘察设计院主编.路基.北京:人民交通出版社,1996,5-10.
    [89]胡世雄,靳长兴.坡面土壤侵蚀临界坡度问题的理论与实验研究[J].北京:地理学报,1999,54(4):347-356.
    [90]曹文洪.土壤侵蚀的坡度界限研究[J].水土保持通报,1993,13(4):1-5.
    [91]林容.辽西黄土边坡坡面冲刷破坏试验研究[D].长春:吉林大学,2011.
    [92]赵晓光,吴发启等.再论土壤侵蚀的坡度界限.水土保持研究.1999,6(2).
    [93]赵晓光,吴发启等.坡面水蚀过程的力能体系及研究思路.水土保持研究.2000,31(1).
    [94]周中.土石混合体滑坡的流—固耦合特性及其预测预报研究[D].湖南:中南大学,2006.
    [95] Noorishad J. A finite element method for coupled stress and flow analysis In fractured roekmass. Int. J Roek Meeh. Min. Set.Geomeeh. Abstr.1982.
    [96] Noorishad J. A finite thermal-hydraulic-mechancal phenomena In fractured porous.Numberical approach. J. Geoph. Res.1982(B12).
    [97] Gasmo J. M, Rahardjo H, Leong E. C, Infiltration efects on stabitity of a residual soil slopes,Computers and Geogtechnics26(2000).
    [98] Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils[J].Geotechnique,1990,40(3):405-430.
    [99]徐永福,董平.非饱和土的水分特征曲线的分形模型,岩土力学[J].2002,23(4):400-405.
    [100] Bishop A W, Blight G E. Some aspects of effective stress in saturatured and unsaturatedsoils[J]. Geotechnique,1963,13(3):177-197.
    [101]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    [102] Fredlund D G, Morgenstern N R, Widger R A. The shear strength of unsaturated soils[J].Canadian Geotechnical Journal,1978,15(3):313-321.
    [103] Green W H, Ampt G A. Studies on soil physics: Flow of air and water through soils[J]. J.Agr. Sci.1911(4):1-24.
    [104]张蔚榛.地下水与土壤水动力学[M].北京:中国水利出版社.1996.
    [105]庄茁,张帆.ABAQUS.非线性有限元分析与实例[M].北京:科学出版社,2005.
    [106]王金昌,陈页开. ABAQUS在土木工程中的应用[M].浙江:浙江大学出版社,2006.
    [107]袁行飞,苏波,聂国隽等.流固耦合理论研究述评(1)——流固耦合理论基础及关键问题[C].第七届全国现代结构工程学术研讨会论文集.2007.
    [108]袁行飞,苏波,聂国隽等.流固耦合理论研究述评(2)——流固耦合理论基础及关键问题[C].第七届全国现代结构工程学术研讨会论文集.2007.
    [109] Biot MA. General theory of three dimensional consolidation[J]. Jappi, Phsys,1941,12:155-164.
    [110]王怀玲,徐卫亚等.坝区裂隙岩体渗流场与应力场耦合分析[J].兰州理工大学学报,2004,30(5):112-114.
    [111] Biot MA. General theory of three dimensional consolidation[J]. Jappi, Phsys,1941,12:155-164.
    [112]陈立刚.基于ABAQUS渗流与应力耦合作用的边坡稳定性分析[D].郑州:郑州大学,2010.
    [113]孔祥和.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [114]费康,张建伟. ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2010.
    [115]薛彩虹.基于ABAQUS软件的岩体渗流-应力耦合效应分析[D].武汉工业学院,2011.
    [116]周健,贾敏才,等.土工细观模型试验与数值模拟[M].背景:科学出版社,2008.
    [117] Itasca Consulting Group Inc. PFC3D Version4.0Particle Flow Code in3D imensionsOnline Manual Table of Contents.使用说明书.
    [118] Bear J. Dynamics of Fluids in Porous Media[M]. New York: Amenrican ElsevierPublishing Co., Inc.,1972.
    [119]徐光明,章为民.离心模型中的粒径效应和边界效应研究[J].岩土工程学报,1996,18(3):80-86.
    [120] E.F. Codd. Cellular Automata [M]. New York: Academic Press,1968.
    [121] M. Gardner. The fantastic bombination of john Conway’s solitaire game life [M]. Sci.Am1970,220(4):120.
    [122] S. Wolfram. A new kind of science [M]. Champaign Illinois: Wolfram Media,2002.
    [123]周成虎,孙战利,谢一春.地理元胞自动机研究[M].北京:科学出版社,2000.
    [124] Bastien Chopard, Michel Droz著,祝玉学,赵学龙译.物理系统的元胞自动机模拟[M].北京:清华大学出版社,2003.
    [125]贾斌,高自友,李克平,李新刚.基于元胞自动机的交通系统建模与模拟[M],北京:科学出版社,2007
    [126] Victor J. Blue,Jeffrey L. Adler. Cellular automata microsimulation for ModelingBi-directional pedestrian walkways [J]. Transportation Research Part B,2001,35:293-312.
    [127] Buchendorfer, T., Bifurcation Properties of Dynamics, Ph.D. thesis of Cranfiels University,1997.
    [128]赵文杰,刘兆理.元胞自动机在环境科学中的应用[J].东北师范大学学报(自然科学版),2003,35(2):87~92.
    [129]孙战利.基于元胞自动机的地理时空动态模拟研究[D].中科院地理科学与资源研究所博士论文,1999.
    [130]何宜柱,余亮,陈大宏,雷廷权.元胞自动机仿真技术[J].华东冶金学院学报,1998,15(4):309~313.
    [131]杜宁睿,邓冰.细胞自动机及其在模拟城市时空演化过程中的应用[J].武汉大学学报(工学版),2001,34(6):9~11.
    [132]吕喜玺,史德明.土壤侵蚀模型研究进展[J].土壤学进展,1994,22(2):9~14.
    [133]雷廷武,邵明安,李占斌,王全九.土壤侵蚀预报模型及其在中国发展的考虑[J].水土保持研究,1999,6(2):162~166.
    [134]袁殷.黄土坡面细沟水流输沙能力试验研究[D].西北农林科技大学,2011.
    [135]杨春霞,姚文艺等.坡面径流剪切力分布及其与土壤剥蚀率关系的试验研究[J].中国水土保持科学,2010,6(12):53-57.
    [136] Wilensky, U.(1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for ConnectedLearning and Computer-Based Modeling, Northwestern University, Evanston, IL.
    [137]冈萨雷斯等.数字图像处理(MATLAB版)[M].北京:电子工业出版社,2005.
    [138]张新和.黄土坡面片蚀-细沟侵蚀-切沟侵蚀演变与侵蚀产沙过程研究[D].西北农林科技大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700