用户名: 密码: 验证码:
吉林省西部灌区土地整理对地下水环境影响及风险评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吉林西部灌区属于半干旱大陆性季风气候,降水量少、蒸发量大,是吉林省生态环境脆弱带。在环境变化和人为因素双重作用下,吉林西部生态环境日益恶化,土壤次生盐碱化问题加重,其导致的后果往往是潜在的、广泛性的和持久性的。
     吉林省是我国重要的商品粮生产基地。为了建立生态农业灌区,解决土地退化等问题,需要对吉林西部灌区进行土地整理,以实现生态环境改善和粮食增产目的。土地整理对地下水环境影响既有有利的影响,也有不利的影响。本文在收集研究区水文地质资料的基础上,对吉林省西部低平原区具有代表性的3个灌区五家子灌区、大安灌区和松原灌区,分析了土地整理对其地下水环境的影响,这对于实现灌区的可持续发展提供了依据,有着重要的意义。论文取得的研究成果如下:
     1、收集了研究区内现有的大量相关资料,对研究区的区域地质和水文地质情况进行了分析,研究区水质类型主要为重碳酸钙型和重碳酸钙钠型。选取了37个地下水水质取样点,采用综合评价分值法对地下水水质状况进行了分析,分析结果表明,3个灌区的潜水均以Ⅳ、V类水为主,不适合饮用;在嫩江白沙滩断面、大安灌区嫩江取水口处、松花江断面取样,采用单因子评价方法对灌溉水水质进行分析,分析结果表明,灌溉水质整体上基本满足灌溉用水要求。
     2、采用水量均衡原理和地下水流数值模拟,分析了土地整理对灌区地下水水量和水位的影响。分析结果表明,土地整理后,多年平均条件下,五家子灌区、大安灌区和松原灌区的地下水补给量分别增加21.82%、52.57%、33.29%,10年内地下水位分别上升了0.8m、0.6m和0.4m。一开始地下水位上升,但当地下水位上升到排水渠底板后,地下水位基本保持动态的平衡状态。
     3、分析土地整理对灌区地下水水质影响。采用质量守恒定律,分析了地下水矿化度有减少趋势;采用室内试验,分析了硝态氮在土壤中的吸附解吸特性,硝态氮在土壤中的解吸作用明显;采用美国EPA提出的健康风险评价模型(HRA)定量分析氮肥施用对人体健康的风险,指数值均小于1,说明灌区化肥使用对人体健康风险影响很小;农药由于其半衰期短,对地下水环境影响不大。
     4、以大安市月亮泡东灌区退水水质和前郭灌区退水水质进行分析对比,分析五家子灌区、大安灌区和松原灌区退水区受灌区农药化肥的影响程度;还有退水区水分蒸发量和盐分累积量。结果表明:农药对退水区的影响不大;化肥使用对退水区有一定的影响;退水区水分基本消耗于蒸发;10年内退水区重碳酸盐累积量分别为5.66×104t、10.23×104t和26.73×104t。
     5、干旱是水分收支不平衡的一种自然现象。本文对灌区干旱特点和趋势进行了分析。根据灌区已有的基本资料,采用P-III频率曲线、降水量距平百分率对灌区进行干旱特征分析,灌区降水量年际变化较不稳定,3个灌区出现干旱年数都在20%以上。采用灰色系统理论进行灌区干旱预测,得出了3个灌区的干旱响应模型。
     6、采用可开采系数法对灌区地下水可开采量进行了限值分析,在满足五家子灌区的地下水最大开采量2624.85×104m~3/a、大安灌区7000.69×104m~3/a、松原灌区27163.90×104m~3/a,开采地下水一般不会造成下游干旱。
     7、灌区是个复杂的农业系统,本文构建了农业种植结构多目标优化模型。该模型综合考虑灌区的节水效益、经济效益和生态效益,以用水量最小、粮食作物产量最大、生态效益最大化为3个最优目标,以面积、灌溉水量为约束条件,采用功效系数法求解计算,并将该模型用于五家子灌区。结果表明,在作物种植面积不减少的情况下,五家子灌区种植水稻和玉米,作物种植结构为最优化。
     8、按照代表性、综合性、系统性等指标选取原则,从自然状态、水环境、土壤环境和灌区环境4个相关指标,选取了17个评价因子,包括地下水天然防护能力、干旱指数、地下水补给模数、地下水可采模数、水位埋深、潜水矿化度、地下水开发利用程度、灌溉水盐度、灌溉水碱度、灌溉水矿化度、土壤含盐量、土壤碱化度、土壤有机质含量、渠系布置、化肥施用强度、农药施用强度和环境保护意识,按照目标层、准则层Ⅰ、准则层Ⅱ和基础指标层四个层次构建了灌区地下水环境风险评价指标体系。其次,按照国家标准、行业及地方规定颁布的有关标准和参考其他地区类似的有关标准,分析每个评价因子,对其进行风险等级的划分,并采用5个风险等级进行描述,风险等级为{无险,轻险,中险,重险,特险}。该指标体系内容全面、易于量化,可为其他灌区的地下水环境风险评价提供参考。
     9、采用模糊综合评价法、突变理论、对数型幂函数指数模型对3个灌区分别进行了地下水环境风险综合评价,并采用灵敏度分析法分析了灌区地下水环境风险指标体系建立的合理性。分析得出,各指标的灵敏度值均不超过5,说明评价结果对误差不敏感,灌区地下水环境风险指标体系的建立是合理可行的;土地整理前,3个灌区地下水环境是存在风险,处于轻险状态,风险评价结果与实际情况较为符合;土地整理后灌区地下水环境处于无险状态。在吉林西部进行土地整理使灌区地下水环境向良性发展。
Irrigation districts in western Jilin Province are typical areas of the ecotone withfrangible eco-environment. They belong to arid and semi-arid continental monsoonclimate with less precipitation, high evaporation. Because impacts of environmentalchange and human factors, eco-environment is deteriorating, and soil salinization problemis aggravating in western Jilin Province. Their consequences are often potential, pervasiveand persistent.
     Jilin Province is an important commercial grain production base in China. To solvethe problems of land degradation, and establish the ecological agriculture irrigationdistricts in western Jilin Province, we need to carry on land consolidation for the purposesof eco-environment improvement and grain production growth. The impacts of landconsolidation on groundwater environment are both beneficial and adverse. In this paper,on the basis of hydrogeological data collected in the study areas, we analyze effects ofland consolidation on groundwater environment of the low plain areas, including Wujiaziirrigation district, Daan irrigation district and Songyuan irrigation district in western JilinProvince. It is an important significance to achieve the sustainable development ofirrigation districts. The researches obtained in this paper are as follows:
     1. We collect the existing informations in order to analyze the regional geology andhydrogeology of the study areas. The water quality types in the study areas most are thecalcium bicarbonate type water and heavy calcium carbonate, sodium-type water. Thewater quality conditions of selected37groundwater samplings are analyzed by usingcomprehensive evaluation score method. The analysis show that the phreatic water qualitytypes in the three irrigation districts are all class IV or V. They are not suitable for drinking.The irrigation water quality conditions are analyzed in section of the NenRiver white sandbeach, the NenRiver water port of Daan irrigation district and the Songhua River. Theresults show that the irrigation water quality can basically meet the requirements ofirrigation water.
     2. The impacts of land consolidation on groundwater quantity and groundwater levelfor irrigation districts are analyzed by using the principle of water balance and thenumerical simulation of groundwater flow, respectively. The results show that after theland consolidation, the groundwater recharge of Wujiazi irrigation district, Daan irrigationdistrict and Songyuan irrigation will be respectively increasing by28%,36%and29%ataverage annual conditions, and the groundwater level will be respectively rising by0.8m,0.6m and0.4m in10years. The groundwater level will remain dynamic equilibrium whenthe groundwater level is rising to drains backplane.
     3. The impacts of land consolidation on groundwater quality of irrigation districts areanalyzed. Through the law of conservation of mass, the mineralization degree ofgroundwater will decrease. we adopt in-house experiment to analyze theadsorption-desorption properties of nitrate-nitrogen in soils. The result is thatnitrate-nitrogen in soils is mainly desorption. The impacts of nitrogen fertilizers on humanhealth are that the risk index values are less than1, through the health risk assessmentmodel (HRA) proposed by U.S. EPA. The result is that using fertilizer in irrigationdistricts has little impact on human health risk. Because of pesticide’s short half-life, it haslittle effect on groundwater environment.
     4. The return water qualities of irrigation are analyzed in the moon bubble easternirrigation district of Daan city and Qianguo irrigation district, respectively. In return areas,the quality of return water, water evaporation and salt accumulation, which are affected bythe pesticides and fertilizers for Wujiazi irrigation district, Daan irrigation district andSongyuan irrigation, are analyzed by using the analogy method. The results show thatusing pesticides and fertilizer will have little and certain impacts on the return areasrespectively, return water will basically be evaporated and bicarbonate accumulations inreturn areas will be5.66×104t,10.23×104t and26.73×104t in10years.
     5. The drought is a natural phenomenon of water imbalances. In this paper, thecharacteristics and trends of drought for the irrigation districts are analyzed. Based onexisting informations of irrigation districts, the drought characteristics of irrigationdistricts are analyzed by P-III frequency curve and precipitation anomaly percentage. Theresults show that the annual precipitation changes of irrigation districts are less stable, and drought years of three irrigation districts are all more than20%. Gray system theory isused to predict droughts of irrigation districts.
     6. The groundwater withdrawals for irrigation districts can be calculated by usingmineable coefficient method. On condtion that the maximum groundwater withdrawals ofWujiazi irrigation district, Daan irrigation district and Songyuan irrigation district are2624.85×104m~3/a,7000.69×104m~3/a,27163.90×104m~3/a respectively, the exploitations ofgroundwater usually do not cause droughts of lower reaches.
     7. The irrigation district is a complex agricultural system. A multi-objectiveoptimization model of agricultural planting structure is built. In this model, thewater-saving benefits, economic benefits and ecological benefits of irrigation district areconsidered. Minimun consumption of water, the maximum production of crop andmaximum of eco-efficiency, which are optimal targets. The area and irrigation water areconstraints. The model of the irrigation district for Wujiazi is calculated by usingefficiency coefficient method. The results show that crop planting structure is optimizedon condtion that rice and corn are only planted in Wujiazi irrigation district.
     8. According to the representative, comprehensive and systemic principles ofindicators selected, four evaluating indicators and seventeen evaluating factors includingnatural condition, water environment, soil environment and irrigation districtsenvironment are selected. The seventeen evaluating factors include groundwater naturalprotection ability, drought index, recharge modulus of groundwater, exploitable modulusof groundwater, buried depth of groundwater table, total mineralization degree ofgroundwater, the degree of groundwater development and utilization, irrigation watersalinity, irrigation water alkalinity, irrigation water mineralized degree, soil salinity, soilalkalization, soil organic substances content, canal system layout, fertilizer applicationintensity, pesticide application intensity and environmental protection awareness. Inaccordance with four-level building layers, including the target layer, criteria layer I,criteria layer II and basic indicators layer, the index system of groundwater environmentrisk for irrigation districts is constituted. In addition, according to National Institute ofStandards, the relevant standards of Industry and local regulations, and other standards ofsimilar areas, each evaluation factor is analyzed and divided to five risk levels which areno-risk, slight risk, medium risk, significant risk and absolutely risk. The index system is comprehensive and easy to be quantified. It can provide a reference for groundwater riskassessment of other irrigation districts.
     9. Using fuzzy comprehensive evaluation method, catastrophe theory and the powerfunction exponential model, the groundwater environment risks for three irrigationdistricts are comprehensive analyzed. The establishment of index system for groundwaterenvironment risk in the irrigation district is whether reasonable by using the sensitivityanalysis method. The analysis results show that each index sensitivity value is no morethan5, the evaluation results are not sensitive to the error. The establishment of indexsystem for groundwater environment risk in the irrigation district is reasonably practicable.Before land consolidation, the groundwater environments of three irrigations have somerisks and all belong to slight risk status. The obtained results are consistent with actualcondition. After land consolidation, groundwater environments of the three irrigationshave no risk. The results show that groundwater environment for irrigation districts inwestern Jilin will be better because of the land consolidation.
引文
[1] Jian-Kang Zhu. Plant salt tolerance[J]. Trends in plant science,2001,6(2):66~71.
    [2] G.I Metternicht, J.A Zinck. Remote sensing of soil salinity: potentials and constraints[J]. RemoteSensing of Environment,2003,85(1):1~20.
    [3] Pichu Rengasamy. World salinization with emphasis on Australia[J]. Journal of ExperimentalBotany,2006,57(5):1017~1023.
    [4]袁光耀.农田灌溉排水研究与实践[M].黄河水利出版社,2005.
    [5]黎立群.盐渍土基础知识[M].科学出版社,1986.
    [6]尹勤瑞.盐碱化对土壤物理及水动力学性质的影响[D].西北农林科技大学,2011.
    [7]麻素挺.吉林西部生态环境需水量与水资源承载力研究[D].吉林大学,2004.
    [8]王家柱.巴基斯坦大规模跨流域引水的效益和问题[J].人民长江,1991(6):45~53.
    [9]万咸涛,华用生.国外长距离调水灌溉对生态与环境的影响[J].水资源保护,1994(1):25~29.
    [10]郑宜国,李雅静,李乐君.浅析引黄对胡家岸灌区水生态环境的影响及对策.济南市水资源优化配置研讨会[C],2004,153~156.
    [11]崔亚莉,邵景力,韩双平.西北地区地下水的地质生态环境调节作用研究[J].地学前缘,2001,8(1):191~196.
    [12]肖长来,贾涛,梁秀娟,等.五家子灌区引水对镇赉县低平原的环境影响[J].吉林大学学报(地球科学版),2007,37(2):341~345.
    [13]石元春,李韵珠.盐渍土研究的现状和发展趋势[J].干旱区研究,1986(04):38~44.
    [14] Eric Houk, Marshall Frasier, Eric Schuck.. The agricultural impacts of irrigation inducedwaterlogging and soil salinity in the Arkansas Basin[J]. Agricultural Water Management,2006,85(1):175~183.
    [15]贾大林.黄淮海平原旱涝碱综合治理中的几个问题[J].人民黄河,1981(03):25~28.
    [16]郭占荣.西北内陆盆地地下水的生态环境效应研究[D].中国地质科学院,2000.
    [17]吴申燕.塔里木盆地水热状况研究[M].海洋出版社,1992
    [18]刘和林,杨改河,张生军.内蒙古河套灌区引黄灌溉对盐渍化的影响分析[J].安徽农业科学,2006,34(5):948~950.
    [19] J.-C. CHAI, S.-L, SHEN, H.-H.ZHU, et al. Land subsidence due to groundwater drawdown inShanghai[J]. Geotechnique,2004,54(2):143~147.
    [20] Nguyen Cao Don, Hiroyuki Araki, Hiroyuki Yamanishi, et al. Simulation of groundwater flow andenvironmental effects resulting from pumping[J]. Environmental Geology,2005,47(3):361~374.
    [21] Andrzej Zuber, Piotr Maloszewski, Stanislaw Witczak, Grzegorz Malina. Groundwater QualitySustainability[M]. State of Florida: CRC Press,2012.
    [22]陈梦熊,马凤山.中国地下水资源与环境[M].北京:地震出版社,2000.
    [23]周维博,施垌林,杨路华.地下水利用[M].北京:中国水利水电出版社,2006.
    [24]马金珠,魏红.民勤地下水资源开发引起的生态与环境问题[J].干旱区研究,2003,20(4):261~265.
    [25]丁宏伟,张荷生.近50年来河西走廊地下水资源变化及对生态环境的影响[J].自然资源学报,2002,17(6):191~197.
    [26]毛军.柴达木盆地香日德绿洲灌溉对地下水的影响及生态响应研究[D].北京林业大学,2007.
    [27]刘少玉,卢耀如.黑河中、下游盆地地下水系统与水资源开发的资源环境效应[J].地理学与国土研究,2002,18(04):90~96.
    [28]王根绪,程国栋.近50年来黑河流域水文及生态环境的变化[J].中国沙漠,1998,18(3):233~238.
    [29] Uwe Schindler, Joerg Steidl, Lothar Müller,et al. Drought risk to agricultural land in Northeast andCentral Germany[J]. Journal of Plant Nutrition and Soil Science,2007,170(3):357~362.
    [30] LENA M. TALLAKSEN, HENNY A.J. VAN LANEN. Hydrological drought: processes andestimation methods for streamflow and groundwater[M]. Netherlands: ELSEVIER:2004.
    [31] Iain Brown, Laura Poggio, Alessandro Gimona, et al. Climate change, drought risk and landcapability for agriculture: implications for land use in Scotland[J]. Regional EnvironmentalChange,2011,11(3):503~518.
    [32] MENG-LUNG LIN, CHENG-WU CHEN. Using GIS-based spatial geocomputation fromremotely sensed data for drought risk-sensitive assessment[J]. International Journal of InnovativeComputing, Information and Control,2011,7(2):657~668.
    [33]刘红亮.灌区水资源优化配置与可持续发展评价研究[D].河海大学,2002.
    [34]朱秀珍.大型灌区运行状况综合评价研究[D].武汉大学,2005.
    [35]杨平.灌区生态环境质量评价研究[D].西北农林科技大学,2007.
    [36]方延旭,杨培岭,宋素兰,等.灌区生态系统健康二级模糊综合评价模型及其应用[J].农业工程学报,2011,27(11):199~205.
    [37]张占庞,韩熙.生态灌区基本内涵及评价指标体系评价方法研究[J].安徽农业科学,2009,37(18):8621~8623.
    [38]谷洪彪.松原灌区土壤盐碱灾害风险评价及水盐调控研究[D].中国地震局工程力学研究所,2011.
    [39] RJ Voetsch. The current state of project risk management practices among risk sensitive projectmanagement professionals[D]. The George Washington University,2004.
    [40] Peter P.Calow. Handbook of environmental risk assessment and management[M]. John Wiley&Sons,2009.
    [41]陈玉和.风险评价[M].中国标准出版社,2009.
    [42] Marsh La Venue, Robert W.Andrews, Banda S.RamaRao. Groundwater travel time uncertaintyanalysis using sensitivity derivatives[J]. Water Resources Research,1989,25(7):1551~1566.
    [43]束龙仓,朱元生,孙庆义,等.地下水允许开采量确定的风险分析[J].水利学报,2000(3):77~81.
    [44]刘佩贵,束龙仓.确定地下水可开采量的随机风险分析方法[J].工程勘察,2008(8):26~28.
    [45]祁蕾茜,林亮,黄巧玉.基于贝叶斯统计推断的地下水开采风险分析[J].吉林农业,2012,264(02):226~227.
    [46]冶雪艳,赵坤,杜新强,等.突变理论在地下水开发风险评价中的应用研究[J].人民黄河,2007,29(10):47~50.
    [47]李绍飞,冯平,林超.地下水环境风险评价指标体系得探讨与应用[J].干旱区资源与环境,2007,21(1):38~43.
    [48]黄振芳,刘昌明.基于博弈论综合权重模糊优选模型在地下水环境风险评价中的应用[J].水文,2010,30(4):13~17.
    [49]杜朝阳,钟华平.基于最大熵原理的地下水开采降深风险分析[J].人民长江,2011,42(11):95~98.
    [50]耿东生,徐文波,李剑.基于灰色理论的地下水风险模型研究[J].陕西水利,2009(Z2):92~94.
    [51]李如忠,钱家忠.地下水降深的未确知风险分析[J].地理科学,2005,25(5):631~635.
    [52]蔡数英,杨金忠.地下水污染风险分析的初步研究[J].武汉水利电力大学学报,1997,30(1):6~10.
    [53] Vito F Uricchio, Raffaele Giordano, Nicola Lopez. A fuzzy knowledge-based decision supportsystem for groundwater pollution risk evalution[J].Journal of Environmental Management,2004,73(3):189~197.
    [54] D.Bolster, M.Barahona, M.Dentz, D.Fernandez-Garcia,et.al[J]. Probabilistic risk analysis ofgroundwater remediation strategies[J], Water Resources Research,2009,45(6):1~10.
    [55] E.Capri, M.Civita, A.Corniello, et al. Assessment of nitrate contamination risk: The Italianexperience[J]. Journal of Geochemical Exploration,2009,102(2):71~86.
    [56] Giorgio Ghiglieri, Giulio Barbieri, Antonio Vernier, et al. Potential risks of nitrate pollution inaquifers from agricultural practices in the Nurra region, northwestern Sardinia, Italy[J]. Journal ofHydrology,2009,379(3-4):339~350.
    [57]杨悦所,Wang John L.基于GIS的农业面源硝酸盐地下水污染动态风险评价[J].吉林大学学报(地球科学版),2007,37(02):311~318.
    [58]高彦伟,陈殿友,张书辰.长春市地下水化学污染风险分析[J].工程勘察,2009(12):74~78.
    [59]李如忠,汪明武,金菊良.地下水环境风险的模糊多指标分析方法[J].地理科学,2010,30(2):229~236.
    [60]金菊良,刘丽,汪明武,等.基于三角模糊数随机模拟的地下水环境系统综合风险评价模型[J].地理科学,2010,31(2):143~147.
    [61]梁婕,谢更新,曾光明,等.基于随机模糊模型的地下水污染风险评价[J].湖南大学学报,2009,36(6),54~58.
    [62]田华.基于过程的地下水污染风险评价[D].西安科技大学,2011.
    [63]刘鑫,马兴高,雷宏军,等.北京市典型垃圾填埋场地下水污染风险评价[J].华北水利水电学院学报,2012,33(4):97~100.
    [64]肖长来,梁秀娟.前郭灌区灌溉与排水对地下水与环境影响的研究[J].第三十届国际地质大会水利系统论文选集,黄河水利出版社,1996(7),236~243.
    [65]周维博,李佩成.我国农田灌溉的水环境问题[J].水科学进展,2001,12(3):1~3.
    [66]刘和林,杨改河等.内蒙古河套灌区引黄灌溉对盐渍化的影响分析[J].安徽农业科学,2006,34(5):948~950.
    [67]毛邦燕,许模,李焕强,等.竖井排灌工程对环境影响的研究[J].环境科学研究,2006,19(4):143~147.
    [68]肖长来.吉林西部地下水资源评价与水资源可持续开发利用研究[D].吉林大学,2001.
    [69]梁秀娟,肖长来,盛洪勋,等.吉林市地下水中三氮迁移转化规律[J].吉林大学学报(地球科学版),2007,37(2):335~340.
    [70]茶正早,闫良,华元刚.尿素转化的硝态氮在3种母质砖红壤中垂直运移特征初步研究[J].热带作物学报,2011,32(5):821~827.
    [71] Babiker I S, Kato K, Ohta K, et al. Assessment of groundwater contamination by nitrate leachingfrom intensive vegetable culivation using geographical information system[J]. EnvironmentInternational,2004,29(8):1009~1017.
    [72]段磊,王文科,孙亚乔,等.关中盆地浅层地下水氮污染的健康风险评价[J].水文地质工程地质,2011,38(3):92~97.
    [73]杨劲松,陈小兵,胡顺军,等.绿洲灌区土壤盐分平衡分析及其调控[J].农业环境科学学报,2007,26(4):1438~1443.
    [74]姜忠锋.乌梁素海综合需水分析及生态系统健康评价[D].内蒙古农业大学,2011.
    [75]马涛.湿地生态环境耗水规律及水资源利用效用评价[D].大连理工大学,2012.
    [76]邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1998.
    [77]刘思峰.灰色系统理论及其应用[M].南京:科学出版社,2010.
    [78]周惠成,彭慧,张弛,等.基于水资源合理利用的多目标农作物种植结构调整与评价[J].农业工程学报,2007,23(9):45~49.
    [79]潘海译.隧道工程地下水水灾害防治与评价体系研究[D].西南交通大学,2009.
    [80]曲文斌,王欣宝,钱龙,等.石家庄城市区地下水脆弱性评价研究[J].水文地质工程地质,2007(6):6~9.
    [81]方樟,肖长来,梁秀娟,等.松嫩平原地下水脆弱性模糊综合评价[J].吉林大学学报(地球科学版),2007,37(3):546~550.
    [82]王菱,谢贤群,李运生,等.中国北方地区40年来湿润指数和气候干湿带界线的变化[J].地理研究,2004,23(1):45~53.
    [83]中央气象局.中国气候图集[M].北京:地图出版社,1966.
    [84]中国科学院《中国自然地理》编辑委员会.中国自然地理气候[M].北京:科学出版社,2009.
    [85]陈梦熊.地下水资源图编图方法指南[M].北京:地质出版社,2001.
    [86]郭玉川.基于内陆干旱区生态安全的地下水位调控研究[D].新疆农业大学,2011.
    [87]赵海卿.吉林西部平原区地下水生态水位及水量调控研究[D].中国地质大学,2012.
    [88]雷磊.地下水位调控对水稻生长影响的试验研究[D].河海大学,2008.
    [89]孙月,毛晓敏,杨秀英,等.西北灌区地下水矿化度变化及其对作物的影响[J].农业工程学报,2010,26(2):103~107.
    [90]赵宝峰.干旱区水资源特征及其合理开发模式研究以玛纳斯河流域为例[D].长安大学,2010.
    [91]]李怀军,刘忠海,郝建成,等.德州市土壤盐碱化概况及改良利用的研究[J].山东农业科学,2008(6):70~72.
    [92] SL2862003,地下水超采区评价导则[S].
    [93]方燕娜,林学钰,廖资生.吉林省中部平原区地下水动态变化特征和地下水超采状况的判定[J].水文,2005,25(5):19~22.
    [94]-陈志恺.中国水利百科全书水文与水资源分册[M].中国水利水电出版社,2004.
    [95]张宗祜.中国地下水资源[M].中国地图出版社,2005.
    [96]杨国强,孟婧莹,苏小四,等.地下水超采评价的指标体系与评价过程[J].节水灌溉,2012(8):34~38.
    [97] Chauhan C P S, Singh R B, Gupta S K. Supplemental irrigation of wheat with saline water[J].Agricultural Water Management,2008(95):253~258.
    [98]陈艳梅,王少丽,高占义,等.基于SALTMOD模型的灌溉水矿化度对土壤盐分的影响[J].灌溉排水学报,2012,31(3):11~16.
    [99]张礼兵,程吉林,金菊良,等.农业灌溉水质评价的投影寻踪模型[J].农业工程学报,2006,22(4):15~18.
    [100]Uttam Kumar Mandal, D.N. Warrington, A.K. Bhardwaj, et. al. Evaluating impact of irrigationwater quality on a calcareous clay soil using principal component analysis[J]. Geoderma,2008,144(1):189~197.
    [101]Mahbub Hussain, Syed Munaf Ahmed, Walid Abderrahman. Cluster analysis and qualityassessment of logged water at an irrigation project, eastern Saudi Arabia[J]. Journal ofEnvironmental Management,2008,86(1):297~307.
    [102]Garcia-Garizabal, J.Causape. Influence of irrigation water management on the quantity andquality of irrigation return flows[J]. Journal of Hydrology,2010,385(1):36~43.
    [103]王遵亲,祝寿泉,俞仁培,等.中国盐渍土[M].北京:科学出版社,1993.
    [104]陈玉民.中国主要作物需水量与灌溉[M].水利电力出版社,1995.
    [105]陈守煜.工程模糊集理论及其应用[M].北京:国防工业出版社,1999.
    [106]LA Zadeh, D Ruan, C Huan. Fuzzy Sets and Fuzzy Information-Granulation Theory[M]. BeijingNormal University Press,2005.
    [107]Thomas L.Saaty. How to Make a Decision: The Analytic Hierarchy Process[J]. Interfaces,1994,24(6):19~43.
    [108]王莲芬,许树柏.层次分析法引论[M].北京:中国人大学出版社,1990.
    [109]李玉琳,高志刚,韩延玲.模糊综合评价中权值确定和合成算子选择[J].计算机工程与应用,2006(23):38~42.
    [110]邱东.最大隶属原则的有效度与加权平均原则的应用[J].统计研究,1989(02):50~53.
    [111]Poston T, Lan Stewant. Catastrophe theory and application[M]. Lord: Pitman,1978.
    [112]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1987.
    [113]张端梅,梁秀娟,李钦伟,等.基于突变理论的吉林西部灌区地下水环境风险评价[J].农业机械学报,2013,44(1):95~100.
    [114]芦垒.基于粒子群算法的湖泊富营养普适指数公式的研究[D].西南交通大学,2008.
    [115]汪嘉杨,王文圣,李祚泳.地面水水质评价的对数型幂函数普适指数公式[J].四川大学学报,2011,43(3):12~17.
    [116]李祚泳,张正健,汪嘉杨,等.指标变换值表示的水安全评价的普适指数公式[J].水利学报,2012,43(9):1009~1016.
    [117]张文修,梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社,2003.
    [118]雷英杰.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [119]G.Tayfur. Soft Computing in Water Resources Engineering: Artificial Neural Networks, FuzzyLogic and Genetic Algorithms[M]. WIT Press,2011.
    [120]Andrea Saltelli, Paola Annoni, Ivano Azzini, et al. Variance based sensitivity analysis of modeloutput. Design and estimator for the total sensitivity index[J]. Computer Physics Communications,2010,181(2):259~270.
    [121]A.Saltelli, K.Chan, E.M. Scott. Sensitivity analysis[M]. John Wiley&Sons Inc,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700