用户名: 密码: 验证码:
热带气旋内外雨带结构、外雨带生成和准周期活动
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用高分辨率理想数值模式(TCM4)分析了热带气旋螺旋内外雨带的结构特征、外雨带形成机制及其准周期活动,此外也研究了准周期外雨带活动对热带气旋结构和强度的影响。
     文中首先系统性地比较了控制试验中模拟的内雨带和外雨带结构和活动的异同。内雨带通常活跃在眼壁外的快速涡丝化带中,而外雨带则活跃在3倍最大风半径外区域。内雨带具有对流耦合涡旋Rossby波特征。外雨带的移动与低层风矢量有关,即沿着轴平均低层风和下沉运动导致的边界层冷池产生的径向向外跨雨带非对称风矢量移动。外雨带中的对流单体呈现典型的对流系统特征,在较大(小)半径处切向方向气旋式运动,径向上向外(里)移动。向上的净垂直质量输送在内雨带区域贯穿整个对流层,而在外雨带区域向下的净质量输送出现在4km高度以下。在内雨带区域仅只有非常浅薄的净水平辐合层位于2-km以下,外雨带区域则在7.5km高度以下为净辐合,以上为净辐散。内雨带中存在两个切向风大值区,一个位于入流边界层顶,另一个位于出流层底。在外雨带内侧边缘4km高度存在次级水平风大值。外雨带上游、中游和下游部分的结构也存在明显差异。
     控制试验中模拟的外螺旋雨带通常在60km半径(约为3倍最大风半径)附近生成,生成后它们通常以约5m s-1的速度径向向外传播。外雨带的生成呈显准周期性,周期约为22-26小时。内雨带与对流耦合的涡旋Rossby波有关,因此其生成主要是涡旋Rossby波的激发,但外雨带的形成则更为复杂。外雨带生成位置主要由快速涡丝化过程对深对流的抑制作用同触发深对流所需动力和热力条件之间的平衡所决定。
     控制试验中外雨带的准周期活动与边界层从对流消耗CAPE以及对流下沉的影响中恢复过程有着紧密关系。一旦外雨带生成,雨带中的对流会产生强烈的干冷下沉运动并消耗CAPE,这将减弱外雨带生成位置附近的对流。随着外雨带向外传播以及对流消亡,外雨带生成附近的边界层通过从洋面吸收能量历经大约10小时逐渐恢复,此后新的对流和外雨带将生成。然后上述物理过程重复发生,形成外雨带的准周期活动。随着外雨带的准周期活动,模拟的热带气旋强度也经历类似的准周期振荡,其强度或增强率在外雨带生成后约4小时开始减小。上述结果为热带气旋中观测到的准周期(准一天)强度和出流层云砧变化提供了另一种可能的解释。
     为研究外核区地表熵通量对外雨带活动的影响,我们设计了两个敏感性试验,分别将外核区地表熵通量各人为地增加和减小20%。这两个试验结果也显示了准周期的外雨带活动。加强的径向风导致的负的水平平流作用以及非对称涡动导致的正的作用使得地表熵通量增强试验中外雨带活动的周期更长。同控制试验结果一致,地表熵通量减小试验中模拟的外雨带活动明显地抑制气旋强度,然而地表熵通量增强试验中外雨带对强度的影响则不显著。外雨带中的非绝热加热可以增强外核区切向风,进而增大内核尺度,因此准周期的外雨带活动也会导致热带气旋内核区尺度的准周期变化。
The structures of inner and outer spiral rainbands, the formation mechanism andquasi-periodic nature of the outer rainbands simulated with TCM4in a quiescent environmentare investigated in the thesis, and the impact of quasi-periodic behavior of the simulated outerrainbands on tropical cyclone (TC) structure and intensity is examined as well.
     The simulated inner and outer spiral rainbands in the control simulation (CTL) are firstcompared. The inner rainbands are generally active immediately outside the eyewall in therapid filamentation zone, while the outer rainbands are active in regions outside about3timesthe radius of maximum wind. The inner rainbands are characterized by the convectivelycoupled vortex Rossby waves (VRWs). The movement of the outer rainbands follows thelow-level vector winds associated with the azimuthally averaged low-level flow and theradially outward cross-band flow caused by the downdraft-induced cold pool in the boundarylayer. Convective cells in outer rainbands are typical of convective systems and movecyclonically and radially outward (inward) at large (small) radii. Net upward vertical masstransports (VMTs) appear throughout the depth of the troposphere in the whole inner-rainbandregion, while net downward VMTs are found below4km height in the outer-rainband region.In the whole inner-rainband region, only a very shallow layer with net horizontal convergenceappears below2-km height, while a deep layer with net convergence is found below7.5-kmheight with net divergence aloft in the outer-rainband region. The inner rainband shows twotangential wind maxima, respectively, located near the top of the inflow boundary layer and immediately below the upper tropospheric outflow layer. A secondary horizontal windmaximum occurs at about4-km height on the inner edge of the outer rainband. Distinctfeatures of the upwind, middle, and downwind sectors of the outer rainband are alsodiscussed.
     In CTL, outer spiral rainbands are preferably initiated near the60-km radius, or roughlyabout three times the radius of maximum wind (RMW). After initiation, they generallypropagate radially outward with a mean speed of~5m s-1. They are reinitiatedquasi-periodically with a period between22h and26h in the simulation. While the innerspiral rainbands, which form within a radius of about three times the RMW, are characterizedby the convectively coupled VRWs, the formation of outer spiral rainbands, namely,rainbands formed outside a radius of about three times the RMW, is much more complicated.It is shown that outer spiral rainbands are triggered by the inner-rainband remnantsimmediately outside the rapid filamentation zone and inertial instability in the uppertroposphere. The preferred radial location of initiation of outer spiral rainbands is understoodas a balance between the suppression of deep convection by rapid filamentation and thefavorable dynamical and thermodynamic conditions for initiation of deep convection.
     The quasi-periodic occurrence of the outer spiral rainbands simulated in CTL is found tobe associated with the boundary layer recovery from the effect of convective downdrafts andthe consumption of convective available potential energy (CAPE) by convection in theprevious outer spiral rainbands. Specifically, once convection is initiated and organized in theform of outer spiral rainbands, it will produce strong downdrafts and consume CAPE. Theseeffects weaken convection near its initiation location. As the rainband propagates outwardfurther, the boundary layer air near the original location of convection initiation takes about10h to recover by extracting energy from the underlying ocean. Convection and thus newouter spiral rainbands will be initiated near a radius of about three times the RMW. This willbe followed by a similar outward propagation and the subsequent boundary layer recovery,leading to a quasi-periodic occurrence of outer spiral rainbands. In response to thequasi-periodic appearance of outer spiral rainbands, the storm intensity experiences a similarquasi-periodic oscillation with its intensity or intensification rate starting to decrease after about4h of the initiation of an outer spiral rainband. The results provide an alternativeexplanation or one of the mechanisms that are responsible for the quasi-periodic(quasi-diurnal) variation in the intensity and in the area of outflow-layer cloud canopy ofobserved TCs.
     The influence of outer-core surface entropy fluxes (SEFs) on outer rainband activity isinvestigated through conducting sensitivity numerical experiments. The sensitivityexperiments with the outer-core SEF artificially increased and decreased by20%, respectively,also simulate quasi-periodic outer rainband behavior. The larger negative horizontal advectiondue to the greater radial wind and the positive contribution by asymmetric eddies lead to alonger period of outer rainband activity in the SEF-enhanced experiment. The activity ofhealthy outer rianbands in the SEF-reduced simulation significantly limits the TC intensity,whereas such an intensity suppression influence is not pronounced in the SEF-enhancedexperiment. As diabatic heating in outer rainbands enables to strengthen the outer-coretangential wind, the quasi-periodic activity of outer rainbands contributes to thequasi-periodic variations of the inner-core size of the TCs.
引文
陈瑞闪,2002:台风。福建科学技术出版社,pp686。
    闵颖、沈桐立、朱伟军、严娟:台风“珍珠”螺旋雨带的数值模拟与诊断分析,大气科学学报,2010(2),227-235。
    王勇、丁治英:台风“海棠”的螺旋雨带结构及特征,南京气象学院学报,200(83),352-262。
    余志豪:台风螺旋雨带——涡旋Rossby波,气象学报,2002(4),502-507。
    赵坤、周仲岛、胡东明、潘玉洁:派比安台风(0606)登陆期间雨带中尺度结构的双多普勒雷达分析,南京大学学报(自然科学版),2007(6),606-620。
    周海光:罗莎(0716)台风外围螺旋雨带中尺度结构的双多普勒雷达实验研究,气象,2010(3)a,54-61。
    周海光:超强台风韦帕(0713)螺旋雨带中尺度结构双多普勒雷达研究,大气科学学报,2010(3)b,271-284。
    周海光:强热带气风暴“风神”(0806)螺旋雨带中尺度结构双多普勒雷达的研究,热带气象学报,2010(3)c,301-308。
    朱佩君、郑永光、王洪庆、陶祖钰:台风螺旋雨带的数值模拟研究,科学通报,2005(5),486-494。
    Abarca, S. F., and K. L. Corbosiero,2011: Secondary eyewall formation in WRF simulationof Hurricanes Rita and Katrina (2005). Geophys. Res. Lett.,38, l07802,doi:10.1029/2011Gl047015.
    Akter, N., and K. Tsuboki,2012: Numerical simulation of Cyclone Sidr using acloud-resolving model: Characteristics and formation process of an outer rainband. Mon.Wea. Rev.,140,789–810.
    Alaka, M. A.,1961: The occurrence of anomalous winds and their significance. Mon. Wea.Rev.,89,482–494.
    ——,1962: On the occurrence of dynamic instability in incipient and developing hurricanes.National Hurricane Research Project, Rept. No.50, U. S. Weather Bureau, Washington, D.C.,51-56.
    ——,1963: Instability aspects of hurricane genesis. National Hurricane Research Project,Rept. No.64, U. S. Weather Bureau, Washington, D. C.,23pp.
    Anthes, R. A.,1972: Development of asymmetries in a three-dimensional numerical model ofthe tropical cyclone1. Mon. Wea. Rev.,100,461–476.
    ——,1982: Tropical cyclones, their evolution, structure and effects. Meteor. Monographs,19,Amer. Meteor. Soc., Beacon Street, Boston, MA012108,208pp.
    Barnes, G., E. Zipser, D. Jorgensen, and F. Marks,1983: Mesoscale and convective structureof a hurricane rainband. J. Atmos. Sci.,40,2125–2137.
    ——, and G. J. Stossmeister,1986: The structure and decay of a rainband in Hurricane Irene(1981). Mon. Wea. Rev.,114,2590-2601.
    ——, J. F. Gamache, M. A. LeMone, and G. J. Stossmeister,1991: A convective cell in ahurricane rainband. Mon. Wea. Rev.,119,776-794.
    Bell, M. M., and M. T. Montgomery,2008: Observed structure, evolution, and potentialintensity of category5Hurricane Isabel (2003) from12to14September. Mon. Wea.Rev.,136,2023–2046.
    ——,——, and W.-C. Lee,2012: An axisymmetric view of concentric eyewall evolution inHurricane Rita (2005). J. Atmos. Sci.,69,2414–2432.
    Bender, M. A.,1997: The effect of relative flow on the asymmetric structure in the interior ofhurricanes. J. Atmos. Sci.,54,703–724.
    Black, M. L., and H. E. Willoughby,1992: The concentric eyewall cycle of hurricane Gilbert.Mon. Wea. Rev.,120,947-957.
    Black, P. G., and R. A. Anthes,1971: On the asymmetric structure of the tropical cycloneoutflow layer. J. Atmos. Sci.,28,1348–1366.
    Blanchard, D. O., W. R. Cotton, and J. M. Brown,1998: Mesoscale circulation growth underconditions of weak inertial instability. Mon. Wea. Rev.,126,118–140.
    Bogner, P. B., G. M. Barnes, and J. L. Franklin,2000: Conditional instability and shear for sixhurricanes over the Atlantic Ocean. Wea. Forecasting,15,192–207.
    Braun, S. A., M. T. Montgomery, and Z. Pu,2006: High-resolution simulation of HurricaneBonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci.,63,19–42.
    Browner, S. P., W. L. Woodley, and C. G. Griffith,1977: Diurnal oscillation of the area ofcloudiness associated with tropical storms. Mon. Wea. Rev.,105,856–864.
    Bryan, G. H., and R. Rotunno,2009: The influence of near-surface, high-entropy air inhurricane eyes on maximum hurricane intensity. J. Atmos. Sci.,66,148–158.
    Carr, L. E., and R. L. Elsberry,1995: Monsoonal interactions leading to sudden tropicalcyclone track changes. Mon. Wea. Rev.,123,265–290.
    Chan, C. L. J., and R. T. Williams,1987: Analytical and numerical studies of the beta-effect intropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci.,44,1257-1265.
    Chen, T.-C., and S.-P. Weng,1998: Interannual variation of the summer synoptic-scaledisturbance activity in the western tropical Pacific. Mon. Wea. Rev.,126,1725–1733.
    Chen, Y., and M. K. Yau,2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossbywave verification. J. Atmos. Sci.,58,2128–2145.
    Chow, K. C., K. L. Chan, and A. K. H. Lau,2002: Generation of moving spiral bands intropical cyclones. J. Atmos. Sci.,59,2930-2950.
    Corbosiero, K. L., and J. Molinari,2002: The effects of vertical wind shear on the distributionof convection in tropical cyclones. Mon. Wea. Rev.,130,2110-2123.
    ——, and——,2003: The relationship between storm motion, vertical wind shear, andconvective asymmetries in tropical cyclones. J. Atmos. Sci.,60,366-460.
    ——,——, A. R. Aiyyer, and M. L. Black,2006: The structure and evolution of HurricaneElena (1985). Part II: Convective asymmetries and evidence for vortex Rossbywaves. Mon. Wea. Rev.,134,3073–3091.
    Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun,2007: A Lagrangian trajectoryview on transport and mixing processes between the eye, eyewall, and environment usinga high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci.,64,1835–1856.
    Didlake, A. C., and R. A. Houze,2009: Convective-scale downdrafts in the principal rainbandof Hurricane Katrina (2005). Mon. Wea. Rev.,137,3269–3293.
    Diercks, J. W., and R. A. Anthes,1976: Diagnostic studies of spiral rainbands in a nonlinearhurricane model. J. Atmos. Sci.,33,959-975.
    Doswell, C. A., III,1987: The distinction between large-scale and mesoscale contribution tosevere convection: A case study example. Wea. Forecasting,2,3–16.
    ——, H. E. Brooks, and R. A. Maddox,1996: Flash flood forecasting: An ingredients-basedmethodology. Wea. Forecasting,11,560–581.
    Durran, D. R., and J. B. Klemp,1983: A compressible model for the simulation of moistmountain waves. Mon. Wea. Rev.,111,2341–2361.
    Eastin, M. D., T. L. Gardner, M. C. Link, and K. C. Smith,2012: Surface cold pools in theouter rainbands of Tropical Storm Hanna (2008) near landfall. Mon. Wea. Rev.,140,471–491.
    ——, W. M. Gray, and P. G. Black,2005: Buoyancy of convective vertical motions in theinner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev.,133,209–227.
    Elsberry, R. L.,1987: Tropical cyclone motion. Chapter4, A Global View of TropicalCyclones, Office of Naval Research,91-131.
    Emanuel, K. A.,1986: an air-sea interaction theory for tropical cyclones. Part I: Steady statemaintenance. J. Atmos. Sci.,43,585-604.
    ——,1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revisedsteady-state model incorporating eye dynamics. J. Atmos. Sci.,52,3969–3976.
    ——,1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci.,54,1014–1026.
    ——, M. Fantini, and A. J. Thorpe,1987: Baroclinic instability in an environment of smallstability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos.Sci.,44,1559–1573.
    ——,2008: The hurricane-climate connection. Bull. Amer. Meteor. Soc.,89, ES10-ES20.
    Enagonio, J., and M. T. Montgomery,2001: Tropical cyclogenesis via convectively forcedvortex Rossby waves in a shallow water primitive equation model. J. Atmos. Sci.,58,685-706.
    Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson,2003: Bulkparameterization of air–sea fluxes: updates and verification for the COARE algorithm. J.Climate,16,571–591.
    Fang, J., and F. Zhang,2012: Effect of beta shear on simulated tropical cyclones. Mon. Wea.Rev.,140,3327–3346.
    Fiorino, M., and R. L. Elsberry,1989: Some aspects of vortex structure related to tropicalcyclone motion. J. Atmos. Sci.,46,975-990.
    Frank, W. M., and E. A. Ritchie,1999: Effects of environmental flow upon tropical cyclonestructure. Mon. Wea. Rev.,127,2044–2061.
    Franklin, C. N., G. J. Holland, and P. T. May,2006: Mechanisms for the generation ofmesoscale vorticity features in tropical cyclone rainbands. Mon. Wea. Rev.,134,2649-2669.
    Fudeyasu, H., and Y. Wang,2011: Balanced contribution to the intensification of a tropicalcyclone simulated in TCM4: Outer-core spinup process. J. Atmos. Sci.,68,430–449.
    Fung, I.,1977: The organization of spiral rainbands in a hurricane. Proc.11th Tech. Conf. onHurricanes and Tropical Meteorology, Miami Beach, FL, Amer. Meteor. Soc.,40–43.
    Gall, R., J. Tuttle, and P. Hildebrand,1998: Small-scale spiral bands observed in HurricanesAndrew, Hugo, and Erin. Mon. Wea. Rev.,126,1749–1766.
    Gamache, J. F., R. A. Houze, and F. D. Marks,1993: Dual-aircraft investigation of the innercore of Hurricane Norbert Part III: Water budget. J. Atmos. Sci.,50,3221–3243.
    Gray, W. M.,1968: Global view of the origin of tropical disturbances and storms. Mon. Wea.Rev.,96,669–700.
    ——, and R. W. Jacobson,1977: Diurnal variation of deep cumulus convection. Mon. Wea.Rev.,105,1171–1188.
    Guinn, T. A., and Schubert, W. H.,1993: Hurricane spiral bands. J. Atmos. Sci.,50,3380-3403.
    Halverson, J. B., J. Simpson, G. Heymsfield, H. Pierce, T. Hock, and L. Ritchie,2006: Warmcore structure of Hurricane Erin diagnosed from high altitude dropsondes duringCAMEX-4. J. Atmos. Sci.,63,309–324.
    Hartmann, D. L., and E. D. Maloney,2001: The Madden–Julian oscillation, barotropicdynamics, and north Pacific tropical cyclone Formation. Part II: Stochastic barotropicmodeling. J. Atmos. Sci.,58,2559–2570.
    Hawkins, H. F. and D. T. Rubsam,1968: Hurricane Hilda,1964. Mon. Wea. Rev.,96,617–636.
    Hawkins, H. F., and S. M. Imbembo,1976: The structure of a small, intense hurricane, Inez1966. Mon. Wea. Rev.,104,418–442.
    Hawkins, J. D., and M. Helveston,2008: Tropical cyclone multiple eyewall characteristics.Preprints,28th conf. on hurricanes and Tropical Meteorology. Orlando, FL, Amer. Meteor.Soc.,14B.1.
    Haynes, P. H., and M. E. McIntyre,1987: On the evolution of vorticity and potential vorticityin the presence of diabatic heating and frictional or other forces. J. Atmos. Sci.,44,828–
    Hence, D. A., and R. A. Houze,2008: Kinematic structure of convective-scale elements in therainbands of Hurricanes Katrina and Rita (2005). J. Geophy. Res.,113, D15108,doi:10.1029/2007JD009429.
    Hobgood, J. S.,1986: A possible mechanism for the diurnal oscillations of tropical cyclones. J.Atmos. Sci.,43,2901–2922.
    Houze, Robert A.,2010: Clouds in tropical cyclones. Mon. Wea. Rev.,138,293–344.
    ——,1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull.Amer. Meteor. Soc.,78,2179–2196.
    ——, S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell,2007: hurricane intensity andeyewall cycle. Science,315,1235-1239.
    Huang, Y.-H., M. T. Montgomery, and C.-C. Wu,2012: Concentric eyewall formation inTyphoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci.,69,662–674.
    Jones, S. C.,1995: The evolution of vortices in vertical shear. I: Initially barotropicvortices. Quart. J. Roy. Meteor. Soc.,121,821–851.
    Judt, K., and S. S. Chen,2010: convectively generated potential vorticity in rainbands andformation of the secondary eyewall in hurricane Rita of2005. J. Atmos. Sci.,67,3581-3599.
    Kelley, O. A., J. Stout, and J. B. Halverson,2004: Tall precipitation cells in tropical cycloneeyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett.,31,L24112. doi:10.1029/2004GL021616.
    Kepert, J. D.,2001: The dynamics of boundary layer jets within the tropical cyclone core. PartI: Linear theory. J. Atmos. Sci.,58,2469-2484.
    ——, and Y. Wang,2001: The dynamics of boundary layer jets within the tropical cyclonecore. Part I: Nonlinear enhancement. J. Atmos. Sci.,58,2485-2501.
    Kimball, S. K. and M. S. Mulekar,2004: A15-year climatology of North Atlantic tropicalcyclones. Part I: Size parameters. J. Climate,17,3555-3575.
    Knox, J. A.,2003: Inertial instability. Encyclopedia of the Atmospheric Sciences, J. Holton, J.Pyle, and J Curry, Eds., Acadamic Press,1004-1013.
    Kossin, J. P.,2002: Daily hurricane variability inferred from GOES infrared imagery. Mon.Wea. Rev.,130,2260–2270.
    Kossin, J. P., W. H. Schubert, and M. T. Montgomery,2000: Unstable interactions betweena hurricane’s primary eyewall and a secondary region of enhanced vorticity. J. Atmos.Sci.,57,3893–3917.
    Kuo, H.-C., C.-P. Chang, and C.-H. Liu,2012: Convection and rapid filamentation inTyphoon Sinlaku during TCS-08/T-PARC. Mon. Wea. Rev.,140,2806–2817.
    ——, C.-P. Chang, Y.-T. Yang, and H.-J. Jiang,2009: western north pacific typhoons withconcentric eyewalls. Mon. Wea. Rev.,137,3758-3770.
    Kurihara, Y.,1976: On the development of spiral bands in a tropical cyclone. J. Atmos. Sci.,33,940-958.
    ——, and M. A. Bender,1982: Structure and analysis of the eye of a numerically simulatedtropical cyclone. J. Meteor. Soc. Japan,60,381–395.
    Langland, R. H., and C. S. Liou,1996: Implementation of an E–ε parameterization of verticalsubgrid-scale mixing in a regional model. Mon. Wea. Rev.,124,905–918.
    Lajoie, F., and I. Butterworth,1984: Oscillation of high-level cirrus and heavy precipitationaround Australian region tropical cyclones. Mon. Wea. Rev.,112,535–544.
    Li, Q., Y. Duan, H. Yu, and G. Fu,2008: A high-resolution simulation of Typhoon Rananim(2004) with MM5. Part I: Model vrification, inner-core shear, and asymmetricconvection. Mon. Wea. Rev.,136,2488–2506.
    ——,——,——, and——,2010: Finescale spiral rainbands modeled in a high-resolutionsimulation of Typhoon Rananim (2004). Adv. Atmos. Sci.,27,685-704.
    Liu, K. S. and J. C. L. Chan,2002: Synoptic flow patterns associated with small and largetropical cyclones over the western North Pacific. Mon. Wea. Rev.,130,2134-2142.
    Liu, Y., D.-L. Zhang, and M. K. Yau,1997: A multiscale numerical study of HurricaneAndrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev.,125,3073-3093.
    Maclay, K. S., M. DeMaria, and T. H. Vonder Haar,2008: Tropical cyclone inner-corekinetic energy evolution. Mon. Wea. Rev.,136,4882–4898.
    Maloney, E. D., and D. L. Hartmann,2001: The Madden–Julian oscillation, barotropicdynamics, and north Pacific tropical cyclone formation. Part I: Observations. J. Atmos.Sci.,58,2545–2558.
    Martinez, Y., G. Brunet, M. K. Yau, and X. Wang,2011: On the dynamics of concentriceyewall genesis: space-time empirical normal modes diagnosis. J. Atmos. Sci.,68,457-476.
    May, P. T.,1996: The organization of convection in the rainbands of Tropical CycloneLaurence. Mon. Wea. Rev.,124,807-815.
    ——, and G. J. Holland,1999: The role of potential vorticity generation in tropical cyclonerainbands. J. Atmos. Sci.,56,1224-1228.
    ——, G. J. Holland, and W. L. Ecklund,1994: Wind profiler observations of Tropical StormFlo at Saipan. Wea. Forecasting,9,410-426.
    McBride, John L., Zehr, Raymond.1981: Observational analysis of tropical cycloneformation. Part II: Comparison of non-developing versus developing systems. J. Atmos.Sci.,38,1132–1151.
    McWilliams, J. C., L. P. Graves, and M. T. Montgomery,2003: A formal theory for vortexRossby waves and vortex evolution. Geophys. Astrophys. Fluid Dyn.,97,275–309.
    Merrill, R. T.,1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev.,112,1408-1418.
    M ller, J. D., and M. T. Montgomery,2000: Tropical cyclone evolution via potential vorticityanomalies in a three-dimensional balance model. J. Atmos. Sci.,57,3366–3387.
    Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black,2006: Hurricane Isabel(2003): New insights into the physics of intense storms. Part I: Mean vortex structure andmaximum intensity estimates. Bull. Amer. Meteor. Soc.,87,1335–1347.
    ——, and R. J. Kallenbach,1997: A theory for vortex Rossby-waves and its application tospiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc.,123,435-465.
    Moyer, A. C., J. L. Evans, and M. Powell,2007: Comparison of observed gale radius statistics.Meteor. Atmos. Phys.,97,41-55.
    Muramatsu, T.,1983: Diurnal variations of satellite-measured TBBareal distribution and eyediameter of mature typhoons. J. Meteor. Soc. Japan,61,77–89.
    Neumann, C. J.,1992: The Joint Typhoon Warning Center (JTWC92) model. SAIC, FinalReport, Contract No. N00014-90-C-6042,85pp.
    Nong, S., and K. A. Emanuel,2003: A numerical study of the genesis of concentric eyewallsin hurricanes. Q. J. R. Meteor. Soc.,129,3323-3338.
    Ooyama, K.,1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J.Meteoro. Soc. Japan,60,369-380.
    Otto, P., and J. Soderholm,2012: The convective features with and surrounding SevereTropical Cyclone Larry (2006). Tropical Cyclone Res. Rev.,1,143-162.
    Persing, J., and M. T. Montgomery,2003: Hurricane superintensity. J. Atmos. Sci.,60,2349–2371.
    ——, and——,2005: Is environmental CAPE important in the determination of maximumpossible hurricane intensity? J. Atmos. Sci.,62,542–550.
    Powell, M. D.,1990a: Boundary layer structure and dynamics in outer hurricane rainbands.Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev.,118,891-917.
    ——,1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II:Downdraft modification and mixed layer recovery. Mon. Wea. Rev.,118,918–938.
    Qiu, X., and Z.-M. Tan,2013: The roles of asymmetric inflow forcing tnduced by outerrainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci.,70,953–974.
    Reasor, P. D., and M. T. Montgomery,2001: Three-dimensional alignment and corotation ofweak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci.,58,2306–2330.
    ——, M. T. Montgomery, F. D. Marks, and J. F. Gamache,2000: Low-wavenumber structureand evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon.Wea. Rev.,128,1653–1680.
    Ritchie, E. A., and G. J. Holland,1997: Scale interactions during the formation of TyphoonIrving. Mon. Wea. Rev.,125,1377–1396.
    Rogers, R.,2010: Convective-scale structure and evolution during a high-resolutionsimulation of tropical cyclone rapid intensification. J. Atmos. Sci.,67,44–70.
    Rotunno, R., and K. A. Emanuel,1987: An air–sea interaction theory for tropical cyclones.Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J.Atmos. Sci.,44,542–561.
    Rozoff, C. M., D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang,2012: The roles of anexpanding wind field and inertial stability in tropical cyclone secondary eyewallformation. J. Atmos. Sci.,69,2621–2643.
    Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin,2006: Rapid filamentationzones in intense tropical cyclones. J. Atmos. Sci.,63,325–340.
    Ryan, B. F., G. M. Barnes, and E. J. Zipser,1992: A wide rainband in a developing tropicalcyclone. Mon. Wea. Rev.,120,431-447.
    Samsury, C. E., and E. J. Zipser,1995: Secondary wind maxima in hurricanes: Airflow andrelationship to rainbands. Mon. Wea. Rev.,123,3502-3517.
    Sawada, M. and T. Iwasaki,2010: Impacts of evaporation from raindrops on tropical cyclones.Part II: Features of rainbands and asymmetric structure. J. Atmos. Sci.,67,84–96.
    Schecter, D. A., and M. T. Montgomery,2004: Damping and pumping of a vortex Rossbywave in a monotonic cyclone: Critical layer stirring versus inertia-buoyancy waveemission. Phy. Fluids,16,1334–1348.
    ——, and——2006: Conditions that inhibit the spontaneous radiation of spiral inertia–gravity waves from an intense mesoscale cyclone. J. Atmos. Sci.,63,435–456.
    ——, and——,2007: Waves in a cloudy vortex. J. Atmos. Sci.,64,314–337.
    Schubert, W. H., and J. J. Hack,1982: Inertial stability and tropical cyclone development. J.Atmos. Sci.,39,1687–1697.
    Schultz, D. M., and J. A. Knox,2007: Banded convection caused by frontogenesis in aconditionally, symmetrically, and inertially unstable environment. Mon. Wea.Rev.,135,2095–2110.
    Schumacher, R. S., D. M. Schultz, and J. A. Knox,2010: Convective snowbands downstreamof the Rocky Mountains in an environment with conditional, dry symmetric, and inertialinstabilities. Mon. Wea. Rev.,138,4416–4438.
    Shimazu, Y.,1997: Wide slow-moving rainbands and narrow fast-moving rainbands observedin Typhoon8913. J. Meteor. Soc. Japan,75,67-80.
    Simpson, J., Ritchie, E., Holland, G. J., Halverson, J., and Stewart, S.1997: Mesoscaleinteractions in tropical cyclone genesis. Mon. Wea. Rev.,125,2643–2661.
    Smith, R. B.,1993: A hurricane beta-drift law. J. Atmos. Sci.,50,3213-3215.
    Smith, R. K., M. T. Montgomery, and S. Vogl,2008: A critique of Emanuel’s hurricane modeland potential intensity theory. Quart. J. Roy. Meteor. Soc.,134,551–561.
    ——,——, and S. V. Nguyen,2009: Tropical cyclone spin up revisited. Q. J. R. Meteorol.Soc.,135,1321–1335.
    Steiner, M., R. A. Houze, and S. E. Yuter,1995: Climatological characterization ofthree-dimensional storm structure from operational radar and rain gauge data. J. Appl.Meteor.,34,1978–2007.
    Stern, D. P., and D. S. Nolan,2009: reexamining the vertical structure of tangential winds intropical cyclones: observa-tions and theory. J. Atmos. Sci.,66,3579-3600.
    Stikowski, M., J. P. Kossin, and C. M. Rozoff,2011: Intensity and structure changes duringhurricane eyewall replacement cycles. Mon. Wea. Rev.,139,3829-3847.
    Sturtevant, J. S.,1995: The severe local storm forecasting, Primer Weather ScratchMeteorological Services,197pp.
    Terwey, W. D., and M. T. Montgomery,2008: Secondary eyewall formation in two idealized,full-physics modeled hurricanes. J. Geophys. Res.,113, d12112,doi:10.1029/2007Jd008897.
    Testud, J., P. Amayenc, M. Chong, B. Nutten, and A. Sauvaget,1980: A Doppler radarobservation of a cold front: Three-dimensional air circulation, related precipitation system,and associated wavelike motions. J. Atmos. Sci.,37,78–98.
    Wang, Y.,1996: On the forward-in-time upstream advection scheme for non-uniform andtime-dependent flow. Meteor. Atmos. Phys.,61,27-38.
    ——, and G. J. Holland,1996a: The beta drift of baroclinic vortices. Part I: Adiabatic vortices.J. Atmos. Sci.,53,411–427.
    ——, and——,1996b: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci.,53,3313–3332.
    ——, and——,1996c: The beta drift of baroclinic vortices. Part II: Diabatic vortices. J.Atmos. Sci.,53,3737–3756.
    ——,2001: An explicit simulation of tropical cyclones with a triply nested movable meshprimitive equation model: TCM3. Part I: Model description and control experiment. Mon.Wea. Rev.,129,1370–1394.
    ——,2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I:Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci.,59,1213–1238.
    ——,2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: Therole in tropical cyclone structure and intensity changes. J. Atmos. Sci.,59,1239–1262.
    ——,2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropicalcyclone model–TCM4: Model description and development of asymmetries withoutexplicit asymmetric forcing. Meteor. Atmos. Phys.,97,93-116.
    ——,2008a: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos.Sci.,65,1158–1181.
    ——,2008b: Structure and formation of an annular hurricane simulated in a fullycompressible, nonhydrostatic model—TCM4. J. Atmos. Sci.,65,1505–1527.
    ——,2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J.Atmos. Sci.,66,1250–1273.
    ——, and C.-C. Wu,2004: Current understanding of tropical cyclone structure and intensitychanges-A review. Meteor. Atmos. Phys.,87,257-278.
    ——, and G. J. Holland,1996: The beta drift of baroclinic vortices. Part I: Adiabaticvortices. J. Atmos. Sci.,53,411–427.
    ——, and J. Xu,2010: Energy production, frictional dissipation, and maximum intensity of anumerically simulated tropical cyclone. J. Atmos. Sci.,67,97–116.
    Wicker, L. J., and W. C. Skamarock,1998: A time-splitting scheme for the elastic equationsincorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev.,126,1992–1999.
    ——, and W. C. Skamarock,2002: Time-splitting methods for elastic models using forwardtime schemes. Mon. Wea. Rev.,130,2088–2097.
    Willoughby, H. E.,1977: Inertia-buoyancy waves in hurricanes. J. Atmos. Sci.,34,1028-1039.
    ——,1978: A Possible Mechanism for the formation of hurricane rainbands. J. Atmos. Sci.,35,838-848.
    ——, J. A. Clos, and M. G. Shoreibah,1982: concentric eyewalls, secondary wind maximum,and the evolution of the hurricane vortex. J. Atmos. Sci.,39,395-411.
    ——, F. D. Marks Jr., and R. J. Feinberg,1984a: Stationary and moving convective bands inhurricanes. J. Atmos. Sci.,41,505-514.
    ——, H. L. Jin, S. J. Lord, and J. M. Piotrowicz,1984b: Hurricane structure and evolution assimulated by an axisymmetric, nonhydrostatic numerical model. J. Atmos. Sci.,41,1169–1186.
    ——, J. A. Clos, and M. G. Shoreibah,1982: concentric eyewalls, secondary wind maximum,and the evolution of the hurricane vortex. J. Atmos. Sci.,39,395-411.
    Wong, L. M. M., and J. C. L. Chan,2006: Tropical cyclone motion in response to land surfacefriction. J. Atmos. Sci.,63,1324-1337.
    Wu, L., and B. Wang,2001: Effects of convective heating on movement and vertical couplingof tropical cyclones: A numerical study. J. Atmos. Sci.,58,3639–3649.
    ——, and S. A. Braun,2004: Effects of environmentally induced asymmetries on hurricaneintensity: A numerical study. J. Atmos. Sci.,61,3065-3081.
    ——, H. Zong, and J. Liang,2011: Observational analysis of sudden tropical cyclone trackchanges in the vicinity of the East China Sea. J. Atmos. Sci.,68,3012–3031.
    ——, S. A. Braun, J. Halverson, and G. Heymsfield,2006: A numerical study of HurricaneErin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci.,63,65–86.
    Xu, J., and Y. Wang,2010a: Sensitivity of tropical cyclone inner core size and intensity to theradial distribution of surface entropy flux. J. Atmos. Sci.,67,1831-1852.
    ——, and Y. Wang,2010b: Sensitivity of the simulated tropical cyclone inner-core size to theinitial vortex size. Mon. Wea. Rev.,138,4135-4157.
    Yang, B., Y. Wang, and B. Wang,2007: The effect of internally generated inner-coreasymmetries on tropical cyclone potential intensity. J. Atmos. Sci.,64,1165–1188.
    Yu, C.-K., and C.-L. Tsai,2010: Surface pressure features of landfalling typhoon rainbandsand their possible causes. J. Atmos. Sci.,67,2893–2911.
    ——, and——,2013: Structural and surface features of arc-shaped radar echoes along anouter tropical cyclone rainband. J. Atmos. Sci.,70,56–72.
    Zhou, X., B. Wang, X. Ge, and T. Li,2011: Impact of secondary eyewall heating on tropicalcyclone intensity Change. J. Atmos. Sci.,68,450–456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700