用户名: 密码: 验证码:
农杆菌介导转Bt cry1Ah和cry1Ie基因抗虫植物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bt cry1Ah基因是中国农业科学院植物保护研究所张杰课题组从国内苏云金芽胞杆菌(Bacillus thuringiensis,Bt)菌株BT8中分离克隆的一个新型杀虫蛋白基因。Cry1Ah基因与cry1Ac基因的氨基酸序列相似性最高,为82%。Cry1Ah蛋白对鳞翅目害虫具有高毒力,对棉铃虫、水稻二化螟的杀虫活性强于Cry1Ac蛋白;对亚洲玉米螟的杀虫活性强于Cry1Ac、Cry1Ab蛋白。Bt cry1Ie基因是张杰课题组从Bt菌株Btc007中分离克隆的另一个具有自主知识产权的杀虫蛋白基因。Cry1Ie基因与cry1A类基因相似性很低,只有30%,并且它们之间无交互抗性。其编码的蛋白对抗性和敏感玉米螟都有一定的毒力。将cry1Ah和cry1Ie基因同时构建到一个表达载体中,能够有效地克服基因种类单一、同源性高以及昆虫对Bt产生抗性等一系列问题,同时也有望筛选到抗虫性能更高的转基因作物。
     对于一个来源于原核生物的基因,其编码区序列所使用的密码子通常在植物中使用的频率较低,这会使外源基因在植物中仅有少量的积累。而将外源基因根据植物密码子偏好进行优化后可以显著地提高外源基因在植物中的表达。根据植物密码子偏好性,本实验室早期工作对cry1Ah基因进行过两次改造以及对cry1Ie基因进行过改造,本研究将cry1Ah基因进行了第三次密码子优化。三次改造的cry1Ah基因(m1-cry1Ah,m2-cry1Ah,m3-cry1Ah)与原始cry1Ah基因进行比对:GC含量由37%分别提高到48%,55%和63%。优化后的cry1Ie基因(mcry1Ie)的GC含量提高到55%。
     在转基因作物研究中,提高转基因表达的另一个主要策略是将外源蛋白进行亚细胞定位表达。亚细胞定位主要依赖于信号肽的作用,其中定位于叶绿体和内质网的研究比较多也比较成功。本研究将m3-cry1Ah基因的N端连接一段来源于玉米RuBP羧化酶的叶绿体定位信号肽序列,命名为CPT-m3-cry1Ah;另外将m3-cry1Ah基因的N端连接内质网定位信号肽,在C端连接内质网滞留信号KDEL,命名为ER-m3-cry1Ah;将不连接任何信号肽的m3-cry1Ah基因命名为NK-m3-cry1Ah。依次构建了三个植物表达载体pMhNK、pMhCTP和pMhER,并且都是以bar基因作为筛选标记基因。
     本研究首先利用农杆菌介导法将实验室保存的pMhGM (m1-cry1Ah),pMAhb (m2-cry1Ah)以及本研究构建的pMhNK (NK-m3-cry1Ah),pMhCTP (CPT-m3-cry1Ah)共计四个植物表达载体进行烟草转化。通过对模式生物烟草的研究确定出最优的cry1Ah基因密码子使用形式以及研究蛋白叶绿体定位对基因表达的影响。一共侵染320个烟草叶片外植体,共获得84株烟草再生苗,每个载体分别获得21、28、20和15株。通过PCR检测确定了每个载体的阳性植株数分别为7、5、6和5株;通过Southern blot结果表明外源基因已整合到烟草基因组中;实时荧光定量PCR (quantitative RT-PCR,qRT-PCR)检测结果表明pMhCTP烟草植株在四个载体的植株中表现出最高的转录水平,并且pMAhb、pMhNK和pMhCTP烟草植株的转录水平分别是pMhGM植株的4倍、9.5倍和12.5倍;ELISA检测结果表明pMhCTP烟草植株中Cry1Ah蛋白表达量最高,并且pMAhb、pMhNK和pMhCTP烟草植株的Cry1Ah蛋白表达量分别是pMhGM植株的4倍、6倍和10倍;通过生物活性检测结果表明喂食pMhGM、pMAhb、pMhNK和pMhCTP烟草叶片的棉铃虫幼虫致死率分别为63%、82%、93%和100%,这四个载体烟草叶片对棉铃虫的抗性等级分别为2.57、1.8、1.33和1级。通过以上实验结果表明cry1Ah基因的三次密码子优化和叶绿体定位表达逐步提高了cry1Ah基因在转基因烟草中的表达。
     本研究随后利用农杆菌介导法将七个植物表达载体转化玉米自交系综31幼胚进行抗虫玉米的研究。这七个植物表达载体包括实验室保存的四个植物表达载体pMhGM (m1-cry1Ah),pMAhb (m2-cry1Ah),pMIeb (mcry1Ie)和pMAhIeb (含m2-cry1Ah和mcry1Ie)以及本研究构建的三个植物表达载体pMhNK (NK-m3-cry1Ah), pMhCTP (CPT-m3-cry1Ah)和pMhER(ER-m3-cry1Ah)。前期将植物表达载体pMhGM经农杆菌介导法转化玉米自交系综31未成熟幼胚,一共转化500个幼胚,共得到48株T0代玉米再生植株。PCR检测表明有23株为PCR阳性植株;然后通过各种分子检测和生物活性检测确定出两个高抗虫玉米事件1-4和1-5;Southern blot检测结果表明这两个高抗虫玉米事件中的外源基因均以单拷贝形式插入玉米基因组中;通过对这两个抗虫事件的T1~T6代植株的Cry1Ah蛋白的表达和遗传稳定性进行研究,结果表明Cry1Ah蛋白在每一代的玉米植株中都能正常稳定的表达,并且植株在田间对玉米螟的抗性也是稳定遗传的。随后我们将以上七个植物表达载体对玉米自交系综31幼胚进行大规模转化,一共转化20070个玉米未成熟幼胚,获得7745块抗性愈伤,共得到T0代玉米转化植株1764株。通过PCR检测确定1360株为PCR阳性植株;然后通过分子检测和生物活性检测确定了转cry1Ah单基因以及转cry1Ah和cry1Ie双基因的抗虫玉米事件数分别是29个和14个,其中表现为高抗虫的玉米事件数分别为8个和3个;通过对这43个抗虫事件的T1~T2代植株的Cry1Ah蛋白的表达和遗传稳定性进行研究,结果表明Cry1Ah蛋白在T1~T2代的玉米植株中都能正常稳定的表达,并且植株在田间对玉米螟的抗性也是稳定遗传的。获得的抗虫转基因玉米材料具有很好的应用价值,可以作为候选材料进行下一步Bt抗虫玉米的育种工作。
     此外,我们对抗虫性表现非常突出的两个双基因抗虫玉米事件pMAhIeb60和pMAhIeb186的T2代植株的苞叶、叶片和花丝进行了Cry1Ah蛋白量的分析,结果表明事件pMAhIeb60的植株中Cry1Ah蛋白表达量都比较高,由高到低的表达部位分别是苞叶、叶片和花丝,每鲜克重表达Cry1Ah蛋白量分别是4.5μg/g fresh weight (f.w.)、3.5μg/g (f.w)和2.5μg/g(f.w);事件pMAhIeb186植株的苞叶、叶片中表达Cry1Ah蛋白量较高,都为3.5μg/g (f.w),而花丝中表达量为0.8μg/g (f.w)。Cry1Ah蛋白在叶片中的高表达可以有效防治玉米螟初期危害,而在苞叶和花丝中的高表达可以有效防治玉米螟后期危害,这两个高抗虫事件有望走向产业化。
The Bt cry1Ah gene is a novel insecticidal gene,which was cloned from the Bacillusthuringiensis (Bt) isolate BT8.The toxic fragment of Cry1Ah has82%similarity to Cry1Ac.TheCry1Ah protein is highly toxic to lepidopteran insects:this protein is more toxic than Cry1Ac toHelicoverpa armigera,Ostrinia furnacalis and Chilo suppressalis,and it is more toxic thanCry1Ab to O.furnacalis.The Bt cry1Ie gene is another insecticidal gene,and it was cloned fromthe Bacillus thuringiensis (Bt) isolate Btc007.Its encoding protein has toxicity not only to thesensitive O.furnacalis but also to the resistant O.furnacalis.Cry1Ie has no cross-resistance withCry1A protein,thus combining cry1Ah and cry1Ie to the same expression vector can moreeffectively overcome the problems such as the gene’s high homology,single species,pestresistance to Bt protein and so on,at the same time the insect-resistant transgenic plants withhigher toxicity are expected to be obtained.
     Most codon of prokaryotic genes′coding sequence are rare codons in plants,and they maylead to low expression of the gene in plants.Codon optimization can significantly improve foreigngenes’ expression in plants.According to the plant codon bias,the cry1Ah gene was modifiedtwice and cry1Ie gene was modified once in the previous work of our lab.In the present study,we modified the cry1Ah gene for the third time.The GC content of the three modified cry1Ahgenes (m1-cry1Ah,m2-cry1Ah,m3-cry1Ah) were48%,55%and63%,respectively,and theGC content of modified cry1Ie gene (mcry1Ie) was55%.
     Targeting foreign proteins to specific subcellular locations is another strategy to enhance theexpression of the transgene in the study of genetically modified crops(GMC). Subcellularlocalization rely mainly on the role of signal peptide,and the study of targeting to chloroplasts orendoplasmic reticulum is more successful.In this study,the m3-cry1Ah gene was linked with achloroplast transit peptide sequence from maize RuBP carboxylase,and this gene was designatedctp-m3-cry1Ah.Additionally,the m3-cry1Ah gene was linked with a endoplasmic reticulum signalpeptide,and this gene was designated ER-m3-cry1Ah,and the m3-cry1Ah gene with no signalpeptide was designated NK-m3-cry1Ah.We construct pMhNK、pMhCTP and pMhER plantexpression vectors,and the bar gene was used as a selectable maker gene.
     Four vectors pMhGM (m1-cry1Ah),pMAhb (m2-cry1Ah),pMhNK (NK-m3-cry1Ah) andpMhCTP (CPT-m3-cry1Ah) were transferred into tobacco leaves by Agrobacterium-mediatedtransformation.Based on the research of the model organism of tobacco to determine the optimalcodon pattern of the cry1Ah gene and to study the effect of chloroplast-targeted on transgene expression levels.A total of320tobacco leaf explants were infected,84regenerated tobacco plantswere obtained,21,28,20and15plants for each vector.Through PCR detection,7,5,6and5PCR positive lines were obtained for each vector;Southern hybridization indicated that thecry1Ah gene was integrated into the tobacco genome; the quantitative RT-PCR resultsdemonstrated that the pMhCTP plants showed the highest cry1Ah transcript level of the fourdifferent transgenic constructs,the cry1Ah transcript level of pMAhb,pMhNK and pMhCTP plantswere higher than that of pMhGM plants by approximately4-,9.5-and12.5-fold;ELISA analysisrevealed that the pMhCTP plants showed the highest protein expression levels,the proteinexpression levels of pMAhb,pMhNK and pMhCTP were higher than that of pMhGM plants byapproximately4-,6-and10-fold.The bioassays revealed that the mortality rates of larvae feedingon pMhGM,pMAhb,pMhNK and pMhCTP plants were63%,82%,93%and100%,respectively,and the resistance rating levels were2.57,1.8,1.33and1,respectively.Our resultsdemonstrated that combining the codon optimization of cry1Ah gene with the targeting of Cry1Ahprotein to the chloroplasts conferred a high level of protein expression.
     Seven vectors pMhGM (m1-cry1Ah),pMAhb (m2-cry1Ah),pMIeb (mcry1Ie),pMAhIeb(m2-cry1Ah and mcry1Ie),pMhNK (NK-m3-cry1Ah),pMhCTP(CPT-m3-cry1Ah) and pMhER(ER-m3-cry1Ah) were transferred into maize immature embryos by Agrobacterium-mediated.Atthe beginning,the pMhGM were transferred into maize embryos,a total of500maize embryoswere infected and48regenerated maize plants were obtained.A total of23PCR positive eventswere obtained;the molecular detections and bioassay results showed that events1-4and1-5exhibited high resistance to the O.furnacalis;Southern blot analyses suggested that a single copyof the cry1Ah gene was successfully integrated into the maize genome.The results of T1~T6detection of two insect-resistant events indicated that the cry1Ah was expressed stably at highlevels in maize and could be inherited stably over generations,the transgenic plants were highlytoxic to the O.furnacalis and that their resistance could be inherited stably from generation togeneration.Afterwards,the seven vectors mentioned above were transferred into maize embryosby Agrobacterium-mediated.A total of20070maize embryos were infected and7745resistantcallus tissue were obtained,1764regenerated maize plants were obtained.PCR detection showedthat1360PCR positive events were obtained; the molecular detections and bioassayresults showed that the insect-resistant maize plants harboring cry1Ah gene were29events,harboring cry1Ah and cry1Ie genes were14events.The highly insect-resistant maize plants were8and3events,respectively.The results of T1~T2detection of the43insect-resistant eventsindicated that the cry1Ah was expressed stably at high levels in maize and could be inheritedstably over generations,the transgenic plants were highly toxic to the O.furnacalis and that theirresistance could be inherited stably from generation to generation.The obained insect-resistantmaize materials have good application value,and they could be potential candidates for thebreeding of Bt insect-resistant transgenic maize.
     In addition,the highly insect-resistant maize events pMAhIeb60and pMAhIeb186were further detected.The Cry1Ah expression of husk,leaf and silk of the two events’ T2plants weredetected by ELISA.The ELISA indicated that the Cry1Ah expressions of husk,leaf and silk inpMAhIeb60were4.5,3.5and2.5μg/g fresh weight (f.w.),respectively,and those in pMAhIeb186were3.5,3.5and0.8μg/g (f.w) respectively.The high Cry1Ah expressions in leaves caneffectively prevent the early period damage of O.furnacalis,and the high Cry1Ah expression inhusk and silk can effectively prevent the later period damage of O.furnacalis.The two highlyinsect-resistant events are expected to industrialization.
引文
[1]James C.2012年全球生物技术/转基因作物商业化发展态势[J].中国生物工程杂志,2013,33(2):1-8.
    [2]潘晓琳,霍志军.新形势下玉米种业发展思考[J].现代化农业,2011,(6):28-29.
    [3]王振营,鲁新,何康来,等.我国研究亚洲玉米螟历史、现状与展望[J].沈阳农业大学学报,2000,31(5):402-412.
    [4]张社梅,赵芝俊.我国玉米病虫害防治与转基因玉米的应用前景分析[J].玉米科学,2009,17(3):149-152.
    [5]Munkvold G P,Desjardins A E.Fumonisins in maize:Can we reduce their occurrence[J].PlantDisease,1997,81(6):556-565.
    [6]Thiel P G,Marasas W F O,Sydenham E W,et al.The implications of naturally occurring levelsof fumonisins in corn for human and animal health[J].Mycopathologia,1992,117(1):3-9.
    [7]陈亮,浦冠勤.化学防治与生物防治在害虫综合防治中的作用[J].中国蚕业,2009,29(4):84-86.
    [8]苏丽,戈峰,刘向辉.化学防治对不同类型棉田害虫和捕食性天敌群落多样性的影响[J].昆虫学报,2002,45(6):777-784.
    [9]赵善欢.杀虫剂及农业害虫化学防治的展望[J].西北农林科技大学学报(自然科学版),1993,21:73-81.
    [10] Howarth F G.Environmental impacts of classical biological control[J].Annual Review ofEntomology,1991,36(1):485-509.
    [11]梁建根,郑经武.设施栽培中蔬菜根结线虫生物防治研究进展[J].中国农学通报,2010,26(19):290-293.
    [12] James C.Global status of commercialized biotech/GM crops[M].NY:International Servicefor the Acquisition of Agri-Biotech Applications (ISAAA),2007.
    [13]谢先芝.抗虫转基因植物的研究进展及前景[J].生物工程进展,1999,19(6):47-52.
    [14] Gatehouse J A.Prospects for using proteinase inhibitors to protect transgenic plants againstattack by herbivorous insects[J].Current Protein and Peptide Science,2011,12(5):409-416.
    [15] Ismail I,LeeSiew F,Abdullah R,et al.Molecular and expression analysis of cowpea trypsininhibitor (CpTI) gene in transgenic Elaeis guineensis Jacq leaves[J].Australian Journal of CropScience,2010,4(1):37-48.
    [16] Liu B,Cui J,Meng J,et al.Effects of transgenic Bt+CpTI cotton on the growth andreproduction of earthworm Eisenia foetida[J].Frontiers in Bioscience,2009,14:4008-4014.
    [17] Cui J,Luo J Y,Werf W V D,et al.Effect of pyramiding Bt and CpTI genes on resistance ofcotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and fieldconditions[J].Journal of Economic Entomology,2011,104(2):673-684.
    [18] Miao J,Wu Y Q,Xu W G,et al.The impact of transgenic wheat expressing GNA (Snowdroplectin) on the aphids Sitobion avenae, Schizaphis graminum, and Rhopalosiphumpadi[J].Environmental Entomology,2011,40(3):743-748.
    [19] Sprawka I,Go awska S.Effect of the lectin PHA on the feeding behavior of the grainaphid[J].Journal of Pest Science,2010,83(2):149-155.
    [20] Bravo A,Likitvivatanavong S,Gill S S,et al.Bacillus thuringiensis:A story of a successfulbioinsecticide[J].Insect Biochemistry and Molecular Biology,2011,41(7):423-431.
    [21] Kumar S, Chandra A, Pandey K C. Bacillus thuringiensis(Bt) transgenic crop: Anenvironment friendly insect-pest management strategy[J].Journal of Environmental Biology,2008,29(5):641-653.
    [22] Meissle M,Romeis J,Bigler F.Bt maize and integrated pest management-a Europeanperspective[J].Pest Management Science,2011,67(9):1049-1058.
    [23] Bravo A,Gill S S,Soberón M.Mode of action of Bacillus thuringiensis Cry and Cyt toxinsand their potential for insect control[J].Toxicon,2007,49(4):423-435.
    [24] Schwember A R.An update on genetically modified crops[J].Ciencia e InvestigaciónAgraria,2008,35(3):231-250.
    [25] Shelton A M,Zhao J Z,Roush R T.Economic,ecological,food safety,and socialconsequences of the deployment of Bt transgenic plants[J].Annual Review of Entomology,2002,47(1):845-881.
    [26]王继磊,刘迪秋,丁元明,等.Bt转基因抗虫植物研究进展[J].生物学杂志,2010,27(4):75-78.
    [27]陈洁君,张维,宛煜嵩,等.全球转基因作物发展现状及趋势[J].农业生物技术学报,2011,19(2):369-374.
    [28] Gatehouse J A.Biotechnological prospects for engineering insect-resistant plants[J].PlantPhysiology,2008,146(3):881-887.
    [29] Kim E H,Suh S C,Park B S,et al.Chloroplast-targeted expression of synthetic cry1Ac intransgenic rice as an alternative strategy for increased pest protection[J].Planta,2009,230(2):397-405.
    [30] Knowles B H. Mechanism of action of Bacillus thuringiensis insecticidald-endotoxins[J].Advances in Insect Physiology,1994,24:275-308.
    [31] Schwartz J-L,Juteau M,Grochulski P,et al.Restriction of intramolecular movements withinthe Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering[J].FEBSLetters,1997,410(2):397-402.
    [32] Gazit E,La Rocca P,Sansom M S P et al.The structure and organization within the membraneof the helices composing the pore-forming domain of Bacillus thuringiensis δ-endotoxin areconsistent with an “umbrella-like” structure of the pore[J].Proceedings of the National Academyof Sciences,1998,95(21):12289-12294.
    [33] Xue J,Liang G M,Crickmore N,et al.Cloning and characterization of a novel Cry1A toxinfrom Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteraninsects[J].FEMS Microbiology Letters,2008,280(1):95-101.
    [34] Song F P,Zhang J,Gu A X,et al.Identification of cry1I-type genes from Bacillusthuringiensis strains and characterization of a novel cry1I-type gene[J]. Applied andEnvironmental Microbiology,2003,69(9):5207-5211.
    [35] Xu L,Wang Z,Zhang J,et al.Cross-resistance of Cry1Ab-selected Asian corn borer to otherCry toxins[J].Journal of Applied Entomology,2010,134(5):429-438.
    [36] Fromm M E,Morrish F,Armstrong C et al.Inheritance and expression of chimeric genes inthe progeny of transgenic maize plants[J].Nature Biotechnology,1990,8(9):833-839.
    [37] Gordon-Kamm W J,Spencer T M,Mangano M L,et al.Transformation of maize cells andregeneration of fertile transgenic plants[J].The Plant Cell,1990,2(7):603-618.
    [38]丁群星,谢友菊,戴景瑞,等.用子房注射法将Bt毒蛋白基因导入玉米的研究[J].中国科学,1993,23(7):707-713.
    [39]王国英,杜天兵,张宏,等.用基因枪将Bt毒蛋白基因转入玉米及转基因植株再生[J].中国科学,1995,25(1):71-76.
    [40]张宏,许宁.超声波介导法转化玉米愈伤组织及可育转基因植株的获得[J].中国科学,1997,27(2):162-167.
    [41]王罡,杜娟.用花粉管道法将Bt杀虫基因导入玉米自交系的研究[J].玉米科学,2002,10(1):36-37.
    [42]朱常香,梁新明.抗虫,抗除草剂转基因玉米的获得及遗传研究[J].山东农业大学学报,2002,33(2):120-125.
    [43]周逢勇,王国英,谢友菊,等.玉米自交系P9-10遗传转化体系的建立[J].科学通报,1998,43(23):2517-2521.
    [44]李慧芬,刘翔,曲强,等.转抗虫融合基因(cry1Ac3-cpti)玉米(Zea mays L.)植株的获得及其抗虫性分析[J].自然科学进展,2002,12(1):37-40.
    [45]渠柏艳,于海清,韩兆雪,等.可去除选择标记的转Bt基因抗虫玉米研究[J].分子植物育种,2004,2(5):649-653.
    [46]梁雪莲,郭平毅,孙毅,等.玉米3种非组培转基因方法转化外源bar基因研究[J].作物学报,2005,31(12):1648-1653.
    [47]沈世华,张秀君.玉米基因转化的离体子房注射及其转基因植株的鉴定[J].植物学报,2001,43(10):1055-1057.
    [48]张荣,王国英.根癌农杆菌介导的玉米遗传转化体系的建立[J].农业生物技术学报,2001,9(1):45-48.
    [49]李圣彦,郎志宏,朱莉,等.利用密码子优化提高Bt crylAh基因在转基因玉米(Zea maysL.)中的表达[J].中国农业科技导报,2012,13(6):20-26.
    [50]孙鹤.连接肽2A和LP4/2A在玉米中的剪切分析及抗虫耐除草剂转基因玉米的获得
    [D].北京:中国农业科学院,2012.
    [51]王悦冰,郎志宏,张杰,等.利用ubil内含子增强Bt cry1Ah基因在转基因玉米中的表达[J].科学通报,2009,53(17):2041-2046.
    [52]岳同卿,郎志宏,王延锋,等.转Bt cry1Ah基因抗虫玉米的获得及其遗传稳定性分析[J].农业生物技术学报,2010,18(4):638-644.
    [53]赫福霞.抗虫/耐草甘膦多价转基因玉米的研究[D].哈尔滨:东北农业大学,2008.
    [54]李余良,胡建广.转基因玉米研究进展[J].中国农学通报,2006,22(2):71-75.
    [55]刘源霞,兰进好,杜景平,等.转基因玉米研究进展[J].山东农业科学,2008,6:21-24.
    [56]郭嘉,孙传波,陶蕊,等.基因枪共转化法获得玉米转基因植株的研究[J].玉米科学,2012,20(001):44-47.
    [57]尹祥佳,翁建峰,谢传晓,等.玉米转基因技术研究及其应用[J].作物杂志,2010,(6):1-9.
    [58]李志亮,吴忠义,杨清,等.花粉管通道法在玉米基因工程改良中的应用[J].玉米科学,2010,(4):71-73.
    [59] Shou H,Frame B R,Whitham S A,et al.Assessment of transgenic maize events producedby particle bombardment or Agrobacterium-mediated transformation[J].Molecular Breeding,2004,13(2):201-208.
    [60]林清,吴红,周幼昆,等.转基因玉米研究现状及发展趋势[J].南方农业,2012,6(9)12-16.
    [61] Ishida Y,Saito H,Ohta S,et al.High efficiency transformation of maize (Zea mays L.)mediated by Agrobacterium tumefaciens[J].Nature Biotechnology,1996,14(6):745-750.
    [62] Escudero J,Neuhaus G,Schl ppi M,et al.T-DNA transfer in meristematic cells of maizeprovided with intracellular Agrobacterium[J].The Plant Journal,1996,10(2):355-360.
    [63]王宏伟,梁业红,史振声,等.农杆菌介导玉米幼胚遗传转化体系的研究[J].玉米科学,2011,19(3):73-75.
    [64]孙传波,郭嘉,陶蕊,等.农杆菌介导玉米遗传转化体系的研究[J].中国农学通报,2012,28(36):71-75.
    [65] Sidorov V, Gilbertson L, Addae P, et al. Agrobacterium-mediated transformation ofseedling-derived maize callus[J].Plant Cell Reports,2006,25(4):320-328.
    [66] Wang J,Sun Y,Li Y.Maize (Zea mays) genetic transformation by co-cultivating germinatingseeds with Agrobacterium tumefaciens[J].Biotechnology and Applied Biochemistry,2007,46(1):51-55.
    [67]张明义,张彦芹,杨丽莉,等.农杆菌介导法向玉米萌发种子转化bar基因的研究[J].生物技术通报,2011,(5):80-86.
    [68] Reyes F C,Sun B M,Guo,H N,et al.Agrobacterium tumefaciens-mediated transformationof maize endosperm as a tool to study endosperm cell biology[J].Plant Physiology,2010,153(2):624-631.
    [69]李学红,程贯召,高明刚,等.农杆菌介导法将Ts DREB2A基因导入玉米的研究[C].北京:细胞活动生命活力——中国细胞生物学学会全体会员代表大会暨第十二次学术大会论文摘要集,2011.
    [70] Zhao Z Y,Gu W N,Cai T S,et al.High throughput genetic transformation mediated byAgrobacterium tumefaciens in maize[J].Molecular Breeding,2002,8(4):323-333.
    [71] Frame B R,McMurray J M,Fonger T M,et al.Improved Agrobacterium-mediatedtransformation of three maize inbred lines using MS salts[J].Plant Cell Reports,2006,25(10):1024-1034.
    [72] Vega J M,Yu W C,Han F P,et al.Improvement of Agrobacterium-mediated transformationin Hi-II maize (Zea mays) using standard binary vectors[J].Plant Cell Reports,2008,27(2):297-305.
    [73] Holford P,Hernandez N,Newbury H.Factors influencing the efficiency of T-DNA transferduring co-cultivation of Antirrhinum majus with Agrobacterium tumefaciens[J].Plant Cell reports,1992,11(4):196-199.
    [74] Frame B R, Shou H, Chikwamba R K, et al. Agrobacterium tumefaciens-mediatedtransformation of maize embryos using a standard binary vector system[J].Plant Physiology,2002,129(1):13-22.
    [75]方永丰,李永生,彭云玲,等.农杆菌介导Chi-linker-Glu融合基因和bar基因转化玉米茎尖的研究[J].草业学报,2012,21(5):69-76.
    [76] Frame B,Main M,Schick R,et al.Genetic transformation using maize immature zygoticembryos[J].Methods in Molecular Biology,2011,710:327-341.
    [77] Ombori O,Muoma J V O,Machuka J.Agrobacterium-mediated genetic transformation ofselected tropical inbred and hybrid maize (Zea mays L.) lines[J].Plant Cell,Tissue and OrganCulture (PCTOC),2012,113:11-23.
    [78] Vega J M,Yu W C,Han FG,et al.Agrobacterium-mediated transformation of maize (Zeamays) with Cre-lox site specific recombination cassettes in BIBAC vectors[J].Plant MolecularBiology,2008,66(6):587-598.
    [79] Vaeck M, Reynaerts A, H fte H, et al. Transgenic plants protected from insectattack[J].Nature,1987,328:33-37.
    [80] Arencibia A,Vázquez R I,Prieto D,et al.Transgenic sugarcane plants resistant to stem borerattack[J].Molecular Breeding,1997,3(4):247-255.
    [81] Joshi C P.Putative polyadenylation signals in nuclear genes of higher plants:a compilationand analysis[J].Nucleic Acids Research,1987,15(23):9627-9640.
    [82] Diehn S H,Chiu W L,De Rocher E J,et al.Premature Polyadenylation at Multiple Siteswithin a Bacillus thuringiensis Toxin Gene-Coding Region[J].Plant Physiology,1998,117(4):1433-1443.
    [83]Dean C,Tamaki S,Dunsmuir P,et al.mRNA transcripts of several plant genes arepolyadenylated at multiple sites in vivo[J].Nucleic Acids Research,1986,14(5):2229-2240.
    [84] Shaw G,Kamen R.A conserved AU sequence from the3'untranslated region of GM-CSFmRNA mediates selective mRNA degradation[J].Cell,1986,46(5):659-667.
    [85] Ohme-Takagi M,Taylor C B,Newman T C,et al.The effect of sequences with high AUcontent on mRNA stability in tobacco[J].Proceedings of the National Academy of Sciences,1993,90(24):11811-11815.
    [86] Campbell W H, Gowri G. Codon usage in higher plants, green algae, andcyanobacteria[J].Plant Physiology,1990,92(1):1-11.
    [87] Murray E E,Lotzer J,Eberle M.Codon usage in plant genes[J].Nucleic Acids Research,1989,17(2):477-498.
    [88] Liu D.Design of gene constructs for transgenic maize[J].Methods Molecular Biology,2009,526:3-20.
    [89]陈惠,赵海霞,王红宁,等.植酸酶基因中稀有密码子的改造提高其在毕赤酵母中的表达量[J].中国生物化学与分子生物学报,2005,21(2):171-175.
    [90]罗会颖,姚斌,袁铁铮,等.来源于Escherichia coli的高比活植酸酶基因的高效表达[J].生物工程学报,2004,20(1):78-84.
    [91] Perlak F J,Fuchs R L,Dean D A,et al.Modification of the coding sequence enhances plantexpression of insect control protein genes[J].Proceedings of the National Academy of Sciences,1991,88(8):3324-3328.
    [92] Perlak F J,Stone T B,Muskopf Y M,et al.Genetically improved potatoes:protection fromdamage by Colorado potato beetles[J].Plant Molecular Biology,1993,22(2):313-321.
    [93] Weng L X,Deng H H,Xu J L,et al.Regeneration of sugarcane elite breeding lines andengineering of stem borer resistance[J].Pest Management Science,2006,62(2):178-187.
    [94] Weng L X,Deng H H,Xu J L,et al.Transgenic sugarcane plants expressing high levels ofmodified cry1Ac provide effective control against stem borers in field trials[J].TransgenicResearch,2011,20(4):759-772.
    [95] Jabeen R,Khan M S,Zafar Y,et al.Codon optimization of cry1Ab gene for hyper expressionin plant organelles[J].Molecular Biology Reports,2010,37(2):1011-1017.
    [96] Verma D,Daniell H.Chloroplast vector systems for biotechnology applications[J].PlantPhysiology,2007,145(4):1129-1143.
    [97] Kim S,Lee D-S,Choi I S,et al.Arabidopsis thaliana Rubisco small subunit transit peptideincreases the accumulation of Thermotoga maritima endoglucanase Cel5A in chloroplasts oftransgenic tobacco plants[J].Transgenic Research,2010,19(3):489-497.
    [98] Li H M,Chiu C C.Protein transport into chloroplasts[J].Annual Review of Plant Biology,2010,61:157-180.
    [99] Wong E Y,Hironaka C M,Fischhoff D A.Arabidopsis thaliana small subunit leader andtransit peptide enhance the expression of Bacillus thuringiensis proteins in transgenicplants[J].Plant Molecular Biology,1992,20(1):81-93.
    [100]Jang I C,Nahm B H,Kim J K.Subcellular targeting of green fluorescent protein to plastidsin transgenic rice plants provides a high-level expression system[J].Molecular Breeding,1999,5(5):453-461.
    [101]Gomord V,Faye L.Signals and mechanisms involved in intracellular transport of secretedproteins in plants:Targeting and glycosylation of plant secretory proteins[J].Plant Physiology andBiochemistry,1996,34(2):165-181.
    [102]柳小庆,陈茹梅.增强外源基因在转基因植物中表达的策略[J].中国农业科技导报,2012,14(1):76-84.
    [103]Artsaenko O,Kettig B,Fiedler U,et al.Potato tubers as a biofactory for recombinantantibodies[J].Molecular Breeding,1998,4(4):313-319.
    [104]Conrad U,Fiedler U,Artsaenko O,et al.High-level and stable accumulation of single-chainFv antibodies in plant storage organs[J].Journal of Plant Physiology,1998,152(6):708-711.
    [105]邓朝阳,宋贵生,徐军望,等.通过细胞内的靶向定位大幅度提高外源蛋白在转基因植株的积累水平[J].植物学报,2004,45(9):1084-1089.
    [106]Murashige T,Skoog F.A revised medium for rapid growth and bio assays with tobacco tissuecultures[J].Physiologia Plantarum,1962,15(3):473-497.
    [107]郎志宏.苏云金芽孢杆菌cry8Ca基因的活性分析及在转基因烟草中的表达[D].北京:中国农业科学院,2005.
    [108]Porebski S,Bailey L G,Baum B R.Modification of a CTAB DNA extraction protocol forplants containing high polysaccharide and polyphenol components[J].Plant Molecular BiologyReporter,1997,15(1):8-15.
    [109]Fan P,Wang X,Kuang T,et al.An efficient method for the extraction of chloroplast proteinscompatible for2-DE and MS analysis[J].Electrophoresis,2009,30(17):3024-3033.
    [110]Phee B K,Cho J H,Park S,et al.Proteomic analysis of the response of Arabidopsischloroplast proteins to high light stress[J].Proteomics,2004,4(11):3560-3568.
    [111]Chu C C.Establishment of an efficient medium for anther culture of rice through comparativeexperiments on the nitrogen sources[J].Scientia Sinica,1975,18:659-668.
    [112]Livak K.ABI Prism7700sequence detection system[J].User bulletin,1997,2:1-36.
    [113]Vinogradov A E.DNA helix:the importance of being GC-rich[J].Nucleic Acids Research,2003,31(7):1838-1844.
    [114]Kudla G,Lipinski L,Caffin F,et al.High guanine and cytosine content increases mRNAlevels in mammalian cells[J].PLoS biology,2006,4(6):933-942.
    [115]Zhang S,Warkentin D,Sun B,et al.Variation in the inheritance of expression amongsubclones for unselected (uidA) and selected (bar) transgenes in maize (Zea maysL.)[J].Theoretical and Applied Genetics,1996,92(6):752-761.
    [116]Zhang Y,Yin X Y,Yang,A F,et al.Stability of inheritance of transgenes in maize (Zeamays L.) lines produced using different transformation methods[J].Euphytica,2005,144(1):11-22.
    [117]Dong H,Li W.Variability of endotoxin expression in Bt transgenic cotton[J].Journal ofAgronomy and Crop Science,2007,193(1):21-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700