用户名: 密码: 验证码:
基于多源空间信息的干旱监测模型构建及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球气候变化越来越复杂的大背景下,我国近几十年来干旱频发,给粮食生产安全带来了潜在隐患,因此研究区域干旱时空演化特征及其发展趋势,对地方政府抗旱行动和区域农业生产将有重要的指导意义。本文从大气水汽环流异常、土壤水分胁迫和地表植被响应等方面,对干旱致灾因子和遥感监测机理进行分析,利用空间数据挖掘技术中的分类回归树方法,对大量干旱关联因子数据进行模糊挖掘,构建半经验半机理的干旱监测模型,并以山东省为例,重建了2000-2010年的干旱时空信息,定量的监测了近十年来山东省所经历的干旱过程。在此基础之上,利用多种空间数据时序分析方法,对山东干旱的时空演化特征进行研究。论文取得了以下几点成果与结论:
     (1)从致旱机理和旱灾响应的角度,综合分析了干旱过程涉及的大气、土壤、植被等多种致灾因子及载体,指出单一的气象干旱、农业干旱或水文干旱指标很难准确衡量干旱这一自然过程,只有综合考虑大气降水、植被生长和土壤水分供需平衡等多种因子及其内部耦合过程的干旱监测机理模型,从地表水分平衡系统失衡的角度才能准确监测和模拟干旱这一自然现象,并提出了综合干旱监测这一概念。
     (2)使用热带降水测量卫星(TRMM)3B43的逐月降水量资料和单站干旱监测Z指数方法,构建用于大气降水亏缺遥感监测的TRMM-Z指数,并用同期标准化降水指数(SPI)对TRMM-Z指数进行了验证。研究表明TRMM-Z指数监测出的干旱发生、发展过程与实际旱情相符,其监测结果与15个地级市的站点SPI相关系数大多超过了0.8,且通过了P<0.01的显著性检验。
     (3)提出了两种针对MOD11A2/MYD11A2地表温度产品和MOD13A3植被指数产品的质量控制算法,这两种质量控制算法能极大地去除时间序列数据的噪声,提高数据质量,在此基础上还利用Savitzky-Golay滤波技术对时间序列植被指数进行去噪平滑处理。基于干旱事件会影响地表植被生长和昼夜温差变化的这一机理,论文提出了标准化植被异常指数和标准化地温异常指数,并应用到了干旱监测和后续模型构建之中。
     (4)基于模糊空间数据挖掘的理论,在获取各建模自变量和因变量的基础上,利用分类回归树方法,构建综合干旱监测模型,计算综合干旱指数。综合干旱指数不仅考虑了气象降水亏缺、土壤水分胁迫、植被生长状态等因素,还考虑了土地利用类型、土壤有效持水量等因素,可以定量描述复杂的干旱过程。论文以2010年为例,分析了山东逐月综合干旱指数的时空变化,结果显示该指数监测的干旱过程和强度与实际报道的旱情一致;从2000-2010年的时序变化情况可以看出,该指数可以较好地监测出历史时期厄尔尼诺—南方涛动(ENSO)等重大气候事件引发的干旱过程与持续时间。
     (5)综合干旱指数的验证结果表明,在作物的主要生长期,综合干旱指数与标准化作物单产变量有较好的相关性,相关系数超过0.6,且能通过P<0.05的显著性检验;综合干旱指数与作物受灾面积的相关系数在-0.67~-0.85之间,除3月份外,其它均通过了P<0.01的显著性检验,相关系数普遍略高于同期其它已有干旱指数与作物受灾面积的相关系数;综合干旱指数的波动还能反映出土壤湿度信息变化,并与SPEI、SPI等气象干旱指数也显著相关。
     (6)利用综合干旱指数和多种时空分析手段,对山东2000-2010年春夏秋冬四个季节的干旱时空演化特征进行了研究。变异系数由大到小依次是春季、夏季、秋季和冬季;综合干旱指数与时间变量的线性回归与相关分析结果表明,春夏两季干旱有越来越弱的趋势,冬季干旱有逐年加剧的趋势;重新标度极差分析显示春夏季节的综合干旱指数具有长持续特征,而冬季具有反持续特征;在不同的显著性水平下,Sen趋势度分析也得到了相同的干旱发展趋势结果。综合可以得出,山东春夏干旱会有显著减弱趋势,而冬季干旱则有显著增强趋势,秋季干旱目前尚无明确的演化方向。
In the context of the global climate change more and more complex, China was affected frequently by drought in recent decades, which has brought potential hazards to the safety of China's grain production. Therefore, the research of spatial-temporal evolution characteristics and development trend of drought in region will have important meaning for drought relief of the local government and regional agricultural planning. The thesis analyzes the causing hazard factors and remote sensing monitoring mechanism from the perspective of the circulation of atmospheric water vapor, soil water stress and vegetation response to drought hazards. A large number of drought associated factor data was mined using spatial data fuzzy mining technology of classification and regression tree and a semi-empirical and semi-mechanistic drought monitoring model was built. A synthesized drought index from2000to2010in Shandong province was calculated using this model and the temporal and spatial information of drought been constructed. Based on this, the characteristics of spatiotemporal evolution of drought were studied using five kinds of spatial data timing analysis method in Shandong. This research work realized the precise monitoring and quantitative description of drought process over the past decade in Shandong province. The study obtained the following results and conclusions:
     (1) From the point of view of drought mechanism and hazard response, the thesis analyzes that the drought process deduced by many causing hazard factors including atmosphere, soil, vegetation and so on. It pointed out that a single meteorological drought, agricultural drought or hydrological drought is difficult to accurately define the natural process of drought. Only the drought monitoring mechanism model which comprehensive considering the atmospheric precipitation, vegetation growth and soil water balance of supply and demand and their internal coupling process can accurately monitor and simulate this natural phenomenon from the point of view land surface water balance system.
     (2) The thesis constructed TRMM-Z index using3B43monthly precipitation data of Tropical Rainfall Measuring Mission (TRMM) and single station based Z index drought monitoring method and it was validated using standardized precipitation index (SPI). The results showed that TRMM-Z index could well reflect the occurring and developing process of regional drought and the monitoring results were accord well with actual situation. All the correlation coefficients of the average value of TRMM-Z index with the corresponding station based SPI value were more than0.8and passed the significant test (p-value<0.01).
     (3) Two kinds of data quality control algorithm were developed for MODIS surface temperature products (MOD11A2/MYD11A2) and vegetation index products (MOD13A3) and they can remove the noise of the time series data and improve data quality significantly. Besides, the Savitzky-Golay filter was used in time series vegetation index to smoothing and reducing noise. Based on the mechanism of drought events can affect the growth of vegetation and ground temperature periodically changes rules, the thesis put forward standardized vegetation anomaly index and standardized land surface temperature anomaly index and used them to drought monitoring and follow-up model building.
     (4) Based on the theory of fuzzy spatial data mining, a classification and regression tree model was built using training variables and it been used to calculate synthesized drought index. Synthesized drought index not only takes into account the meteorological precipitation deficit, soil water stress, vegetation growth status, but also consider the type of land use, the available water capacity of soil and other factors. Therefore, it can used to assess the complex water balance breaking of drought process. As an example, the monthly synthesized drought index of Shandong province was used to analyze the spatiotemporal variation of drought. The results showed that occurring and developing of drought event in2010was monitored and it in accord with actual situation. The time series synthesized drought index from2U0U to2010accurately monitored the event and duration of drought in historical periods which was caused by large climatic events such as El Nino-Southern Oscillation.
     (5) The validation results show that synthesized drought index and standardized crop yields variable are correlate and most correlation coefficient over0.6and passed significance test (p-value<0.05) in major crop growing season. The correlation coefficient of synthesized drought index and drought affected crop area is between-0.67to-0.85and most them passed significance test (p-value<0.01) which was slightly higher than the correlation coefficient of other existing drought index and drought affected crop area in same period. Moreover, synthesized drought index can indicated the changes of soil moisture and it was significantly correlated with meteorological drought index such as SPEI, SPI.
     (6) The spatial and temporal changes of four season's drought in Shandong province from2000to2010were studied using synthesized drought index and different spatiotemporal analysis methods. The coefficient of variation of synthesized drought index from2000to2010was sequenced as spring, summer, autumn and winter. The linear regression and correlation analysis of synthesized drought index and times show that drought is weakened in spring and summer, but intensified in winter. The results of rescaled range analysis show that the synthesized drought index has a long persistent characteristic in spring and summer, but has anti-persistent characteristic in winter. At different level of significance, Sen's trend analysis has also got the same developing trend of drought. In summary, the drought in Shandong province will have a significant weakening trend in spring and summer, a intensifying trend in winter and still not a clear evolution direction in autumn.
引文
[1]. Dai A. G., Drought under global warming:a review[J]. Wiley Interdisciplinary Reviews: Climate Change,2011,2(1):45-65.
    [2]. Mishra A. K.,Singh V. P., A review of drought concepts[J]. Journal of Hydrology,2010, 391(1-2):202-216.
    [3].叶笃正,黄荣辉.长江黄河流域旱涝规律和成因研究[M].济南:山东科技出版社,1996.
    [4].李克让,郭其蕴,张家城.中国干旱灾害研究及减灾对策[M].郑州:河南科学技术出版社,1997.
    [5]. Huang R. H.,Wu Y. F., The influence of ENSO on the summer climate change in China and its mechanism[J]. Advances in Atmospheric Sciences,1989,6(1):21-32.
    [6]. Obasi G. P., WMO's role in the international decade for natural disaster reduction[J]. Bulletin of the American Meteorological Society Author Index,1994,75(9):1655-1661.
    [7]. Wilhite D. A., Drought as a natural hazard:Concepts and definitions [J]. Drought, A global assessment,2000, (1):3-18.
    [8]. Wilhite D. A., Buchanan-Smith M. Drought as hazard:Understanding the natural and social context[M]. Boca Raton:CRC Press Taylor & Francis Group,2005.
    [9].翁白莎,严登华.变化环境下中国干旱综合应对措施探讨[J].资源科学,2010,32(2):309-316.
    [10].Piao S. L., Ciais P., Huang Y., et al. The impacts of climate change on water resources and agriculture in China[J]. Nature,2010,467(7311):43-51.
    [11].李茂松,李森.中国近50年旱灾灾情分析[J].中国农业气象,2003,24(1):7-10.
    [12]].邓振镛,张强,尹宪志,等.干旱灾害对干旱气候变化的响应[J].冰川冻土,2007,29(1):114-118.
    [13].蒋红花.山东省干旱灾害的变化特征及相关分析[J].灾害学,2000,15(3):52.
    [14].于雯静.基于粮食安全的山东省水土资源可持续利用研究[J].安徽农业科学,2011,39(33):20583-20585.
    [15].卓义.基于遥感与GIS技术的内蒙古东部草原地区干旱灾害监测、评估研究[D].中国农业科学院,2011.
    [16].张强,潘学标,马柱国,干旱[M].北京:气象出版社,2009.
    [17].侯英雨,何延波,柳钦火,等.干旱监测指数研究[J].生态学杂志,2007,26(6):892-897.
    [18].Zhai J., Su B., Krysanova V., et al. Spatial Variation and Trends in PDSI and SPI Indices and Their Relation to Streamflow in 10 Large Regions of China[J]. Journal of Climate, 2010,23(3):649-663.
    [19].Palmer W. C, Meteorological drought[R]. Washington D. C.:US Dept. of Commerce, Weather Bureau,1965.
    [20].Karl T. R., The sensitivity of the Palmer Drought Severity Index and Palmer Z-Index to their calibration coefficients including potential evapotranspiration[J]. Journal of Climate and Applied Meteorology,1986,25(1):77-86.
    [21].Briffa K. R., Jones P. D.,Hulme M. Summer moisture variability across Europe,1892-1991-an analysis based on the Palmer Drought Severity Index[J]. International Journal of Climatology,1994,14(5):475-506.
    [22]. Dai A., Trenberth K. E.,Qian T. T., A global dataset of Palmer Drought Severity Index for 1870-2002:Relationship with soil moisture and effects of surface warming[J]. Journal of Hydrometeorology,2004,5(6):1117-1130.
    [23].McK.ee T. B., Doesken N. J.,Kleist J., Drought monitoring with multiple time scales, in Proceedings of the 9th conference of applied climatology.1995, American Meteorological Society:Dallas, TX p.233-236.
    [24].Hayes M. J., Svoboda M. D., Wilhite D. A., et al. Monitoring the 1996 drought using the standardized precipitation index[J]. Bulletin of the American Meteorological Society,1999, 80(3):429-438.
    [25].黄晚华,杨晓光,李茂松,等.基于标准化降水指数的中国南方季节性干旱近58a演变特征[J].农业工程学报,2010,26(7):50-59.
    [26].樊高峰,张小伟,徐义,等.浙江省干湿状态的时空分布特征[J].中国农业气象,2008,29(1):111-114.
    [27].Wilhite D. A., Glantz M. H., Understanding:The drought phenomenon:The role of definitions[J]. Water international,1985,10(3):111-120.
    [28].Shafer B., Dezman L., Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff areas, in Proceedings of the Western Snow Conference.1982:FortCollins, Colorado, p.164-175.
    [29].Garen D. C., Revised surface-water supply index for western United States[J]. Journal of Water Resources Planning and Management,1993,119(4):437-454.
    [30].鞠笑生,杨贤为,陈丽娟,等.我国单站旱涝指标确定和区域旱涝级别划分的研究[J].应用气象学报,1997,8(1):26-33.
    [31].王志伟,翟盘茂.中国北方近50年干旱变化特征[J].地理学报,2003,58(S1):61-68.
    [32].闫峰,李茂松,王艳姣,等.遥感技术在农业灾害监测中的应用[J].自然灾害学报,2006,15(6):131-136.
    [33].杨树聪,沈彦俊,郭英,等.基于表观热惯量的土壤水分监测[J].中国生态农业学报,2011,19(5):1157-1161.
    [34].郭虎,王瑛,王芳.旱灾灾情监测中的遥感应用综述[J].遥感技术与应用,2008,23(1):111-116.
    [35]. Bowers S.,Hanks R., Reflection of radiant energy from soils[J]. Soil Sci,1965,100(2): 130-138.
    [36]. Watson K., Rowan L.,Offield T., Application of thermal modeling in the geologic interpretation of IR images[C]. International Symposium on Remote Sensing of Environment,1971. p.2017-2041.
    [37].Rosema A., Results of the Group Agromet Monitoring Project(GAMP)[J]. ESA Journal, 1986,10(1):17-41.
    [38]. Price J. C., Thermal inertia mapping:a new view of the earth[J]. Journal of Geophysical Research,1977,82(18):2582-2590.
    [39]. Price J. C., On the analysis of thermal infrared imagery:the limited utility of apparent thermal inertia[J]. Remote Sensing of Environment,1985,18(1):59-73.
    [40].刘兴文,冯勇进.应用热惯量编制土壤水分图及土壤水分探测效果[J].土壤学报,1987,24(3):272-280.
    [41].张仁华.改进的热惯量模式及遥感土壤水分[J].地理研究,1990,9(2):101-112.
    [42].张仁华.土壤含水量的热惯量模型及其应用[J].科学通报,1991,36(12):924-927.
    [43].张仁华,孙晓敏,朱治林,等.以微分热惯量为基础的地表蒸发全遥感信息模型及在甘肃沙坡头地区的验证[J].中国科学D辑,2002,32(12):1041-1050.
    [44].刘良明,李德仁.基于辅助数据的遥感干旱分析[J].武汉测绘科技大学学报,1999,24(4):300-305.
    [45].余涛,田国良.热惯量法在监测土壤表层水分变化中的研究[J].遥感学报,1997,1(1):24-31.
    [46].陈怀亮,邹春辉.用NOAA/AVHRR资料遥感土壤水分时风速的影响[J].南京气象学院学报,1999,22(2):219-224.
    [47].刘振华,赵英时.一种改进的遥感热惯量模型初探[J].中国科学院研究生院学报,2005,22(3):380-385.
    [48].李星敏,刘安麟,张树誉,等.热惯量法在干旱遥感监测中的应用研究[J].干旱地区农业研究,2005,23(1):54-59.
    [49].王纪华,赵春江.土壤水分对小麦叶片含量水量及生理功能的影响[J].麦类作物学报,2001,21(4):42-47.
    [50].Curran P. J. Remote sensing of foliar chemistry[J]. Remote Sensing of Environment,1989, 30(3):271-278.
    [51].田庆久,宫鹏,赵春江,等.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报,2000,45(24):2645-2650.
    [52].张佳华,许云,姚凤梅,等.植被含水量光学遥感估算方法研究进展[J].中国科学:技术科学,2010,40(10):1121-1129.
    [53].Gao B. C, NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment,1996,58(3):257-266.
    [54]. Jackson T. J., Chen D., Cosh M., et al. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans[J]. Remote Sensing of Environment,2004,92(4):475-482.
    [55]. Gu Y, Brown J. F., Verdin J. P., et al. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States[J]. Geophys. Res. Lett.,2007,34(6):L06407.
    [56]. Huang J., Chen D.,Cosh M. H., Sub-pixel reflectance unmixing in estimating vegetation water content and dry biomass of corn and soybeans cropland using normalized difference water index (NDWI) from satellites[J]. International Journal of Remote Sensing,2009, 30(8):2075-2104.
    [57]. Wang L., Qu J. J., NMDI:A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing[J]. Geophysical Research Letters,2007, 34(20):L20405.
    [58].詹志明,秦其明,阿布都瓦斯提·吾拉木,等.基于NIR-Red光谱特征空间的土壤水分监测新方法[J].中国科学.D辑:地球科学,2006,36(11):1020-1026.
    [59].Ghulam A., Qin Q. M.,Zhan Z. M., Designing of the perpendicular drought index[J]. Environmental Geology,2007,52(6):1045-1052.
    [60].Ghulam A., Qin Q. M., Kusky T., et al. A re-examination of perpendicular drought indices[J]. International Journal of Remote Sensing,2008,29(20):6037-6044.
    [61].Ghulam A., Qin Q., Teyip T., et al. Modified perpendicular drought index (MPDI):a real-time drought monitoring method[J]. ISPRS journal of photogrammetry and remote sensing,2007,62(2):150-164.
    [62]. Qin Q., Ghulam A., Zhu L., et al. Evaluation of MODIS derived perpendicular drought index for estimation of surface dryness over northwestern China[J]. International Journal of Remote Sensing,2008,29(7):1983-1995.
    [63].杨学斌,秦其明,姚云军,等.PDI与MPDI在内蒙古干旱监测中的应用和比较[J].武汉大学学报(信息科学版),2011,36(2):195-198.
    [64].张学艺,李剑萍,秦其明,等.几种干旱监测模型在宁夏的对比应用[J].农业工程学报,2009,25(8):18-23.
    [65].高彦春,龙笛.遥感蒸散发模型研究进展[J].遥感学报,2008,12(3):515-528.
    [66].Vinukollu R. K., Wood E. F., Ferguson C. R., et al. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data:Evaluation of three process-based approaches[J]. Remote Sensing of Environment,2011,115(3):801-823.
    [67].Bastiaanssen W. G. M., Menenti M., Feddes R. A., et al. A remote sensing surface energy balance algorithm for land (SEBAL).1. Formulation[J]. Journal of Hydrology,1998,212: 198-212.
    [68].Bastiaanssen W. G. M., Pelgrum H., Wang J., et al. A remote sensing surface energy balance algorithm for land (SEBAL).:Part 2:Validation[J]. Journal of Hydrology,1998,212: 213-229.
    [69]. Su Z., The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences,2002,6(1):85-100.
    [70]. Yang D., Chen H.,Lei H., Estimation of evapotranspiration using a remote sensing model over agricultural land in the North China Plain[J]. International Journal of Remote Sensing, 2010,31(14):3783-3798.
    [71].何延波,王石立.SEBS模型在黄淮海地区地表能量通量估算中的应用[J].高原气象,2006,25(6):1092-1100.
    [72].蔺文静,苏中波,董华,等.基于MODIS产品影像及陆面能量平衡系统(SEBS)的河北平原区域蒸散估算[J].遥感学报,2008,12(4):663-672.
    [73].杨永民,冯兆东,周剑.基于SEBS模型的黑河流域蒸散发[J].兰州大学学报(自然科学版),2008,44(5):1-6.
    [74].Anderson M. C., Norman J. M., Mecikalski J. R., et al. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing:1. Model formulation[J]. J. Geophys. Res.,2007,112(D10):D10117.
    [75]. Liu J., Chen J. M., Cihlar J., et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs[J]. Remote Sensing of Environment,1997,62(2):158-175.
    [76].Zhan C. S., Zhao J., Wang H. X., et al. Quantitative estimation of land surface evapotranspiration in Taiwan based on MODIS data[J]. Water Science and Engineering, 2011, (3):237-245.
    [77].宋小宁,赵英时.改进的区域缺水遥感监测方法[J].中国科学:D辑,2006,36(2):188-194.
    [78].Yao Y., Liang S., Qin Q., et al. Monitoring global land surface drought based on a hybrid evapotranspiration model [J]. International Journal of Applied Earth Observation and Geoinformation,2011,13(3):447-457.
    [79].Pierdicca N., Pulvirenti L.,Bignami C., Soil moisture estimation over vegetated terrains using multitemporal remote sensing data[J]. Remote Sensing of Environment,2010,114(2): 440-448.
    [80].Brocca L., Melone F., Moramarco T., et al. ASCAT soil wetness index validation through in situ and modeled soil moisture data in central Italy[J]. Remote Sensing of Environment, 2010,114(11):2745-2755.
    [81].Timmermans W. J., Kustas W. P., Anderson M. C., et al. An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes[J]. Remote Sensing of Environment,2007,108(4):369-384.
    [82].郑有飞,陈鹏,吴荣军,等.地表蒸散的遥感估算模型及其在农业干旱监测中的应用[J].生态学杂志,2011,30(4):837-844.
    [83]. Ju W., Gao P., Wang J., et al. Combining an ecological model with remote sensing and GIS techniques to monitor soil water content of croplands with a monsoon climate[J]. Agricultural Water Management,2010,97(8):1221-1231.
    [84].刘昭,周艳莲,居为民,等.基于BEPS生态模型模拟农田土壤水分动态[J].农业工程学报,2011,27(3):67-72.
    [85].Yao Y., Qin Q., Fadhil A., et al. Evaluation of EDI derived from the exponential evapotranspiration model for monitoring China's surface drought[J]. Environmental Earth Sciences,2011,63(2):425-436.
    [86].陈维英,肖乾广,盛永伟.距平植被指数在1992年特大干旱监测中的应用[J].环境遥感,1994,9(2):106-112.
    [87].杜灵通,李国旗.利用SPOT数据进行干旱监测的应用研究[J].水土保持通报,2008,28(2):153-156.
    [88]. Song X., Saito G., Kodama M., et al. Early detection system of drought in East Asia using NDVI from NOAA/AVHRR data[J]. International Journal of Remote Sensing,2004,25(16): 3105-3111.
    [89].Kogan F. N., Global drought watch from space[J]. Bulletin of the American Meteorological Society,1997,78(4):621-636.
    [90]. Liu W. T.,Kogan F. N., Monitoring regional drought using the Vegetation Condition Index[J]. International Journal of Remote Sensing,1996,17(14):2761-2782.
    [91].Kogan F., Remote sensing of weather impacts on vegetation in non-homogeneous areas[J]. International Journal of Remote Sensing,1990,11(8):1405-1419.
    [92].Kogan F., Application of vegetation index and brightness temperature for drought detection[J]. Advances in Space Research,1995,15(11):91-100.
    [93].Kogan F., World droughts in the new millennium from AVHRR-based vegetation health indices[J]. Eos, Transactions American Geophysical Union,2002,83(48):557.
    [94].Sandholt I., Rasmussen K.,Andersen J., A simple interpretation of the surface temperature/ vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment,2002,79(2):213-224.
    [95].闫峰,王艳姣,吴波.近50年河北省干旱时空分布特征[J].地理研究,2010,29(3):423-430.
    [96].王纯枝,毛留喜,何延波,等.温度植被干旱指数法(TVDI)在黄淮海平原土壤湿度反演中的应用研究[J].土壤通报,2009,40(5):998-1005.
    [97].杨曦,武建军,闫峰,等.基于地表温度-植被指数特征空间的区域土壤干湿状况[J].生态学报,2009,29(3):1205-1216.
    [98]. Chen J., Wang C., Jiang H., et al. Estimating soil moisture using Temperature-Vegetation Dryness Index (TVDI) in the Huang-huai-hai (HHH) plain[J]. International Journal of Remote Sensing,2011,32(4):1165-1177.
    [99].Gao Z., Gao W.,Chang N. B., Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images [J]. International Journal of Applied Earth Observation and Geoinformation,2011,13(3):495-503.
    [100]. Patel N. R., Anapashsha R., Kumar S., et al. Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status[J]. International Journal of Remote Sensing,2009,30(1):23-39.
    [101]. Rahimzadeh-Bajgiran P., Omasa K.,Shimizu Y., Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran[J]. ISPRS journal of photogrammetry and remote sensing,2012,68:1-12.
    [102].王鹏新,龚健雅,李小文.条件植被温度指数及其在干旱监测中的应用[J].武汉大学学报(信息科学版),2001,26(5):412-418.
    [103].孙威,王鹏新,韩丽娟,等.条件植被温度指数干旱监测方法的完善[J].农业工程学报,2006,22(2):22-26.
    [104].王磊,文军,张堂堂,等.卫星被动微波遥感土壤湿度研究进展[J].气象科技,2009,37(1):67-73.
    [105].Njoku E. G.,Li L. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(1):79-93.
    [106].闫峰,覃志豪,李茂松,等.农业旱灾监测中土壤水分遥感反演研究进展[J].自然灾害学报,2006,15(6):114-121.
    [107]. Bayarjargal Y., Karnieli A., Bayasgalan M., et al. A comparative study of NOAA-AVHRR derived drought indices using change vector analysis[J]. Remote Sensing of Environment, 2006,105(1):9-22.
    [108]. Quiring S. M.,Ganesh S., Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas[J]. Agricultural and Forest Meteorology, 2010,150(3):330-339.
    [109]. Islam M. N.,Uyeda H., Use of TRMM in determining the climatic characteristics of rainfall over Bangladesh[J]. Remote Sensing of Environment,2007,108(3):264-276.
    [110]. Gu H. H., Yu Z. B., Yang C. G., et al.. Hydrological assessment of TRMM rainfall data over Yangtze River Basin[J]. Water Science and Engineering,2010,3(4):418-430.
    [111]. Almazroui M., Calibration of TRMM rainfall climatology over Saudi Arabia during 1998-2009[J]. Atmospheric Research,2011,99(3-4):400-414.
    [112].杨绍锷,吴炳方,熊隽,等.基于TRMM降水产品计算月降水量距平百分率[J].遥感信息,2010,(5):62-66.
    [113].李景刚,阮宏勋,李纪人,等.TRMM降水数据在气象干旱监测中的应用研究[J].水文,2010,30(4):43-46.
    [114].李景刚,李纪人,黄诗峰,等.基于TRMM数据和区域综合Z指数的洞庭湖流域近10年旱涝特征分析[J].资源科学,2010,32(6):1103-1110.
    [115].臧文斌,阮本清,李景刚,等.基于TRMM降雨数据的西南地区特大气象干旱分析[J].中国水利水电科学研究院学报,2010,8(2):97-106.
    [116].杜灵通,田庆久,黄彦,等.基于TRMM数据的山东省干旱监测及其可靠性检验[J].农业工程学报,2012,28(2):121-126.
    [117]. Rhee J.,Carbone G. J., Estimating Drought Conditions for Regions with Limited Precipitation Data[J]. Journal of Applied Meteorology and Climatology,2011,50(3): 548-559.
    [118]. Rhee J., Im J.,Carbone G. J., Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data[J]. Remote Sensing of Environment,2010,114: 2875-2887.
    [119]. Brown J. F., Wardlow B. D., Tadesse T., et al. The vegetation drought response index (VegDRI):a new integrated approach for monitoring drought stress in vegetation[J]. GIScience & Remote Sensing,2008,45(1):16-46.
    [120]. Wu J., Zhou L., Liu M., et al. Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China[J]. International Journal of Applied Earth Observation and Geoinformation,2013,23:397-410.
    [121]. Du L., Tian Q., Yu T., et al. A comprehensive drought monitoring method integrating MODIS and TRMM data[J]. International Journal of Applied Earth Observation and Geoinformation,2013,23:245-253.
    [122]1.赵林,武建军,吕爱锋,等.黄淮海平原及其附近地区干旱时空动态格局分析——基于标准化降雨指数[J].资源科学,2011,33(3):468-476.
    [123].包云轩,孟翠丽,申双和,等.基于CI指数的江苏省近50年干旱的时空分布规律[J].地理学报,2011,66(5):599-608.
    [124]].谢五三,田红.安徽省近50年干旱时空特征分析[J].灾害学,2011,26(1):94-98.
    [125]].刘晓云,李栋梁,王劲松.1961—2009年中国区域干旱状况的时空变化特征[J].中国沙漠,2012,32(2):473-483.
    [126].王兴梅,张勃,张凯,等.石羊河流域极端干旱事件的时空变化特征[J].地理科学进展,2011,30(3):299-305.
    [127].周亮广,戴仕宝,江玉晶.基于水资源供需平衡机制的安徽省干旱时空分布[J].自然资源学报,2011,26(6):1030-1039.
    [128].齐述华,牛铮,王军邦,等.1982—2001年间中国干旱发生时空特征的遥感分析[J].土壤学报,2006,43(3):376-382.
    [129].齐述华.干旱监测遥感模型和中国干旱时空分析[D].中国科学院研究生院(遥感应用研究所),2004.
    [130]. Tucker C. J., Slayback D. A., Pinzon J. E., et al. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999[J]. International Journal of Biometeorology,2001,45(4):184-190.
    [131]. Stow D. A., Hope A., McGuire D., et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems[J]. Remote Sensing of Environment,2004,89(3): 281-308.
    [132]. Weiss J. L., Gutzler D. S., Coonrod J. E. A., et al. Seasonal and inter-annual relationships between vegetation and climate in central New Mexico, USA[J]. Journal of Arid Environments,2004,57(4):507-534.
    [133]. Jiang X. G., Wang D., Tang L. L., et al. Analysing the vegetation cover variation of China from AVHRR-NDVI data[J]. International Journal of Remote Sensing,2008,29(17-18): 5301-5311.
    [134]. Julien Y.,Sobrino J. A., Global land surface phenology trends from GIMMS database[J]. International Journal of Remote Sensing,2009,30(13):3495-3513.
    [135]. Hill M. J.,Donald G. E., Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series[J]. Remote Sensing of Environment,2003,84(3):367-384.
    [136]. Weiss E., Marsh S. E.,Pfirman E. S., Application of NOAA-AVHRR NDVI time-series data to assess changes in Saudi Arabia's rangelands[J]. International Journal of Remote Sensing,2001,22(6):1005-1027.
    [137].宋怡,马明国.基于SPOT VEGETATION数据的中国西北植被覆盖变化分析[J].中国沙漠,2007,27(1):89-93.
    [138].杜灵通,李国旗.基于SPOT-VGT的宁夏盐池县近8年生态环境动态监测[J].北京林业大学学报,2008,30(5):46-51.
    [139].周科松,吴健平,张胜茂,等.一种新的时间序列特征指标:简单线性回归系数SLC[J].地理与地理信息科学,2008,24(1):14-16.
    [140]. Herrmann S. M., Anyamba A.,Tucker C. J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate[J]. Global Environmental Change-Human and Policy Dimensions,2005,15(4):394-404.
    [141].王新明,王长耀,牛铮.应用R/S方法分析NDVI时间序列[J].地理与地理信息科学,2005,21(5):20-23+48.
    [142].蔡博峰,于嵘.基于遥感的植被长时序趋势特征研究进展及评价[J].遥感学报,2009,13(6):1170-1186.
    [143].张月丛,赵志强,李双成,等.基于SPOT NDVI的华北北部地表植被覆盖变化趋势[J].地理研究,2008,27(4):745-754.
    [144].张翀,任志远.黄土高原地区植被覆盖变化的时空差异及未来趋势[J].资源科学,2011,33(11):2143-2149.
    [145].王桂钢,周可法,孙莉,等.近10a新疆地区植被动态与R/S分析[J].遥感技术与应用,2010,25(1):84-90.
    [146]. Rogier D. J., Sytze D. B., Allard D. W., et al. Analysis of monotonic greening and browning trends from global NDVI time-series[J]. Remote Sensing of Environment,2011, 115(2):692-702.
    [147]. Domingo A. S., Elisa L., Tabik S., et al. Evaluating the Consistency of the 1982-1999 NDVI Trends in the Iberian Peninsula across Four Time-series Derived from the AVHRR Sensor:LTDR, GIMMS, FASIR, and PAL-II[J]. Sensors,2010,10(2):1291-1314.
    [148]. Martinez B., Gilabert M. A., Vegetation dynamics from NDVI time series analysis using the wavelet transform[J]. Remote Sensing of Environment,2009,113(9):1823-1842.
    [149].刘亚龙,王庆,毕景芝,等.基于Mann-Kendall方法的胶东半岛海岸带归一化植被指数趋势分析[J].海洋学报,2010,23(3):79-87.
    [150].杨玉永.山东省小麦封垄前旱情遥感监测业务化运行模型研究[D].山东师范大学,2009.
    [151].杨伟.水土流失视角下的山东省生态安全评价研究[D].山东师范大学,2010.
    [152].杜屿.山东的旱灾及其对经济和生态环境的影响[J].山东气象,1995,6(4):39-43.
    [153].冯国红.山东省2000年旱灾损失及抗旱效益介绍[J].山东水利,2001,(6):11.
    [154]. Wan Z., Dozier J., A generalized split-window algorithm for retrieving land-surface temperature from space[J]. Geoscience and Remote Sensing, IEEE Transactions on,1996, 34(4):892-905.
    [155]. Theon J. S. The Tropical Rainfall Measuring Mission (TRMM)[J]. Remote Sensing of Earths Surface and Atmosphere,1993,14(3):159-165.
    [156].张书余,干旱气象学[M].北京:气象出版社,2008.
    [157]. McK.ee T. B., Doesken N. J.,Kleist J., The relationship of drought frequency and duration to time scales, in Proceedings of the 8th conference of applied climatology.1993, American Meteorological Society:Anaheim, California, p.233-236.
    [158].高晓荣.多种遥感平台(雷达、卫星)资料和雨量计资料综合定量降水估计技术[D].中国气象科学研究院,2010.
    [159].张军红,吴波.干旱、半干旱地区土壤水分研究进展[J].中国水土保持,2012,(2):40-43.
    [160].宋连春,邓振镛,董安祥,干旱[M].北京:气象出版社,2003.
    [161]. Xu L., Samanta A., Costa M. H., et al. Widespread decline in greenness of Amazonian vegetation due to the 2010 drought[J]. Geophysical Research Letters,2011,38(7): L07402.
    [162].严建武,陈报章,房世峰,等.植被指数对旱灾的响应研究——以中国西南地区2009年—2010年特大干旱为例[J].遥感学报,2012,16(4):720-737.
    [163].张佳华,张国平,王培娟.植被与生态遥感[M].北京:科学出版社,2010.
    [164].田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):10-16.
    [165].李红军,郑力,雷玉平,等.基于EOS/MODIS数据的NDVI与EVI比较研究[J].地理科学进展,2007,26(1):26-32.
    [166]. Zhou L., Wu J. J., Leng S., et al., Using a new integrated drought monitoring index to improve drought detection in mid-eastern China[C]. Geoscience and Remote Sensing Symposium (IGARSS),2012, p.883-886.
    [167]. Tsakiris G.,Vangelis H., Towards a Drought Watch System based on Spatial SPI[J]. Water Resources Management,2004,18(1):1-12.
    [168].谭学志,粟晓玲,邵东国.基于SPI的陕西关中地区气象干旱时空特征分析[J].干旱地区农业研究,2011,29(2):224-229.
    [169].国家气候中心.GB/T 20481-2006气象干旱等级[D].2006.
    [170]. Vicente-Serrano S. M., Begueria S., Lopez-Moreno J. I., et al. A New Global 0.5° Gridded Dataset (1901-2006) of a Multiscalar Drought Index:Comparison with Current Drought Index Datasets Based on the Palmer Drought Severity Index[J]. Journal of Hydrometeorology,2010,11(4):1033-1043.
    [171]. Begueria S., Vicente-Serrano S. M.,Martinez A., A multiscalar global drought dataset:the SPEIbase:a new gridded product for the analysis of drought variability and impacts[J]. Bulletin of the American Meteorological Society,2010,91(10):1351-1356.
    [172].李伟光,易雪,侯美亭,等.基于标准化降水蒸散指数的中国干旱趋势研究[J].中国生态农业学报,2012,20(5):643-649.
    [173].刘庚山,郭安红,安顺清,等.帕默尔干旱指标及其应用研究进展[J].自然灾害学报,2004,13(4):21-27.
    [174]. Dai A., Trenberth K. E.,Qian T. A global dataset of Palmer Drought Severity Index for 1870-2002:Relationship with soil moisture and effects of surface warming[J]. Journal of Hydrometeorology,2004,5(6):1117-1130.
    [175]. Dai A., Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900-2008[J]. J. Geophys. Res.,2011,116(D12):D12115.
    [176].叶建刚,申双和,吕厚荃.修正帕默尔干旱指数在农业干旱监测中的应用[J].中国农业气象,2009,30(2):257-261.
    [177]. Wells N., Goddard S.,Hayes M. J., A self-calibrating palmer drought severity index[J]. Journal of Climate,2004,17(12):2335-2351.
    [178].李杭燕,颉耀文,马明国.时序NDVI数据集重建方法评价与实例研究[J].遥感技术与应用,2009,24(5):596-602.
    [179]. Azzali S.,Menenti M., Mapping vegetation-soil-climate complexes in southern Africa using temporal Fourier analysis of NOAA-AVHRR NDVI data[J]. International Journal of Remote Sensing,2000,21(5):973-996.
    [180].边金虎,李爱农,宋孟强,等.MODIS植被指数时间序列Savitzky-Golay滤波算法重构[J].遥感学报,2010,14(4):725-741.
    [181].侯光雷,张洪岩,王野乔,等.基于时间序列谐波分析的东北地区耕地资源提取[J].自然资源学报,2010,25(9):1607-1617.
    [182]. Roerink G. J., Menenti M., Soepboer W., et al. Assessment of climate impact on vegetation dynamics by using remote sensing[J]. Physics and Chemistry of the Earth, Parts A/B/C,2003,28(1-3):103-109.
    [183]. Roerink G., Menenti M.,Verhoef W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series[J]. International Journal of Remote Sensing,2000,21(9): 1911-1917.
    [184].张霞,李儒,岳跃民,等.谐波改进的植被指数时间序列重建算法[J].遥感学报,2010,14(3):437-447.
    [185].黄耀欢,王建华,江东,等.利用S-G滤波进行MODIS-EVI时间序列数据重构[J].武汉大学学报(信息科学版),2009,34(12):1440-1443.
    [186]. Chen J., Jonsson P., Tamura M., et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J]. Remote Sensing of Environment,2004,91(3—4):332-344.
    [187.1.李恩菊,赵景波.厄尔尼诺/拉尼娜事件对山东省气候的影响[J].陕西师范大学学报(自然科学版),2010,38(3):80-84.
    [188].杨传国,余钟波,林朝晖,等.基于TRMM卫星雷达降雨的流域陆面水文过程[J].水科学进展,2009,20(4):461-466.
    [189].吴文斌,杨鹏,张莉,等.四类全球土地覆盖数据在中国区域的精度评价[J].农业工程学报,2009,25(12):167-173.
    [190].夏文韬,王莺,冯琦胜,等.甘南地区MODIS土地覆盖产品精度评价[J].草业科学,2010,27(9):11-18.
    [191]. USDA. Available Water Capacity[R]. http://soils.usda.gov.
    [192].周文佐,刘高焕,潘剑君.土壤有效含水量的经验估算研究——以东北黑土为例[J].干旱区资源与环境,2003,17(4):88-95.
    [193].周文佐.基于GIS的我国主要土壤类型土壤有效含水量研究[D].南京农业大学,2003.
    [194]. Feng X., Liu G., Chen J. M, et al. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing[J]. Journal of Environmental Management,2007,85(3):563-573.
    [195]. Shangguan W., Dai Y., Liu B., et al. A soil particle-size distribution dataset for regional land and climate modelling in China[J]. Geoderma,2012,171:85-91.
    [196].陈桂芬,于合龙,曹丽英,等.,数据挖掘与精准农业智能决策系统[M].北京:科学出版社,2011.
    [197].苏新宁,杨建林,邓三鸿,等.,数据挖掘理论与技术[M].北京:科学技术文献出版社,2003.
    [198].朱玉全,杨鹤标,孙蕾.数据挖掘技术[M].南京:东南大学出版社,2006.
    [199]. Breiman L., Friedman J., Stone C. J., et al., Classification and regression trees[M]. Chapman & Hall/CRC,1984.
    [200].梁茵.分类回归树算法的探讨[J].广东技术师范学院学报,2008,(6):29-32.
    [201]. Barbosa H. A., Huete A. R.,Baethgen W. E., A 20-year study of NDVI variability over the Northeast Region of Brazil[J]. Journal of Arid Environments,2006,67(2):288-307.
    [202].杜灵通,田庆久.宁夏回族自治区NDVI的时空变化特征研究[J].水土保持通报,2011,31(5):208-214.
    [203].杜灵通,田庆久.宁夏植被覆盖动态变化及与气候因子的关系[J].中国沙漠,2012,32(5):1479-1485.
    [204].李海毅,汤洁,斯蔼.分形理论在吉林西部干旱指数预测中的应用[J].东北师大学报(自然科学版),2007,39(1):126-130.
    [205].江田汉,邓莲堂.Hurst指数估计中存在的若干问题——以在气候变化研究中的应用为例[J].地理科学,2004,24(2):177-182.
    [206].韩海波.赫斯特指数(Hurst)指数及在Excel中的实现[J].数量经济研究,2006,(4):1-14.
    [207]. Sen P. K., Estimates of the regression coefficient based on Kendall's tau[J]. Journal of the American Statistical Association,1968,63(324):1379-1389.
    [208].丁一汇,孙颖,刘芸芸,等.亚洲夏季风的年际和年代际变化及其未来预测[J].大气科学,2013,37(2):253-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700