用户名: 密码: 验证码:
地下位移测量方法及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下位移监测是地质灾害预测、岩土工程项目质量安全评价的重要手段及研究热点。它可以深入岩土体内部进行地下不同深度水平位移、沉降、倾斜方向等地质参数的动态监测,因此能准确检测地下位移形变信息,确定滑移面和变形范围,进而研究变形机制、成灾现状、发展趋势及防灾预报。监测上的不可见和复杂性导致地下位移监测技术发展缓慢,存在精度差、成本高、非自动化或难于准确计算地下位移量等问题。本文提出了一种基于新型电磁式地下位移传感器组和GPRS无线网络的地下位移自动测量及远程监控方法,设计了水平型(Ⅰ型)和水平-垂直复合型(Ⅱ型)两款电磁式地下位移传感器。针对这两款传感器进行了地下位移测量方法及相关理论的深入研究工作。综合考虑影响Ⅰ、Ⅱ型传感器传感特性的各种因素及相关参数,提出了三个具有较高计算精度且适合硬件实现的测量理论模型。利用这三个测量模型,对Ⅰ型、Ⅱ型地下位移传感器获取的监测数据进行参数反演,推算出地下不同深处的相对水平位移量、垂直位移量及倾斜角度。实验和理论仿真对比研究结果既检验了Ⅰ、Ⅱ型传感器的地下位移测量性能,又验证了上述测量模型及地下位移反演算法的有效性,同时也构成了较完备的地下位移测量理论基础。
     本文主要研究内容及创新点总结如下:
     (1)提出了一种新的地下位移测量方法。即将电磁理论、霍尔效应、重力测斜等传感机制相融合,结合现代集成传感技术和通信技术,设计了一种新型的地下位移测量仪和GPRS无线监控系统。测量仪采用地下位移测量串的组织形式,由多个等距间隔的集成地下位移传感器单元与一个地下位移测量集中处理单元串接组成。任两相邻传感器单元构成一个电磁式地下位移传感器,可测出地下某深度处的相对位移和倾斜角度,而整个测量串则可实现从地表直至地下不动岩之间整体位移及倾斜角度的测量;配套开发的GPRS无线监测系统可进一步实现地下位移和倾斜量的远程网络化传输及监控。针对不同应用场合,设计出水平型(Ⅰ型)和水平-垂直型(Ⅱ型)两款地下位移传感器。前者主要用于如顺层滑坡、边坡、基坑及围护桩、公铁路路基等以侧向变形为主的岩土项目的地下水平位移监测;后者常用于像崩塌、旋转滑坡、地塌陷、地沉降、软土基、隧道、围岩等需要对水平和垂直两个方向的地下位移同时进行监测的应用场合。
     (2)针对Ⅰ型传感器主要对地下水平位移和倾斜角进行监测的应用特点,将电磁场公式推导法和等效圆环模型相结合,提出了称为“公式-圆环等效法”(EELA)的互感电压测量模型。建立起Ⅰ型传感器待测的地下水平位移量、倾斜角度与传感器输出互感电压及传感器单元几何形状参数之间的理论关系。实验结果论证了该模型的准确性和有效性。
     (3)针对Ⅱ型传感器需对地下水平位移、垂直位移及倾斜角同时进行监测的特点,将电磁场公式推导法、等效圆环法和数值积分法相融合,提出了称为“数值积分-圆环等效法”(NIELA)的互感电压测量模型,用于描述Ⅱ型传感器待测地下水平位移量、垂直位移量、倾斜角度与传感器的互感电压输出、传感器单元几何、形状参数之间的理论关系。
     (4)将霍尔传感机理分析、永磁体3D磁场建模和多维数值积分法相结合,提出了称为“等效磁荷-数值积分法”(EMC-NI)的霍尔电压测量模型,用于描述Ⅱ型传感器待测地下水平位移量、垂直位移量、倾斜角度与传感器的霍尔电压输出、传感器单元及永磁体几何、形状、材料特性参数之间的理论关系。实验结果表明NIELA和EMC-NI模型能较准确高效地描述Ⅱ型传感器的互感和霍尔特性。二者构成Ⅱ型传感器的地下位移测量模型。
     (5)提出了基于“正演模拟-寻优反演法”的地下位移反演算法。该算法将上述3个具有较高精度的测量模型分别作为Ⅰ、Ⅱ型传感器的正演模型,结合寻优逼近反演法,实现对Ⅰ型传感器地下水平位移的反演和对Ⅱ型传感器地下水平和垂直位移的联合反演。研究结果表明,所提出的地下位移参数反演算法是稳定有效的,Ⅰ传感器的水平位移反演偏差平均值小于3mm(实测水平位移变化范围0-100mm),Ⅱ型传感器的水平位移和垂直位移的反演偏差平均值分别小于2mm和0.5mm(实测水平位移和垂直位移变化范围均为0~30mm),反演结果能较准确地预测传感器所埋地层处的相对水平位移量和垂直位移量。
     (6)将基于上述三个理论模型计算所得互感电压、霍尔电压理论值与互感电压、霍尔电压实验实测值进行综合比对分析和参数反演应用研究,一方面客观评估这三个模型的建模有效性和计算精确度,为定性分析和定量评估Ⅰ型和Ⅱ型传感器的传感特性、影响因素及传感器优化设计提供理论支持和指导意见;另一方面,将上述理论建模的高精度和传感器自身测数的稳定性相结合,通过实施基于正演模型的寻优反演算法,将Ⅰ型和Ⅱ型传感器输出的互感电压和霍尔电压直接换算成Ⅰ、Ⅱ型传感器所监测地下岩土体的水平位移量和垂直位移量,具有直观、精度较高等优点。
The effective monitoring of underground deep displacement is not only a key means to prevent and mitigate such major geological hazards as landslide, collapse, debris flow, and subsidence, but also to guarantee quality and safety for a wide range of geotechnical and hydraulic engineering projects. Deep displacement monitoring is becoming increasingly important but less well established. Most of the existing monitoring methods have such drawbacks as high cost, low efficiency, vulnerability to missing or error in hazard prediction, and difficulty in accurately calculating the deep displacement and sliding direction. A novel method is proposed to automatically measure and remotely monitor the underground displacement based on electromagnetic underground displacement sensor group and GPRS wireless network. Two electromagnetic underground displacement sensors, that is, horizontal type (Ⅰ-type) and horizontal-vertical composite type (Ⅱ-type) are designed to meet the practical engineering needs. With regard to these two sensors, great focus is taken on the underlying theoretical research of underground displacement detecting and sensing characteristics. Three innovative measuring models suitable for hardware implementation with satisfactory estimation accuracy and calculation efficiency are constructed and derived in detail after a comprehensive research of impact of various factors and parameters on the proposed sensors. These models have been further applied for displacement parameter back analysis of Ⅰ and Ⅱ type sensors so as to predict the relative horizontal displacement, vertical displacement and tilt angle at different depth within the monitored underground soil and rock mass. A series of comparative examinations between modeling simulation and experimental tests are carried out. It not only evaluates the measuring performance of I and II type sensors, but also validates reliability of the three models and practicability of the underground displacement inversion algorithm. All of these construct a relatively complete underground displacement monitoring theory.
     The main research achievements and innovations are listed as follows:
     (1) The dissertation proposes a new underground displacement measuring method and designs a novel underground displacement measuring apparatus and a GPRS-based remote network monitoring system. With the electromagnetic underground displacement sensor group as the core, the said measuring instrument is mainly composed of a number of equally spaced integrated sensing units in series and an underground displacement measuring central processing unit, forming a measure chain of underground displacement. Its basic features include:a) Any two adjacent sensing units comprise an electromagnetic underground displacement sensor employed to measure the relative displacement and tilt angle at some given depth within the studied rock or soil mass; b) The whole measuring chain can measure the cumulative underground displacement and sliding angle from the surface to different depths within the monitored mass; and c) A GPRS-based remote monitoring network of underground displacement is developed to support the remote real-time transmission and automatic monitoring of measuring data. At the same time, to adapt to different monitoring sites, both horizontal type (I-type) and horizontal-vertical type (II-type) underground displacement sensors have been designed to serve their corresponding I-type or II-type underground displacement measuring instruments. The former is mainly applied to the underground horizontal displacement monitoring for such projects as translational sliding, sloping engineering, excavation and retaining piles, the railway roadbed. The latter is used for such applications as rotational landslide, collapse, ground subsidence and soft soil foundation that require for the underground displacement monitoring both in the horizontal and vertical directions.
     (2) For the I-type sensor, a mutual inductance voltage measurement model called the Equation-based Equivalent Loop Approach (EELA) has been put forward by coupling the electromagnetic formula derivation with the equivalent loop approach. It can quite accurately evaluate the complicated relationship among the I-type sensor's mutual inductance voltage output, the relative horizontal displacement and relative tilt angle between two adjacent sensor units, and shape parameters of any two adjacent sensor units.
     (3) For the Ⅱ-type sensor, a mutual inductance voltage measurement model named the Numerical Integration-based Equivalent Loop Approach (NIELA) is advocated by technical fusion of the electromagnetic field formula derivation, equivalent loop modeling and numerical integration approach. It can qualitatively characterize the complicated relationship among the sensor's measuring underground horizontal displacement, vertical displacement, and tilt angle, output of mutual inductance voltage and the geometrical parameters of two sensor units.
     (4) Through comprehensive application of the Hall sensing mechanism analysis,3D spatial distribution solution to magnetic field of the permanent magnet, and the multidimensional numerical calculation method, a model called the Equivalent Magnetic Charge-Numerical Integration Approach (EMC-NI) is presented and serves as II-type sensor's Hall voltage measurement model, which provides a quantitative description of the sophisticated relationship among the sensor's measuring underground horizontal displacement, vertical displacement and tilt angle, its Hall voltage output, the geometrical and shape parameter of sensor units and the permanent magnet.
     (5) A kind of underground displacement inversion algorithm based on the forward modeling and approximate optimization inversion theory is presented. It utilizes the above proposed semi-analysis measuring models (EELA, NIELA and EMC-NI) as the forward models to generate the references signals of mutual voltage and Hall voltage respectively, which is then used as entry data of the inversion system, together with the measured data of mutual inductance voltage and Hall voltage of I and Ⅱ type displacement sensors. By comprehensive application of optimization algorithm, the inversion system can finally realize the underground horizontal displacement parameters inversion for I type sensor, and the joint inversions of underground horizontal displacement and vertical displacement for the Ⅱ-type sensor, both with sound prediction precision.
     (6) Comprehensive examinations and comparisons have been conducted between the measured results and modeling prediction for mutual induction voltage and Hall voltage under counterpart conditions, through which not only the modeling effectiveness and calculation accuracy of the three models are objectively evaluated, but also some valuable theoretical support and guidance have served to reduce cost, speed up optimization and upgrade the proposed deep displacement sensors. Meanwhile, during this comparison process, through the implementation of optimization inversion algorithm based on forward modeling, the measured mutual inductance and Hall voltage can be directly converted to the measuring underground horizontal displacement and vertical displacement for the Ⅰ and Ⅱ type sensors.
引文
[1]Ovsyuchenko, A.N., et al., Detailed geological-geophysical studies of active fault zones and the seismic hazard in the south Yakutia region. Russian Journal of Pacific Geology,2009.3(4): 356-373.
    [2]Machane, D., et al., Examples of geomorphologic and geological hazards in Algeria. Natural Hazards,2008.45(2):95-308.
    [3]Closson, D. and N. Abou Karaki, Human-induced geological hazards along the Dead Sea coast. Environmental Geology,2009.58(2):371-380.
    [4]F. Nadim, O. Kjekstad, P. Peduzzi, C. Herold, and C. Jaedicke, Global landslide and avalanche hotspots. Landslides,2006,3(2):159-173.
    [5]潘学标,郑大玮.地质灾害及其减灾技术[M].北京市:化学工业出版社,2010.
    [6]钟永辉.论我国地质灾害的现状及主要类型[J].科技资讯,2009,(2):233.
    [7]唐小明,游省易,尚岳全等.浙江省玄武岩台地地貌及地质灾害[J].浙江大学学报(理学版),2009,36(2):231-236
    [8]季伟峰.地质灾害防治工程中安全监测的主要方法及新技术应用[J].探矿工程-岩土钻掘工程,2003,(z1):79-81.
    [9]S.Wu, Y.Jin, et al., investigations and assessment of the landslide hazards of Fengdu county in the reservoir region of the Three Gorges project on the Yangtze River[J]. Environ. Geol.2004, 45(4):560-566.
    [10]韩子夜,薛星桥.地质灾害监测技术现状与发展趋势[J].中国地质灾害与防治学报,2005,16(3):138-141.
    [11]孟凡森,洪益青.开滦林西区域地质灾害变形监测与治理[C].2011全国矿山测量新技术学术会议论文集.2011:108-113.
    [12]李厚芝.三峡库区地质灾害监测中几种常用方法之比较[J].探矿工程-岩土钻掘工程,2008,35(7):18-21
    [13]J. Corominas, J. Moya, A. Ledesma, A. Lloret, J.A. Gili. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain) [J], Landslides,2005,2(2):83-96.
    [14]Wang, F.; Okuno, T.; Matsumoto, T. Deformation characteristics and influential factors for the giant Jinnosuke-dani landslide in the Haku-san Mountain area, Japan[J]. Landslides 2007,4(1):19-31.
    [15]Stiros, S.C.; Vichas, C.; Skourtis, C., Landslide Monitoring Based On Geodetically Derived Distance Changes [J]. J. Surv.Eng.2004,130(4):156-162.
    [16]杨晓平.工程监测技术及应用,北京:中国电力出版社,2007
    [17]周丁恒,曹力桥,曲海锋等.不同围岩情况下特大断面公路隧道施工变形监测与控制[J].岩石力学与工程学报,2009,28(12):2510-2519.
    [18]刘波,曹波,刘芳等.北京地铁暗挖隧道变形监测与稳定性数值分析[J].地下空间与工程学报, 2011,07(3):518-525,540.
    [19]陈开圣.灯草塘隧道出口段高边坡变形监测[J].公路,2011,(6):210-213.
    [20]李征,杨罗沙,炊鹏飞等.西安某地铁车站超深基坑支护变形监测与分析[J].西部探矿工程,2011,23(10):182-184,189.
    [21]Matsuura, S.; Asano, S.; Okamoto, T.; Takeuchi, Y. Characteristics of the displacement of a landslide with shallow sliding surface in a heavy snow district of Japan[J]. Eng. Geol.2003, 69(2):15-35.
    [22]黄伟,王霞,张永忠等.基于InSAR技术的地表形变监测[J].甘肃科技,2011,27(15):29-31.
    [23]王华.基于地下位移监测的浅变质岩边坡稳定性分析及有限元数值模拟[D].中南大学,2009.
    [24]靳晓光,李晓红,王兰生等.滑坡地下位移曲线特征及稳定性判识[J].山地学报,2000,18(5):440-444.
    [25]岳建平,方露,黎昵等.变形监测理论与技术研究进展[J].测绘通报,2007,(7):1-4.
    [26]伊晓东,李保平.变形监测技术及应用[M].郑州:黄河水利出版社,2007
    [27]靳晓光,王兰生,李晓红等.滑坡滑动面位置的确定及超前预测[J].中国地质灾害与防治学报,2001,12(1):10-12.
    [28]潘懋,李铁锋.灾害地质学.北京市:北京大学出版社,2011.12.
    [29]地质灾害防治条例[J].地质装备,2004,5(2):36-40.
    [30]吴烈善.我国地质灾害监测技术方法及研究进展[C].矿业快报论文集.2006:39-41.
    [31]陈燕,孟凡熙.浅谈我国地质灾害与防治[J].科技情报开发与经济,2007,17(18):139-140,143.
    [32]田廷山.全国地质灾害防治规划研究.北京:地质出版社,2008.
    [33]谢宇.滑坡的防范与自救.西安:西安地图出版社[M],2010.
    [34]王恭先,徐峻龄,刘光代,李传珠.滑坡学与滑坡的防治技术[M].北京:中国铁道出版社,2007.
    [35]杜修力.山区村镇地质灾害防治知识手册[M].科学出版社,2010.
    [36]Yin, K., L. Chen, and G. Zhang, Regional Landslide Hazard Warning and Risk Assessment[J]. Earth Science Frontiers,2007.14(6):85-93.
    [37]田廷山.全国地质灾害防治规划研究[M].北京:地质出版社,2008.
    [38]李兴武,王艳萍.我国地质灾害的防治措施[J].中国减灾,2006,(9):26-27.
    [39]王洲平.浙江省地质灾害现状及防治措施[J].灾害学,2001,16(4):63-66.
    [40]董青,苏明伟.浅谈我国地质灾害与防治[J].中国科技博览,2012,(4):6-6.
    [41]刘波,姚清林等.灾害管理学[M].长沙:湖南人民出版社,1998.
    [42]杨永毅.滑坡地质灾害监测技术发展综述[J].国外建材科技,2008,29(3):84-86.
    [43]李青.地质灾害与计量测试[J].上海计量测试,2006,33(6):6-13.
    [44]徐卫亚,孙广忠.论地质玄害学研究.第四届全国工程地质大会论文选集[M].北京:海洋出版社,1992
    [45]韩子夜,薛星桥.地质灾害监测技术现状与发展趋势[J].中国地质灾害与防治学报,2005,16(3):138-141.
    [46]周海辉,刘佑荣,周丽珍等.西部地区公路地质灾害监测方法[J].土工基础,2006,20(2):47-50.
    [47]黄秋香,汪家林,邓建辉等.基于多点位移计监测成果的坡体变形特征分析[J].岩石力学与工程学报,2009,28(z1):2667-2673.
    [48]董颖,朱晓冬,李媛等.我国地质灾害监测技术方法[J].中国地质灾害与防治学报,2002,13(1):105-107.
    [49]靳晓光,王兰生,李晓红等.滑坡滑动面位置的确定及超前预测[J].中国地质灾害与防治学报,2001,12(1):10-12.
    [50]魏学勇,欧阳祖熙,周昊等.三峡库区崩滑地质灾害变形监测技术研究及应用[J].大地测量与地球动力学,2010,30(z1):120-125.
    [51]余永强,路耀邦,仲玮年等.关角隧道开挖围岩变形监测及分析[J].公路工程,2011,36(4):1-3,11.
    [52]宰金珉.岩土工程测试与监测技术[M].北京:中国建筑工业出版社,2008.
    [53]李迪,马水山,张保军等.工程岩体变形与安全监测[M].北京:长江出版社,2006.
    [54]黄声享,尹晖,蒋征编著.变形监测数据处理[M].武汉:武汉大学出版社,2010.10.
    [55]南京水利科学研究院勘测设计院.岩土工程安全监测手册[M].北京:中国水利水电出版社,2008.
    [56]陈敦云.变形监测应用技术[J].福建地质.2006,25(4):119-123.
    [57]何秀凤著.变形监测新方法及其应用[M].北京:科学出版社,2007.
    [58]岳建平,田林亚主编.变形监测技术与应用.北京市:国防工业出版社,2007.
    [59]任建喜著.岩土工程测试技术.武汉:武汉工业大学出版社,2009.
    [60]宋建学,郑仪,王原嵩等.基坑变形监测及预警技术[J].岩土工程学报,2006,28(z1):1889-1891.
    [61]水伟厚,李广,李国章等.上海浦东国际机场二期登机长廊基坑监测分析[J].岩土工程学报,2006,28(z1):1819-1822.
    [62]胡汉兵,胡胜刚.软土路堤工后沉降监测、分析与控制[J].长江科学院院报,2010,27(4):40-43.
    [63]刘宇翼,安庆军,王旭东等.硬土场地基坑变形监测与分析[J].南京工业大学学报(自然科学版),2007,29(2):45-50.
    [64]李红中.边坡变形监测技术现状与发展趋势[J].中国水运(理论版),2008,6(1):54-55.
    [65]王广军,姚令侃,杨明等.岩质高边坡变形监测技术研究[J].路基工程,2007,(3):108-110.
    [66]王卫东,夏丽,寇珊珊等.边坡变形监测技术分析[J].山东水利,2003,(12):36-37.
    [67]张伟航,甘德清,陈超等.边坡变形监测研究与进展[J].矿山测量,2010,(1):58-61,67.
    [68]王晓华,胡友健,柏柳等.变形监测研究现状综述[J].测绘科学,2006,31(2):130-132.
    [69]佘小年.崩塌、滑坡地质灾害监测现状综述[J].铁道工程学报,2007,24(5):6-11,27
    [70]童仁园,李青,李明等.基于时域反射的分布式地表变形探测技术[J].仪器仪表学报,2011,32(11):2572-2578.
    [71]Barla, G.; Antolini, F.; Barla, M.; Mensi, E.; Piovano, G. Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Eng. Geol.2010,116(0): 218-235.
    [72]Atefi Monfared, K.; Rothenburg, L. Ground surface displacements and tilt monitoring for reconstruction of reservoir deformations. Int. J. Rock Mech. Mining Sci.2011,48,1113-1122.
    [73]Tarchi D, Casagli N, Fanti R, et al. Landslide monitoring by using ground-based SAR interferometry:an example of application to the Tessina landslide in Italy[J]. Engineering Geology, 2003,68(1):15-30.
    [74]杨松林,刘维宁,王梦恕等.自动全站仪隧道围岩变形非接触监测及分析预报系统研究[J].铁道学报,2004,26(3):93-97.
    [75]曾京,王源,刘建永等.免棱镜全站仪测量拱顶下沉的方法与分析[J].解放军理工大学学报(自然科学版),2009,10(2):179-182.
    [76]雷波,陈华德,李青等.基于动态差分GPS的滑坡位移监测系统[J].中国计量学院学报,2011,22(3):203-207.
    [77]王薇.基于D-InSAR技术的矿区开采沉陷监测研究[D].西安科技大学,2011.
    [78]成英燕,贾有良,党亚民等.用InSAR技术进行形变监测的研究[J].测绘科学,2006,31(3):56-58.
    [79]陈永剑,张锦.地面激光扫描系统在矿区构筑物变形监测中的应用研究[J].科技情报开发与经济,2009,19(12):106-108.
    [80]徐进军,王海城,罗喻真等.基于三维激光扫描的滑坡变形监测与数据处理[J].岩土力学,2010,31(7):2188-2191,2196
    [81]王冬梅,彭小平.滑坡地下位移曲线特征及稳定性判识--以崇尊高速公路龙井滑坡为例[J].襄樊学院学报,2006,27(2):80-83.
    [82]L. Simeoni, L. Mongiovi. Inclinometer Monitoring of the Castelrotto Landslide in Italy[J]. Journal of Geotechnical & Geoenvironmental Engineering,2007,133(6):653-666.
    [83]Stiros, S.C.; Vichas, C.; Skourtis, C., Landslide Monitoring Based On Geodetically Derived Distance Changes[J]. J. Surv.Eng.2004,130(4):156-162.
    [84]马全珍,张宝华.钻孔测斜仪在边坡监测中的应用[J].常州工学院学报,2005,18(z1):85-89.
    [85]周武,李强,齐伟等.钻孔倾斜仪在三峡左厂坝段岩体地下位移监测中的应用[J].岩石力学与工程学报,2001,20(z1):1870-1873.
    [86]尹湃,张二林,孔庆宇等.测斜仪在软土地基监测中的应用及成果分析[J].港工技术,2009,46(z1):109-112.
    [87]谭峰屹,汪稔,赵丽等.CX测斜仪在多福路改造工程中的应用[J].土工基础,2008,22(4):84-87.
    [88]黄飞澜,肖红.测斜仪在高填方地基侧向水平位移监测中的应用[J].公路工程,2010,35(5):112-115,120.
    [89]卫永立,郝福华,焦文斌等.漳泽水库大坝测斜仪的施工埋设与监测分析[J].山西水利科技,2001,(4):43-46.
    [90]应向东.黄腊石滑坡地下位移监测分析[J].长江科学院院报,2000,17(2):54-56.
    [91]杨秀元,李刚,王爱军等.三峡水库区巫山县淌里滑坡监测与变形分析[J].中国地质灾害与防治学报,2008,19(1):22-27.
    [92]张丽芬,姚运生,曾夏生等.钻孔测斜仪在高台滑坡地下位移监测中的应用[J].地质灾害与环境保护,2007,18(4):91-94.
    [93]马云山,张保军.钻孔测斜仪在滑坡体地下变形监测中的应用[J].中国地质灾害与防治学报(增刊),1996,7(1):109-114.
    [94]陈小婷,黄波林.香溪河流域白家堡滑坡变形监测初步分析[J].华南地质与矿产,2004,(3):55-58.
    [95]阮波,李亮,刘宝琛等.浒家洞滑坡治理工程监测分析[J].岩石力学与工程学报,2005,24(8):1445-1449.
    [96]刘金龙,栾茂田,王吉利等.测斜仪测量路基水平位移过程中的局限性分析[J].长江科学院院报,2007,24(5):56-59.
    [97]黄向群,张军辉,李友云等.路基侧向位移观测中测斜管偏转和扭转研究[J].长江科学院院报,2010,27(5):49-52.
    [98]刘增贤,汤连生.路堤荷载下软土侧向挤出沉降分析[J].工程勘察,2003,(2):1-4.
    [99]孙汝建,关秉洪,何宁编译.国外岩土工程监测仪器.南京:东南大学出版社,2007.
    [100]邹荣华.高速公路路基沉降与边坡侧移监测[J].科技创新导报,2010,(9):80.
    [101]顾永明,陈树联,王伟等.面板堆石坝坝体沉降监测方法技术总结[J].西北水电,2011,(1):70-73.
    [102]Dowding, C.H., Huang, F.C. Telemetric Monitoring for Early Detection of RockMovement with Time Domain Reflectometry[J]. Journal of Geotechnical Engineering, American Society of Civil Engineers.1994,120 (8):1413-1427
    [103]Dowding, C H, Su, M B, O'Connor, K. Principles of time domain reflectometry applied to measurements of rock mass deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1989,26(2):56-57.
    [104]Kane W F, Beek T J. Rapid slope monitoring[J]. Civil Engineering, American Society of Civil Engineers,1996,66(6):56-58.
    [105]W.F. Kane. Monitoring Slope Movement with Time Domain Reflectometry [J]. Geotechnical Field Instrumentation:Applications for Engineers and Geologists,2008,1:1-8.
    [106]陈云敏,陈赞,陈仁朋等.滑坡监测TDR技术的试验研究[J].岩石力学与工程学报,2004,23(16):2748-2755.
    [107]陈赞.边坡稳定性监测TDR技术的试验研究[D].浙江大学,2003.
    [108]张青,史彦新,朱汝烈等.TDR滑坡监测技术的研究[J].中国地质灾害与防治学报,2001,12(2):64-66.
    [109]朱健.TDR技术在边坡监测中的应用[J].城市勘测,2009,(1):151-153.
    [110]史彦新,张青.TDR技术在雅安峡口滑坡监测中的应用[J].勘察科学技术,2005,(1):55-57.
    [111]张青,史彦新,林君等.时间域反射法用于滑坡监测的试验研究[J].吉林大学学报(地球科学版),2007,37(1):134-138,143.
    [112]谭捍华,傅鹤林.TDR技术在公路边坡监测中的应用试验[J].岩土力学,2010,31(4):1331-1336.
    [113]邬晓岚,涂亚庆.滑坡监测的一种新方法——TDR技术探析[J].岩石力学与工程学报,2002,21(5):740-744.
    [114]佘小年,傅鹤林,罗强,谭捍华.公路滑坡崩塌地质灾害预测与控制技术[M],北京:人民交通出版社,2010.
    [115]唐然,汪家林,范宣.TDR技术在滑坡监测中的应用[J].地质灾害与环境保护,2007,18(1):105-110.
    [116]Hou X, Yang X, Huang Q. Using inclinometers to measure bridge deflection[J]. Journal of Bridge Engineering,2005,10(5):564-569.
    [117]HAO A, WANG W, YANG J, et al. Study and Application of Inclinometer Based on Quartz Servo-accelerometer [J]. Instrument Technique and Sensor,2006,7:004.
    [118]Piske W. Two-axis inclinometer:U.S. Patent 5,371,951[P].1994-12-13.
    [119]Dowding C H, Huang F C. Early detection of rock movement with time domain reflectometry[J]. Journal of Geotechnical Engineering,1994,120(8):1413-1427.
    [120]Singer J, Thuro K, Sambeth U. Development of a continuous 3d-monitoring system for unstable slopes using time domain reflectometry[C]//Proceedings of the 10th IAEG International Congress. 2006.
    [121]Wanser K H, Voss K F. Crack detection using multimode fiber optical time domain reflectometry[C]//Proc. SPIE.1994,2294:27-28.
    [122]Kane W F, Beck T J, Hughes J J. Applications of time domain reflectometry to landslide and slope monitoring[C]//Second International Symposium and Workshop on Time Domain Reflectometry for Innovative Geotechnical Applications, Infrastructure Technology Institute at Northwestern University, Evanston, IL.2001:305-314.
    [123]O'Connor K M, Peterson D E, Lord E R. Development of a highwall monitoring system using time domain reflectometry[C]//Proceedings,35th US Symposium on Rock Mechanics, Reno, Nevada, June.1995:79-84.
    [124]Dowding C H, O Connor K M. Comparison of TDR and inclinometers for slope monitoring[J]. GEOTECHNICAL SPECIAL PUBLICATION,2000:80-90.
    [125]LIU J, LUAN M, WANG J. Analysis on Limitation of Inclinometer in Measuring Lateral Displacement of Soft Soil Foundation Under Embankment [J]. Journal of Yangtze River Scientific Research Institute,2007,5:018.
    [126]蔡文军,王平,翟军威,等.机械式无线随钻测斜仪及其应用[J].石油钻探技术,2005,33(1):39-40.
    [127]陈开圣,彭小平.测斜仪在滑坡变形监测中的应用[J].岩土工程技术,2006,20(1).
    [128]刘观仕,胡德明,徐光斌.测斜仪在软基路堤施工监测中的应用[J].土工基础,2004,18(3):57-60.
    [129]于艳军,伍川辉.智能测斜仪的设计[J].中国测试技术,2008,34(2):78-80.
    [130]贾文超,董冰,李林等.同轴电缆形变TDR监测技术的研究与实现[J].计算机测量与控制,2007,15(10):1276-1278.
    [131]高幼龙,张俊义,薛星桥等.实时监测技术在地质灾害防治中的应用——以巫山县地质灾害实时监测预警示范站为例[C].地质灾害调查与监测技术方法论文集.2004:121-128.
    [132]高鹏伟,罗晓薇,朱海亚等.振弦式多点位移计在穿黄隧洞工程F3断层施工中的应用[J].海河水 利,2010,(3):50-53.
    [133]朱全平,徐波,张德香等.三峡工程船闸高边坡多点位移计形变分析[J].中国三峡建设,2004,11(6):36-38.
    [134]贡保臣,吴毅瑾,沈义生.液压式沉降仪工作原理及改进[J].水力发电,2008,34(12):58-59.
    [135]王胜涛,杨广庆,薛晓辉.高速公路路基沉降监测技术研究[J].铁道建筑,2008,2:76-78.
    [136]赵海云,刘洪彦.新型钻孔多点位移计[J].煤炭科学技术,1999,27(4):53-54.
    [137]顾永明,陈树联,王伟.面板堆石坝坝体沉降监测方法技术总结[J].西北水电,2011(001):70-73.
    [138]杜国文.小浪底工程多点位移计测值突变原因分析[J].东北水利水电,1998(6):24-27.
    [139]杨晓明,马亚兰.沉降仪在国内外现状的概述[J].甘肃科技,2009,25(11):66-69.
    [140]杨杰,李青.地下位移实时监测系统研究[J].中国计量学院学报,2008,19(1):41-46.
    [141]雷波,陈华德,李青,李雄.基于动态差分GPS的滑坡位移监测系统[J].中国计量学院,2011,22(3):203-207.
    [142]Nanying Shentu, Hongjian Zhang, Qing Li, Hongliang Zhou, Research on an Electromagnetic Induction-based Deep Displacement Sensor. IEEE Sensors Journal,2011,11 (6):1504-1515.
    [143]江蜀华,王薇.电工电子技术基础[M].西安:西安电子科技大学出版社,2009.
    [144]沈光玲.电工基础[M].北京:中国电力出版社,2010.
    [145]杨儒贵.电磁场与电磁波[M].北京市:高等教育出版社,2007.
    [146]鲍永亮,郑七振,唐建忠等.地铁盾构隧道施工监测技术[J].铁道建筑,2009,(5):44-47.
    [147]冯国冠.基于某地铁盾构隧道施工地表沉降的分析研究[J].中国安全生产科学技术,2010,06(4):81-84.
    [148]王俊杰编著.传感器与检测技术[M].北京:清华大学出版社,2011.
    [149]洪利,章扬,李世宝MSP430单片机原理与应用实例详解[M].北京:北京航空航天大学出版社,2010.
    [150]沈建华,杨艳琴MSP430系列16位超低功耗单片机原理与实践[M].北京:北京航空航天大学出版社,2008.
    [151]杨杰.地下位移实时监测系统研究[D],杭州:中国计量学院,2008.
    [152]关宇,吴巍,尹廷辉等.一种高精度正弦波扫频信号发生器的设计与实现[J].电子工程师,2004,30(2):38-41.
    [153]梅领亮.基于MAX038和单片机的函数信号发生器设计[J].电脑知识与技术,2010,6(3):681-682.
    [154]程建辉,陈波,蒋树刚等.基于ICL8038芯片的单片机可控的函数信号发生器的设计[J].科学大众.科学教育,2012,(3):180-180.
    [155]孔冬莲.基于CPLD器件的函数信号发生器[J].沙洋师范高等专科学校学报,2006,7(5):15-18.
    [156]倪淑艳,李晓波,于涵等.单片机C8051F303在数字锁相式频率合成器中的应用[J].现代电子技术,2006,29(8):19-21
    [157]汉泽西,张海飞,王文渤等.基于DDS技术正弦波信号发生器的设计[J].电子测试,2009, (8):65-69,77.
    [158]崔唯佳,高磊,陈晓军等.基于DDS的正弦波信号发生器的设计[J].电子测试,2011,(8):13-15.
    [159]韩彬,傅冰,邹岳元等.基于Mega8单片机和AD9833的正弦波信号发生器[J].石油仪器,2007,21(6):70-72.
    [160]毕红军.基于DDS技术的任意波形发生器的研究[D].西安电子科技大学,2003.
    [161]邹轶才,黄正东.用AD7008构成可程控正弦波信号发生器[J].中国仪器仪表,2005,(2):74-76.
    [162]何明,乔龙飞,许朋等.基于MSP430和MAX262程控滤波器的设计[J].电子设计工程,2011,19(4):179-181.
    [163]佟为明,徐会明,杨士彦.由单运放构成的精密全波整流电路[J].电测与仪表,1993,5:40-43.
    [164]郭明映,董进辉,赵长生等.基于双向加速度传感器MMA6260的倾角仪[J].计量技术,2008,(10):7-9.
    [165]高锋,谭春毅.新型双向加速度传感器MMA6260的原理与应用[J].传感技术学报,2005,18(1):150-152.
    [166]苏震.现代传感器技术-原理、方法与接口电路[M].北京:电子工业出版社.2011.
    [167]白韶红.集成霍尔传感器的发展[J].自动化仪表,2003,24(3):1-9.
    [168]刘畅生,寇宝明,钟龙.霍尔传感器实用手册[M].北京:中国电力出版社,2009.
    [169]姚成虎,王磊.怎样进行PC机与单片机的串行通信系统的设计[J].计算机辅助工程,2003,12(3):17-21.
    [170]江力.单片机原理与应用技术[M].北京:清华大学出版社,2006.
    [171]周晶晶.分布式无线传感网络的信息通道接口构建和应用研究[D].天津大学,2007.
    [172]韩冰,李芬华GPRS技术在数据采集与监控系统中的应用[J].电子技术,2003,30(8):26-29.
    [173]栗玉霞,徐建政,刘爱兵等GPRS技术在自动抄表系统中的应用[J].电力自动化设备,2003,23(12):52-54.
    [174]金福宝.基于GPRS的桥梁远程监测系统的研究[D].东北林业大学,2007.
    [175]齐峰.基于GPRS无线通讯的电涡流式涡轮流量计的研究[D].天津大学,2008.
    [176]申向东.基于GPRS的提升机制动器工作状态无线监测系统的设计[J].科技情报开发与经济,2011,21(34):196-198.
    [177]SIMEMS Mobile. M590E Hareware Interface Deseription[EB/OL].(2007-02-04), http://www.semens.com.
    [178]SIMEMS Mobile. M590E ATCommandSet[EB/OL].(207-02-40).http://www.semens.com.
    [179]齐志强.基于FPGA的串行Flash扩展实现[J].国外电子元器件,2007,(10):68-71.
    [180]陈肖华,任德志,徐丽萍等.基于增强型SPI接口的大容量Flash扩展实现[J].国外电子元器件,2006,(10):19-22.
    [181]周波,余祖龙.基于nRF2401的无线LED点阵显示系统的设计[J].数字技术与应用,2011,(12):48-48,50.
    [182]徐飞GPRS通信在远程地温监测系统中的应用[D].西安工业大学,2007.
    [183]杨斌文.基于GPRS的煤矿瓦斯综合监测系统的设计[J].科技情报开发与经济, 2011,21(22):98-100
    [184]赵凯华,陈熙谋编著.电磁学.北京:高等教育出版社,2011
    [185]雷银照编著.轴对称线圈磁场计算.北京市:中国计量出版社,1991.
    [187]Huang Zuoying, Que Peiwen, Chen Liang.3D FEM analysis in magnetic flux leakage method[J]. NDT&E International,2006,39:61-66.
    [188]J.H. Claassen. FEM analysis of magnetic flake composites[J]. Journal of Magnetism and Magnetic Materials,2009,321:2166-2169.
    [189]Silvia Jerez, Andres Lara. A high resolution nonstandard FDTD method for the TM mode of Maxwell's equations[J]. Mathematical and Computer Modelling,2011,54:1852-1857.
    [190]Abdenbi Mimouni. Farhad Rachidi, Zin-eddine Azzouz. Finite difference time domain algorithm for electromagnetic problems involving material movement[J]. Journal of Electrostatics,2008,66: 504-513.
    [191]Liviu Marina, Henry Power, et. al. Numerical solution for an inverse MRI problem using a regularised boundary element method[J]. Engineering Analysis with Boundary Elements,2008,32: 658-675.
    [192]Canan Bozkayan, M. Tezer-Sezgin. A numerical solution of the steady MHD flow through infinite strips with BEM[J]. Engineering Analysis with Boundary Elements,2012,36:591-599.
    [193]Y. Vuillermet, M. Audoin, R. Cuchet. Application of a non-linear Method of Moments to predict microfluxgates output[J]. Sensors and Actuators A,2010,158:212-216
    [194]Liming Zhang, Ali Deng, Minghong Wang. Application of a novel formulation to the MFIE using RWG basis functions in method of moments[J]. Engineering Analysis with Boundary Elements, 2009,33:880-884.
    [195]薛晶.电磁场仿真软件CAD技术研究[D].电子科技大学,2007.
    [196]李勇,姜新通,史庆夫等.基于Ansoft的IPM永磁同步电动机磁场计算[J].微特电机,2011,39(6):1-3,8.
    [197]刘鸣,景建方.基于ANSYS的双凸极电机电磁场仿真[J].船电技术,2012,32(1):42-44.
    [198]雷银照.时谐电磁场解析方法[M].北京:科学出版社,2000.
    [199]邰爱东.有限长直密绕螺线管的自感系数[J].物理与工程,2003,13(6):8-9.
    [200]数学手册编写组.数学手册[M].北京:人民教育出版社,1979.
    [201]焦其祥.电磁场与电磁波[M].北京:科学出版社,2010.
    [202]王竹溪,郭敦仁.特殊函数概论.北京:科学出版社,1965.
    [203]Nanying Shentu, Hongjian Zhang, Qing Li, Hongliang Zhou, Renyuan Tong, Xiong Li, A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors.2012,12(1):233-259.
    [204]Philip J. Davis, PhilipRabinowitz著,冯振兴、伍富良译,数值积分法[J],北京:高等教育出 版社,1986.
    [205]周寿增,董清飞.超强永磁体:稀土铁系永磁材料(第2版),北京:冶金工业出版社.2004.
    [206]汤双清,陈习坤,唐波等.永磁体空间磁场的分析计算及其在永磁磁力轴承中的应用[J].大学物理,2005,24(3):32-36.
    [207]Jerry P. Selvaggi, Sheppard Salon, O-Mun Kwon, and M. V. K. Chari. Calculating the External Magnetic Field From Permanent Magnets in Permanent-Magnet Motors-An Alternative Method[J]. EEE Transactions on Magnetics,2004,40:5:3278-3285.
    [208]S. A. Nasar, Guangyu Xiong. Determination of the field of a permanent-magnet disk machine using the concept of magnetic charge[J]. IEEE Transactions on Magnetics,1988,24(3):2038-2044.
    [209]J. D'Angelo, M.V.K. Chari, P. Campbel. Three-Dimensional Finite Element Solution for a Permanent Magnet Axial-Field Machine[J]. IEEE Transactions on Power Apparatus and Systems, 1983,102(1):83-90.
    [210]唐劲飞,龚沈光,王金根等.基于磁偶极子模型的目标定位和参数估计[J].电子学报,2002,30(4):614-616.
    [211]Chao Hu, Max Q.-H. Meng, Mrinal Mandal. Efficient Linear Algorithm for Magnetic Localization and Orientation in Capsule Endos [C]. Proceedings of the 2005 IEEE Engineering in Medicine and Biology,2005,7143-7145.
    [212]侯文生,郑小林,彭承琳等.基于永磁体空间磁场检测的体内微型诊疗装置定位系统的研究[J].北京生物医学工程,2004,23(2):81-83,87.
    [213]李金,郑小林,侯文生,何金,方兴.用于磁定位的永磁体磁场仿真与实验研究.系统仿真学报,2009:321-324.
    [214]严志刚,原魁.一种获得磁跟踪系统参数的简单方法[J].系统仿真学报,2007,19(1):81-84,117.
    [215]李景天,宋一得.用等效磁荷法计算永磁体磁场[C].//'97全国磁测技术学术讨论会论文集.1997:66-70.
    [216]Marinescu,M, Marinescu, N. Compensation of anisotropy effects in flux-confining permanent-magnet structures[J]. IEEE Transactions on Magnetics,1989,25(5):3899-3901.
    [217]Bancel,F.,Lemarquand, G. Three-dimensional analytical optimization of permanent magnets alternated structure [J]. IEEE Transactions on Magnetics,1998,34(1):242-247.
    [218]Lemarquand, G. Ironless Loudspeakers[J]. IEEE Transactions on Magnetics,2007, 43(8):3371-3374.
    [219]Lemarquand, G., Lemarquand, V.. Calculation Method of Permanent-Magnet Pickups for Electric Guitars[J]. IEEE Transactions on Magnetics,2007,43(9):3573-3578.
    [220]Furlani, E.P.. Field Analysis And Optimization Of NdFeB Axial Field Permanent-Magnet Motors[J]. IEEE Transactions on Magnetics,1997,33(5):3883-3885.
    [221]Furlani, E.P.; Reznik, S.; Janson, W.. A Three-Dimensional Field Solution for bipolar cylinders [J]. IEEE Transactions on Magnetics,1994,30(5):2916-2919.
    [222]Rakotoarison, H.L.; Yonnet, J.-P.; Delinchant, B.. Using Coulombian Approach for Modeling Scalar Potential and Magnetic Field of a Permanent Magnet With Radial Polarization[J]. IEEE Transactions on Magnetics,1994,43(4):1261-1264.
    [223]沈金松.用交错网格有限差分法计算三维频率域电磁响应[J].地球物理学报,2003,46(2):281-288.
    [224]谢秦川,刘顺坤,陈雨生.细线结构时域电场积分方程的有限差分求解[J].电波科学学报,2000,15(1):45-48.
    [225]阮百尧,熊彬,徐世浙.三维地电断面电阻率测深有限元数值模拟[J].地球科学-中国地质大学学报,2001,26(1):73-77.
    [226]王少刚,关鑫璞,王党卫,等.求解电场积分方程的高阶矩量法[J].电子与信息学报,2007,29(9):2265-2268.
    [227]樊德森.静电场边值问题的矩量法解[J].计算物理,1989,6(1):1-8.
    [228]田宪谟,黄兰珍.不同地电条件下电阻率法的边界元法数值模拟[J].物探化探计算技术,1994,16(3):270-275.
    [229]孟奇,鲁志伟.边界元法在接地网数值计算中的应用[J].东北电力学院学报,1998,18(1):28-37.
    [230]王复明,张蓓,蔡迎春等.层状体系介电特性反演理论及其应用.北京市:科学出版社,2011.04.
    [231]董呈龙.基于监控量测和数值模拟的隧道围岩参数反演分析[D].武汉理工大学,2009.
    [232]郭晓刚.位移反分析法在工程应用中的若干问题研究[D].西安理工大学,2012.
    [233]李守巨,刘迎曦编著.智能计算与参数反演.北京市:科学出版社,2008.10.
    [234]张贵.基于支持向量机的隧道位移反分析方法[D].北京交通大学,2004.
    [235]谢孟卿,张雪飞.基因遗传算法在地下工程岩土施工中的应用[J].西昌学院学报:自然科学版,2011,25(2):41-43.
    [236]Ali Naghi Dehghan,Seyed Mohsen Shafiee,Fereydoun Rezaei et al.3-D stability analysis and design of the primary support of Karaj metro Tunnel:Based on convergence data and back analysis algorithm [J].Engineering Geology,2012,141/142:141-149.
    [237]B. Pichler,R. Lackner,H. A. Mang et al.Back analysis of model parameters in geotechnical engineering by means of soft computing[J].International Journal for Numerical Methods in Engineering,2003,57(14):1943-1978.DOI:10.1002/nme.740.
    [238]D. C. N. Nip,C. W. W. Ng.Back-analysis of laterally loaded bored piles [J].Proceedings of the Institution of Civil Engineers. Geotechnical Engineering,2005,158(ge2):63-73.
    [239]Mingwei Liu,Yingren Zheng.Application of the Complex Variable Differential Method in the Back Analysis of Geotechnical Engineering[C].//Advances in Building Materials. Part 1.2011:2432-2437.
    [240]Antonio Viana da Fonseca,Sara Rios Silva,Nuno Cruz et al.Geotechnical Characterization by In situ and Lab Tests to the Back-Analysis of a Supported Excavation in Metro do Porto[J].Geotechnical and geological engineering,2010,28(3):251-264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700