用户名: 密码: 验证码:
可控震源金属矿地震勘探关键技术与试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对目前金属矿地震勘探中采用炸药作为震源存在的危险性、破坏性以及液压震源频率范围窄,震源车较笨重在金属矿区难以开展工作等问题,开展便携式可控震源金属矿地震勘探关键技术及试验的研究。冲击夯搬运方便,操作简单,作为金属矿地震勘探的便携式可控震源具有巨大的发展潜力,但其单一振动频率所引起的相关干扰问题导致其地震勘探分辨率低。电磁驱动可控震源,激发信号的频带较宽,主频较高,从而地震勘探的分辨率得到提高,以其作为浅层高分辨率金属矿地震勘探中冲击夯震源的一个有力补充。
     本文主要做了以下几个方面的研究工作:
     1)采用伪随机编码的方法对冲击夯信号进行设计,有效地减小了由于冲击夯单一振动频率对地震子波的干扰,提高地震勘探的分辨率。
     2)采用幅度锥化的方式压制电磁驱动可控震源扫描信号自相关函数的旁瓣,使得旁瓣振幅小,尾部振幅衰减快。
     3)将定向照明方法引入到金属矿地震勘探,通过单震源延时叠加等效合成定向地震波信号,加强所需方向地震信号的能量,提高地震记录的信噪比,进而提升勘探深度。
     4)针对金属矿地震勘探的特点,提出了可控震源金属矿勘探数据预处理方法,有效地提升了可控震源地震数据信噪比,从而提高地震剖面的分辨率。
     5)利用电磁驱动可控震源和冲击夯震源在甘肃金昌铜镍矿和栾川钼矿开展了应用试验研究,取得了和炸药震源、液压震源相近的勘探效果。
The metal mine seismic exploration technology is a new developing and graduallyimproving metallic ore exploration method. Over the years, traditional methods suchas gravity, electric and magnetic methods are the main methods for metallic mineralexploration, but the ability and precision of exploration dramatically reduces sharplywith the increase of exploration depth. The vertical resolution of gravity and magneticexploration methods is low, and the field intensity is decaying with inverselyproportional to the square of distance. There is serious lack in detecting deep metalore body. The exploration depth of DC electric method is too shallow and theresolution of electromagnetic method in deep exploration is low. Currently, the metalmining depth has reached one kilometer around, and because of the characteristics ofhigh precision, large detecting depth, high resolution and reliable detection result ofseismic method, it has become the most promising technology in deep exploration ofmineral resources, and especially made up for the lack of heavy magneto-electricmethod in search for deep concealed deposits.
     Currently, we mostly adopt explosive as the seismic source in metal mineralseismic exploration, but explosive is dangerous and destructive. Compared withexplosive, the security of vibroseis is greatly improved, and the excitation waveformis controlled, so it can improve the resolution of seismic signal, and control thegeneration of random disturbance with the help of related technologies. Earlydeveloped vibroseis is mainly used for oil-gas exploration, and adopts hydraulic drivemode. Its frequency range is narrow, and the output force is large and it’s in the formof vibrator vehicle. And metal mine is mostly located in mountainous areas, thesurface and topography of which is complex. Hydraulic source is relatively heavy sothat it is difficult to develop work, and its frequency is restricted.
     Therefore, this paper presented portable vibroseis instead of explosive andhydraulic source excites seismic waves in seismic exploration. Impact rammer sourcepowered by gasoline adopts the internal combustion engine. With the characteristicsof portable carry, simple operation, safe and reliable, portable vibroseis has greatdevelopment potential in seismic exploration. To solve the related interferenceproblems caused by single vibration frequency of impact rammer source, pseudorandom coding method is adopted to make optimization design on the impact rammersource signals in this paper. The output energy of electromagnetic drive vibroseis issmall, but because of the wide frequency band and high dominant frequency ofexcitation signals, the resolution of seismic exploration is improved, and the scanningsignal parameters can be identified according to the practical geological situation offield and it is preferably applied in shallow seismic exploration. The interference withseismic wavelet caused by the single vibration frequency of impact rammer sourceseriously restricts the resolution of exploration, so we will do further study on theelectromagnetic drive vibroseis as effictive supplement for impact rammer source inshallow high resolution seismic exploration.
     Combining with National “863” Plan Project “Key Technology and Equipment ofMetal Mine Seismic Exploration”(project number:2007AA060801) and PublicWelfare Scientific Research Special of Ministry of Land and Resources “Cable-freeSelf-location Seismic Prospecting System Development"(project number:201011081), the research on seismic exploration technology based on portablevibroseis is presented in this paper, which is carried on in several aspects such asseismic wave excitation, receiving and acquisition, data processing and the field testapplication, and aimed at achieving high resolution seismic exploration. Our mainwork includes several aspects as follows:
     1)According to the problem that the interference with correlation wavelet caused bythe periodicity of continuous impact signal of impact rammer source in relatedprocessing reduces the resolution in seismic exploration, we adopted pseudo randomcoding method to design impact rammer source signals, this method makes the ratioof mainlobe to sidelobe of seismic wavelet increased, and at the same time, the ratioof mainlobe to related interference is correspondingly increased, the interference withseismic wavelet produced by single vibration frequency of impact rammer source canbe effectively decreased, and the resolution of seismic exploration is improved.
     2)According to the problem that the autocorrelation function sidelobe of sweep signalusing linear scan by electromagnetic drive vibroseis makes the weak signals difficultto be found in seismic section and high resolution seismic exploration unable torealize, we used the amplitude taper mode to suppress the autocorrelation functionsidelobe of sweep signal, which makes the side-lobe amplitude decrease and the tailamplitude decay quickly.
     3)According to the problem that the large noise intensity in metal mines leads to thedecrease of signal-to-noise ratio and seriously affects the resolution of seismicexploration, the scanning parameters of electromagnetic drive vibroseis have beenstudied in detail. To meet the needs of high resolution seismic exploration, vibroseis isrequired to work in the mode of broadband, long time, multiple stacking,and manysets of source array.
     4)According to the problem of electromagnetic drive vibroseis exploration depth, themethod of directional lighting is applied in the metal mine seismic exploration,directional seismic signals are equivalently compounded by delaying and overlayingthe single source, strengthen the energy of seismic signal in the needed direction,improve the signal-to-noise ratio of seismic records and raise the exploration depth.
     5)According to the characteristics of metal mine seismic prospecting data based onvibroseis, we analyzed the data acquisition parameters one by one such as the recordlength, sampling rate, group interval, offset and stacking fold and so on, and achievedthe result that the fieldwork method with small group interval, short offset andmultiple coverage is suitable for vibroseis seismic prospecting.
     6)The characteristics of seismic prospecting based on vibroseis determine the dataprocessing flow is different from that of conventional pulse source, based on thecharacteristics of metal mine seismic exploration, we designed the data preprocessingmethod of metal mine seismic exploration based on vibroseis, and designed the wholeprocessing flow of vibroseis in metal mine seismic exploration according to thefeatures of noise.
     7)Using electromagnetic drive vibroseis, we did research on seismic explorationexperiment of Jinchang nickel-copper mining area in Gansu, and verified thefeasibility and effectiveness of electromagnetic drive vibroseis in seismic explorationcompared with the hydraulic source of America and the impact rammer source ofCanada. Using the electromagnetic drive vibroseis and impact rammer source, we did applied research on metal mining goaf detection of Luanchuan molybdenum mine, thereflection seismic and seismic image methods prove that using electromagnetic drivevibroseis and impact rammer source can obtain the prospecting effect similar toexplosive source.
     The innovation points existing in this paper are as follows:
     1)According to the interference with seismic wavelet caused by the single vibrationfrequency of impact rammer source, based on the impact rammer controlled source,we put forward a pseudo random coding method, which can effectively improve theresolution of seismic exploration.
     2)According to the problem of electromagnetic drive vibroseis exploration depth, themethod of directional lighting is applied in the metal mine seismic exploration,directional seismic signals are equivalently compounded by delaying and overlayingthe single source, it effectively improved the exploration depth of electromagneticdrive vibroseis.
     3)Based on the characteristics of metal mine seismic exploration, we designed thedata preprocessing method of metal mine seismic exploration based on vibroseis,which effectively improved the signal-to-noise ratio of vibroseis seismic data and theresolution of seismic section.
引文
[1] Eaton D W,Milkereit B,Salisbury M. Seismic methods for deep mineralexploration: Mature technologies adapted to new targets[J]. The Leading Edge,2003,22(6):580-585.
    [2]勾丽敏,刘学伟,雷鹏,等.金属矿地震勘探技术方法研究综述——金属矿地震勘探技术及其现状[J].勘探地球物理进展,2007,30(1):16-24,46.
    [3]王庆海,崔占荣.试论金属矿地震勘探技术[J].物探与化探,1993,17(5):354-361.
    [4]周平,施俊法.金属矿地震勘查方法评述[J].地球科学进展.2008,23(2):120-128.
    [5] Green A G,Mair J A.Subhorizontal fractures in a granite pluton:Their detectionand implication for radioactive waste disposal[J].Geophysics,1983,48(11):1428-1449.
    [6] Pretorius C C, Jamison A, Irons C, et al. Seismic exploration in theWitwatersrandBasin, Republic of South Africa[J]. Proceedings ofExploration’87,1989:241-253.
    [7]藉同冰,徐明才.俄罗斯金属矿地震勘探[J].物探化探译丛,1995,99(4):25-34.
    [8] Eaton D W, Adam E, Milkereit B, et al. Enhancing base-metal exploration withseismic imaging[J]. Canadian Journal of Earth Sciences,2010,47(5):741-760.
    [9] BARRRY J DRUMM OND, BRUCE R. GOLEBY, et al. Seismic reflectionimaging of mineral systems:Three case histories[J].Geophysics,2000,65(6):1852-1861.
    [10] Salisbury M H, Milkereit B, Ascough G H, et al. Physical properties and seismicimaging of massive sulphides[J]. Geophysics,2000,65(6):1882-1889.
    [11] Pretorius C C, Trewiek W F,Fourie A, et al. Application of3-D seismics tomine planning at Vaal Reefs gold mine, number10shaft, Republic of SouthAfrica[J]. Geophysics,2000,65(6):1862-1870.
    [12] White D, Boemer D, Wujianjun, et al. Mineral exploration in the Thompsonnickel belt, manitoba,Canada,using sismic and controlled-source EMmethods[J].Geophysics,2000,65(6):1871-1881.
    [13] Milkereit B, Berrer E K, King, Alan R, Watts et al. Application of3-D seismicexploration technology for deep nickel-copper deposits-A case history from theSudbury basin, Canada[J]. Geophysics,2000,65(6):1890-1899.
    [14] Salisbury M H, Milkereit B, Bleeker W. Seismic imaging of massive sulfidedeposits; Partl, Rock properties[J]. Economic Geology,1996,91(5):822-828.
    [15]徐明才,高景华,柴铭涛,等.寻找隐伏金属矿的地震方法技术研究[J].物探与化探,1997,21(6):468-474.
    [16]徐明才,髙景华,荣立新.从金属矿地震方法的试验效果探讨其应用前景[J].中国地质,2004,31(1):108-112.
    [17]徐明才,高景华,柴铭涛,等.金属矿地震勘查的方法技术[J].有色金属矿产与勘查,1997,6(4):232-237.
    [18]徐明才,高景华.金属矿地震反射勘探[J].国外地质勘探技术,1990(10):23-27.
    [19]徐明才,柴铭涛,荣立新等.厚覆盖区金属矿地震方法技术研究[J].物探化探计算技术,29,2007(6):492-497.
    [20]贺冬生.九江-瑞昌地区金属矿地震勘探方法技术研究[J].物探与化探,1994,18(1):76-79.
    [21]薛建,曾昭发,王者江,等.金属矿地震勘探物理模拟实验技术[J].吉林大学学报:地球科学版,2004,34(3):464-470.
    [22] Andrew J C, Li Y X. Case Story Seismic reflection imaging over a massivesulfide depoisit at the Matagami mining camp, Quebec[J]. Geophysics,1999,64(1):24-32.
    [23]Nabighian M N, Asten M W. Metalliferous mining geophysics-State of the art inthe last decade of the20th century and the beginning of the new millennium[J],Geophysics,2002,67(3):964-978.
    [24] Stuart G W, Jolley S J, Polome L G. Application of3-D seismic attributesanalysis to mine planning: Target gold deposit, South Africa[J]. The LeadingEdge,2000,19(7):736-742.
    [25]徐明才.金属矿地震勘探[M].北京:地质出版社,2009.
    [26]徐明才,荣立新,刘建勋,等.地震方法在拜仁达坝银铅锌多金属矿区的应用试验研究[J].地质与勘探,2007,43(4):61-64.
    [27]吕庆田,侯增谦,史大年,等.铜陵狮子山金属矿地震反射结果及对区域找矿的意义[J].矿床地质,2004,23(3):390-398.
    [28]孙明,林君,高游,等.新疆土屋斑岩铜矿区地震反射法可行性研究[J].物探与化探,2003,27(5):15-18.
    [29] Li T L, Eaton D W. Delineating the Tuwu porphyry copper deposit at Xinjiang,China, with seismic-reflection profiling[J]. Geophysics,2005,70(6): B53-B60.
    [30]林君.电磁驱动可控震源地震勘探原理及应用[M].北京:科学出版社,2004.
    [31]梁光河,蔡新平,张宝林等.浅层地震勘探方法在金矿深部预测中的应用[J].地质与勘探.2001,37(6):29-33.
    [32]梁光河,蔡新平,王杰等.浅层地震勘探在云南北衙地区隐伏金矿预测中的应用[J].黄金科学技术.2000,8(6):1-9.
    [33]梁光河,蔡新平.地震勘探在山东蓬家夼金矿深部预测中的应用[J].矿产与地质.2001,15(6):743-748.
    [34]梁光河,蔡新平,华伟.隐伏金矿勘探中的地震勘探方法[J].矿床地质.2002,21(增刊):1164-1167.
    [35]勾丽敏,刘学伟,雷鹏,等.金属矿地震勘探技术方法研究综述_散射波地震勘探方法[J].勘探地球物理进展,2007,30(2):85-90,103.
    [36]尹军杰,地震散射波场特征的数值模拟研究[D].中国地质大学(北京)博士学位论文,2005.
    [37]尹军杰,刘学伟,李文慧.地震波散射理论及其应用研究综述[J].地球物理学进展,2005,20(1):123-134.
    [38]尹军杰,刘学伟,黄雪继等.基于散射成像数值模拟的地震采集参数论证[J].石油物探,2005,44(1):58-64.
    [39]李灿苹.散射波特征与非均匀地质体对应关系研究[D].中国地质大学(北京)博士学位论文,2006.
    [40]李灿苹,刘学伟,王祥春,等.地震的散射理论和散射特征及其应用[J].地球物理学进展,2004,28(2):81-89.
    [41]李灿苹,刘学伟,李颖,等.随机均匀介质散射波特征相干分析研究[J].地球物理学进展,2009,24(4):1392-1398.
    [42]勾丽敏,散射波成像处理技术研究[D].中国地质大学(北京)博士学位论文,2007.
    [43]田丽花,地震波散射正演数值模拟[D],中国地质大学(北京)硕士论文,2007.
    [44]孙明,林君.金属矿地震散射波场的数值模拟研究[J].地质与勘探,2001,37(4):68-70.
    [45]徐明才,高景华,荣立新等.散射波地震方法在蔡家营多金属矿区的试验研究[J].物探与化探,2003,27(1):49-54.)
    [46]高景华,徐明才,荣立新等.小热泉子铜矿区地震方法技术试验[J].地质与勘探,2004,40(6):47-52.
    [47] Joe W. Crosshole seismic imaging for sulfide orebody delineation near Sudbury,Ontario, Canada[J]. Geophysics,2000,65(6):1900-1907.
    [48] Bellefleur G, Müller C, Snyder D, et al. Downhole seismic imaging of a massivesulfide orebody with mode-converted waves, Halfmile lake, New Brunswick,Canada[J]. Geophysics,2004,69(2):318-329.
    [49]徐明才,高景华,荣立新,等.地面地震层析技术在金属矿勘查中的试验研究[J].物探与化探,2005,29(4):299-303.
    [50]史大年,吕庆田,徐明才.铜陵矿集区地壳浅表结构的地震层析研究[J].矿床地质,2004,23(3):383-389.
    [51]刘洪斌,陈如恒.地震勘探震源的历史与发展[J].石油机械,1997,25(8):43-52.
    [52]凌云,高军,孙德胜,等.可控震源在地震勘探中的应用前景与问题分析[J].石油物探,2008,47(5):425-438.
    [53]陶知非.世纪之交论可控震源的发展与变化[J].物探装备,2000,10(1):1-6.
    [54]刘金中,马铁荣.可控震源的发展状况[J].石油科技论坛,2008,5:38-42.
    [55]赵环金,王炳华,范永杰.可控震源在新疆准东煤田地震勘探中的应用[J].山东国土资源,2010,26(1):24-29.
    [56]马丽,孙黄利,贺正东,等.可控震源在山区地震勘探中的应用[J].山西煤炭.2007,5:50-52.
    [57]陈强,柳旭茏,陈凯.可控震源激发技术在地震勘探中的效果[J].中国高新企业,2010,(16):44-45.
    [58]连绥仁,张宏乐,章煌,等.关于可控震源产生的地震信号[J].石油地球物理勘探,1993,28(5):567-576.
    [59]薛海飞,董守华,陶文朋.可控震源地震勘探中的参数选择[J]物探与化探,2010,34(2):186-190.
    [60]丁华.可控震源技术在地震地质条件复杂区的应用[J].河北煤炭,2007,3:21-22.
    [61]尹金章,可控震源技术在表、浅层地震地质条件极复杂区的应用[J]中国煤田地质,1999,11(增刊):77-79.
    [62]冯永强,郑喜强.可控震源在煤田高分辨率勘探中的参数设计[J].中国煤田地质,1997,9(4):62-64.
    [63]卫学忠,孙卫东.可控震源参数选择及在煤炭勘探中的应用[J].山东地质,2000,16(3):48-52.
    [64]姚知铭,梁传坤,李红桃.可控震源非线性扫描在高分辨率地展勘探中的应用.[J]石油地球物理勘探,1998,33(增刊2):119-122.
    [65]蓝加达.可控震源非线性扫描在高分辨率地震采集中的应用[J].石油物探,2008,47(2):208-211.
    [66]曹务祥.可控震源非线性扫描参数的定量选取[J].石油物探,2004,43(3):242-244.
    [67]王忠仁,陈祖斌,张林行,等.可控震源非线性扫描地震响应的数值模拟[J].地球物理学进展,2006,21(3):758-760.
    [68]周正东,沈月芳.利用可控震源开展地震勘探数据采集的新方法[J].河南石油,2002,16(6):20-22.
    [69]夏勇.可控震源高保真地震数据采集方法[J].物探装备,2000,10(2):14-17.
    [70]倪宇东,王井富,马涛等.可控震源地震采集技术的进展[J].石油地球物理勘探,2011,46(3):349-356.
    [71]郭彦民.利用可控震源进行高分辨率地震勘探[J].中国煤田地质,1996,8(3):72-74.
    [72]陶知非.可控震源与高分辨率地震勘探[J].石油物探装备,1995,5(4):1-9.
    [73]陶知非.可控震源扫描信号设计中一些问题的考虑[J].物探装备,2001,11(1):9-15.
    [74]孙明,林君,陈祖斌,等.电磁驱动可控震源系统在工程勘察中的应用[J].苏州科技学院学报(工程技术版),2003,16,(3):71-76.
    [75]孙明,林君,陈祖斌.轻便可控震源在金属矿反射地震勘探的实验研究[J].长春科技大学学报,2001,31(4):93-96.
    [76]梁铁成,林君,陈祖斌.电磁驱动可控震源与夯击震源对比研究[J].世界地质,2002,21,(3):300-303.
    [77]陈祖斌,林君,于生宝.浅层地震可控震源系统的设计[J].电子测量与仪器学报,2002,16,(1):43-48.
    [78]张子三,林君,陈祖斌,等.轻便高频可控震源的设计与实验[J].仪表技术与传感器,2000,(10):14-17.
    [79]陈祖斌,林君,于生宝,等.轻便浅层地震可控震源的研制[J].仪器仪表学报,2003,24(3):311-314.
    [80]林君,陈祖斌,于生宝.用于浅层地震勘查的高频可控震源系统[J].地质装备,2001,2(3):20-26.
    [81] M.G.BARBIER, P.BONDON, R.MELLINGER,et al.Mini-sosie for landseismology[J]. Geophysical Prospecting,1976,24(3):518-527.
    [82] John L. Sexton, Paul B. Jones. Evidence for recurrent faulting in the New Madridseismic zone from Mini-Sosie high-resolution reflection data[J].Geophysics,1986,51(9):1760-1788.
    [83] John L. Sexton, Paul B. Jones. Mini-sosie high-resolution reflection survey of theCottonwood Grove fault in northwestern Tennessee[J].Seismological Society ofAmerica,1988,78(2):838-854.
    [84] S. A. Greenhalgh, M. Suprajitno, D. W. King. Shallow seismic reflectioninvestigations of coal in the SydneyBasin[J].Geophysics,1986,51(7):1426-1437.
    [85] Park, C., Miller, R., Steeples, D., et. al. Swept impact seismic technique(SIST)[J].Geophysics,1996,61(6):1789-1803.
    [86] Chapman W L, Brown G L, Fair D W. The Vibroseis System: A high-frequencytool[J].Gephysics,1981,46(12):1657-1666.
    [87] Barbier M.G., Viallix J R. SOSIE: A new tool for marine seimology[J],Geophysics,1973,22(4):673-683.
    [88]高健.脉冲编码可控震源信号设计与系统研究[D].长春:吉林大学,2009.
    [89]兰晓雯,张国宏.一种新型的城市浅层地震勘探震源[J].工程地球物理学报,2005,2(4):316-321.
    [90]高霞,张永旺,魏文博.浅层高分辨率冲击叠加地震采集系统及应用效果[C].第二届环境与工程地球物理国际会议,2006:26-29.
    [91]佟训乾,林君,姜弢,等.陆地可控震源发展综述[J].地球物理学进展,2012,27(5):1912-1921.
    [92] Klauder,J.R. Prince,A.C. Darlington,W.J. Albersheim.The Theory And DesignOf Chirp Radar[J]. The Bell System Technical Journal,1960,Vol.39:745-808.
    [93] Pierrel. Goupillaud. Signal Design In The “Vibroseis” System[J].Geophysics,1976, Vol41, No.6:1291-1304.
    [94] John M.Crawford, William E.N.Doty, Milford R.Lee. Continuous SignalSeisgraphy[J]. Geophysics,1960,Vol.25:95-105.
    [95]张子三,林君,于生宝.可控震源线性扫描的优化设计[J].石油仪器,1998,12(3):1-5.
    [96] LIU Guo-chang, Fomel, S, JIN Long, et al. Stacking seismic data using localcorrelation[J]. Geophysics,2009,74(3):43-48.
    [97] Widess, M.B. How This Is a Thin Bed?[J]. Geophysics,1973,Vol38(6).1176-1180.
    [98]何樵登.地震勘探原理和方法[M].北京:地质出版社,1986.
    [99]单娜琳,程志平.地震映像方法及其应用[J].桂林工学院学报,2003,23(1):36-40.
    [100] H.A.K. Edelmann, H.Werner. Combined Sweep Signals for Correlation NoiseSuppression[J]. Geophysical Prospecting,1978, Vol.26:786-812.
    [101] H.A.K.Edelmann, H.werner. THE Encoded Sweep Technique For Vibroseis[J].Geophysics,1982, Vol.47(5):809-818.
    [102] Berhardt,T., Peacock. Encoding Technique for the Vibroseis System[J].GeophysicalProspecting,1978.26:184-193.
    [103] A. B. CUNNINGHAM, Some Alternate Vibrator Signal[J], Geophysics,1979,Vol.47(12)1901-1921.
    [104]樊丹丹.可控震源三元伪随机编码扫描技术研究及信号发生器研制[D].长春:吉林大学,2008.
    [105]孙锋.海洋电磁式可控震源关键技术研究[D].长春:吉林大学,2009.
    [106]孙锋,王忠仁,陈祖斌,等.可控震源的伪随机扫描与系统测试[J].光学精密工程,2009,17(10):2570-2575.
    [107]金昊.可控震源伪随机扫描技术研究[D].长春:吉林大学,2006.
    [108]柴治媛.可控震源伪随机扫描方法与地震响应的数值模拟[D].长春:吉林大学,2007
    [109]王忠仁,樊丹丹,高健,等.基于三元伪随机编码的可控震源信号设计方法[J].石油地球物理勘探,2009,44(5):534-536.
    [110]沈媛媛,郑恭明,刘益成,等.可控震源伪随机扫描信号的仿真研究[J].物探与化探,2010,34(3):344-347.
    [111]沈媛媛,刘益成.基于Matlab的伪随机扫描信号设计与研究[J].石油仪器,2009,23(2):78-79.
    [112]杨玄,吴凌云,刘益成.可控震源三元伪随机扫描信号的仿真与研究[J].石油天然气报,2011,33(6):74-76.
    [113]张子三,林君,付晓江,等.浅析可控震源的扫描技术[J].石油仪器,1997,11(6):10-14.
    [114]金念.夯击震源地震勘探关键技术研究[D].长春:吉林大学,2006.
    [115]冀慧聪,林君,陈祖斌,等.探寻地壳深层次奥秘的利器,近地表弹性波地下目标探测成像系统及应用获吉林省科学技术进步奖一等奖[R].中国科技奖励,2004.
    [116]陈祖斌.电磁式可控震源相位自适应控制及可控震源系统研制[D].长春:吉林大学,2002.
    [117]姜弢.基于相控震源的地震波定向方法研究[D].长春:吉林大学,2006.
    [118]刘畅.定向照明地震数据合成的仿真算法设计与实现[D].长春:吉林大学,2009.
    [119]李桂林.现有技术条件下松辽盆地北部地区地震勘探分辨率潜力研究[D].北京:中国地质大学(北京),2006.
    [120] Levin, F. K. Apparent velocity from dipping interface reflections[J].Geophysics,1971,36:510-516.
    [121]杨泓渊.复杂山地自定位无缆地震仪的研究与实现[D].长春:吉林大学,2009.
    [122]李威.宽频地震仪数据采集系统的研制[D].长春:吉林大学,2006.
    [123]李威,陈祖斌.宽频地震仪数据采集通道的噪声分析[J].吉林大学学报:信息科学版:2006,24(5):462-465.
    [124]李阳.地震数据多域组合去噪技术及其在金属矿勘探中的应用研究[D].长春:吉林大学,2012.
    [125]巩向博.金属矿地震高精度成像与数据处理方法研究[D].长春:吉林大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700