用户名: 密码: 验证码:
NSCs三维培养及其微流控动态模型的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经干细胞(Neural stem cells, NSCs)是一类能够自我更新,并具有多向分化潜能的细胞。它的发现为深入研究神经系统的发育、神经退行性疾病治疗以及受损神经组织的临床移植带来新的希望。而要实现NSCs的各种潜能则必须对其各种生理生化特性有正确的认识与了解。因此,体外构建与体内微环境相似的NSCs模型是深入研究NSCs各种生理机制的重要方法与手段,已成为神经科学与神经组织工程研究领域的热点。
     传统的NSCs体外细胞模型主要采用的是二维单层贴壁培养法和“神经球”悬浮培养法,细胞无法真正体现其在体内的生物学特性与功能。而以生物支架为基础的细胞三维培养则被认为更加接近哺乳动物体内真实微环境,已经成为体外研究NSCs增殖与分化机制、药物及环境毒素筛选与评价以及构建神经组织替代物的首选模型。目前,体外构建NSCs三维类神经组织的研究,在国内外还处于实验探索阶段,没有标准化的实验方法。因此,本文主要在NSCs体外三维培养方式及其生长与分化调控方面,开展了以下工作:
     (1)获取原代小鼠NSCs(mNSCs)并对其加以鉴定。通过原代培养方法从孕龄14d的昆明种小鼠胎脑的海马组织中获得mNSCs,考察了5个不同的接种密度对mNSCs生长趋势、所形成的“神经球”大小的分布以及扩增倍数的影响。最终确定了原代mNSCs的最佳接种密度为1×105cells/mL。传代培养的mNSCs能够稳定表达NSCs特征蛋白(Nestin和Sox2),经10%胎牛血清诱导能够分化成神经元(β-tubulin-Ⅲ阳性)、星形胶质细胞(GFAP阳性)以及少突胶质细胞(O1阳性),表明本实验分离获得的mNSCs具有自我更新与多向分化潜能。
     (2)筛选并确定一种促进nNSCs体外扩增的无血清培养基MA。三维模型需要足够的细胞数量,因此本研究采用正交试验筛选并确定了能够提高mNSCs扩增倍数的培养基添加组分及其浓度与比例,MA显著地促进了mNSCs的增殖,细胞在对数增长期的最大密度可达到(7.25±0.23)×105cells/mL (p<0.01),是初始接种密度((1.0±0.1)×105cells/mL)的7.25倍。同时,免疫荧光染色显示,MA培养的mNSCs其Nestin的阳性表达率为94.2±3.5%,说明优化后的培养基能很好地维持mNSCs的干细胞特性。同时,实验结果显示,MA中葡萄糖/谷氨酰胺配比对mNSCs生长有良好的促进作用,进一步确定了MA是一种适用于mNSCs体外扩增的新型优良培养基。
     (3)提出一种基于两步培养的体外构建mNSCs三维静态模型的实验方法。该方法以0.5mg/mL的Ⅰ型胶原水凝胶为支架材料,采用两步培养法模拟体内神经发生的不同阶段的生理微环境。培养初期采用添加了EGF/bFGF/BSA/Lipids的DMEM/F12/RPMI-1640的促mNSCs增殖的培养基MA,待细胞形成直径至50-100μm左右的团簇时,将培养基MA更换为含有bFGF和BDNF生长因子的NB/B27条件培养基(MC)。团簇中的细胞开始沿着支架迁移,直到彼此相连形成神经组织样结构。此构建物内细胞生长状态良好且分布均匀,活率在82%左右,14.17±2.62%细胞仍保持mNSCs特性,而神经元比率为40.93±1.85%,星形胶质细胞比率为27.13±1.63%。
     (4)建立了一种基于微流控技术的NSCs三维动态培养方法。mNSCs三维培养技术与微流控技术相结合,设计并建立了一套适合nNSCs三维生长的微柱阵列式微流体芯片培养系统。实现了以胶原水凝胶为支架材料的mNSCs三维复合物在微流体芯片上的构建与生长。结果显示,利用静态培养条件下建立的两步法在芯片上构建的mNSCs三维复合物中有NSCs特征蛋白Nestin的表达,同时具备分化成神经元和星形胶质细胞的能力;对一个培养周期内的细胞代谢产物进行取样分析,芯片三维培养体系中乳酸的浓度始终稳定在1.0mmol/mL以内,谷氨酰胺浓度维持在2.0mmol/mL左右,为mNSCs的生长提供一个稳定的生长环境;而三维静态培养条件下乳酸浓度随着半量换液在2.5~4.5mmol/mL间波动,谷氨酰胺浓度也会随着培养时间不断消耗需要人工补加。这种两步法构建芯片式mNSCs三维模型,操作简便,重复性好,成功率高。便于倒置显微镜下观测,有望成为新型药物筛选或环境毒素监测的神经组织替代物。
Neural stem cells (NSCs) are self-renewable and have the potential to differentiate in multi-directions. The discovery of NSCs has brought great hope for further research on the development of the nervous system, the treatment of neurodegenerative diseases, and clinical transplantations. However, the mechanisms of NSCs proliferation and differentiation are still not well understood. Constructing NSCs model in vitro can be a valuable tool for exploring these mechanisms, which may contribute a lot to the fields of neuroscience and neural tissue engineering.
     Traditional in-vitro NSCs culture methods include monolayer culture and the "neurosphere" suspension culture. However, these methods fail to embody the biological characteristics and functions of NSCs in vivo. Growing cells in three-dimensional (3D) matrix is considered a more meaningful method that better simulates the microenvironment of mammalian brain. Constructing3D NSCs model in vitro would provide great value to theoretical and practical applications for promoting the studies of mammalian nervous system development, clinical transplantation of nervous tissues, and drug screening. Currently, the research on3D NSCs culture is still at the stage of experimental research, and there are no standard experimental methods. This paper mainly focuses on three-dimension NSCs culture in microfluidic chip systems, and relevant proliferation and differentiation control issues. For this purpose, the following work has been carried out.
     Mouse NSCs (mNSCs) were isolated from the hippocampus of embryonic day-14Kunming mice fetal brain by the method of primary culture. Then, the growth trend and the distribution of neurosphere sizes of five mNSCs suspension cultures with different cell density were investigated. The results showed that the best inoculation density of the primary mNSCs was1×105cells/mL. Subcultured cells could stably express NSCs characterized protein (Nestin and Sox2) and were able to differentiate into neurons (β-tubulin-positive), astrocytes (GFAP-positive). and oligodendrocytes (01-positive) induced by10%fetal calf serum (FCS) medium.
     After careful screening, one serum-free medium (MA) was selected for mNSCs amplification in vitro. In order to obtain enough mNSCs for constructing the three-dimension NSCs model, orthogonal tests were used to screen and determine the optimum concentration and ratio of the added components in culture medium MA that can promote mNSCs amplification. The tests displayed that the maximum cell amplification result of the mNSCs cultured in MA can be as high as (7.25±0.23)×105cells/mL (p<0.01).7.25times of the initial inoculum density ((1.0±0.12)×105cells/mL). Besides, immunofluorescence staining showed that the Nestin positive ratio of the mNSCs cultured in the MA was94.2±3.5%. which indicated that the mNSCs cultured in MA can maintain the stem cell characteristics. Also, the glucose/glutamine ratio in MA was proved to be perfect for the growth and metabolism of mNSCs. Which reconfirmed MA to be an excellent medium which was appropriate for mNSCs amplification in vitro.
     A two-step method for constructing3D mNSCs model under static conditions in vitro is proposed. The two-steps culture method was used to simulate the physiological environment of different phases of neurogenesis in vivo. The3D scaffold was0.5ing/ml, type1collagen hydrogel based. Firstly, the medium consisting of DMEM/F12/RPMI1640(1:1:1) supplemented with EGF/bFGF/BSA/Lipids was used to expand the mNSCs embedded in collagen in gel in96-well plates until the average diameter of cell clusters reached50-100μm. Secondly, the initial medium was replaced by medium MC. which is NB/B-27supplemented with bFGF and BDNF. The results showed that the cells in collagen presented neural-like morphology and maintained live cell rate around82%. The cell-collagen constructs were examined by immunofluorescence and immunohistochemistry tests, which showed14.17±2.6%cells still maintained the character of mNSCs.40.93±1.8%cells differentiated into neurons, and27.13±1.6%cells differentiated into astrocytes. Our3D neural-like tissue constructs were similar to the neural tissues in morphology and cell compositions.
     Finally, the lnicrofluidic cell culture system was used for the three-dimension mNSCs culture. A microfluidie chip with micro-fabricated pillar arrays was designed for the in-situ formation and immobilization of3D mNSCs-collagen construction. The cell-collagen constructs in mierolluidic chip were detected by immunofluorescence test after7days of culture. And. the concentration changes ol lactic acid and glutamine in the3D culture systems were also monitored. The results showed that part of the eells in the center of the3D constructs expressed Nestin protein, and others differentiated into neurons and aslrocytes. which indicated that mNSCs can be self-renewable and differentiate under engineered3D microfluidics culture system. The concentration of lactic acid was steadily controlled below1.0mmol/ml and the concentration ofglutamine was remained around2.0mmol/tnL. which proves that the mierolluidic cell culture system can provide a stable microenvironment for3D mNSCs. In contrast, under the static culture condition, the concentration of lactic acid fluctuated between2.5~4.5rnmol/mL with batch and medium exchange modes, and the concentration of glutamine decreased with cells consumption and needed to be supplemented constantly. The two-step method is easy, stable and fast in building3D mNSCs models on microfluidic chip. And. the3D cell constructs in the chip can be observed clearly under inverted microscope. More importantly, the3D mNSCs model proposed here is similar to the neural tissue in morphology and cell compositions. Therefore, it has great potential for safety pharmacology, drug discovery and toxicity testing.
引文
[1]Hardy J, Gwinn-Hardy K. Genetic classification of primary neurodegenerative disease [J]. Science, 1998,282(5391):1075-1079.
    [2]Reynolds B A, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system [J]. Science,1992,255(5052):1707-1710.
    [3]Achanta P, Capilla-Gonzalez V, Purger D, et al. Subventricular zone localized irradiation affects the generation of proliferating neural precursor cells and the migration of neuroblasts [J]. Stem Cells, 2012,30(11):2548-2560.
    [4]Vazey E M, Dottori M, Jamshidi P, et al. Comparison of transplant efficiency between spontaneously derived and noggin-primed human embryonic stem cell neural precursors in the quinolinic acid rat model of huntington's disease [J]. Cell Transplant,2010,19(8):1055-1062.
    [5]Gage F H. Molecular and cellular mechanisms contributing to the regulation, proliferation and differentiation of neural stem cells in the adult dentate gyrus [J]. Keio J Med,2010,59(3):79-83.
    [6]Gomez-Gaviro M V,Lovell-Badge R, Fernandez-Aviles F, et al. The vascular stem cell niche[J].J Cardiovasc Transl Res.2012.5(5):618-630.
    [7]Kallos M S, Behie L A. Inoculation and growth conditions for high-cell-density expansion of mammalian neural stem cells in suspension bioreactors[J]. Biotechnol Bioeng,1999,63(4):473-483.
    [8]Sivakumar K C, Dhanesh S B, Shobana S, et al. A systems biology approach to model neural stem cell regulation by notch, shh, wnt, and egf signaling pathways [J]. OMICS,2011,15(10):729-737.
    [9]Gage F H. Mammalian neural stem cells [J]. Science,2000,287(5457):1433-1438.
    [10]Theus M H, Ricard J, Liebl D J. Reproducible expansion and characterization of mouse neural stem/progenitor cells in adherent cultures derived from the adult subventricular zone [J]. Curr Protoc Stem Cell Biol,2012. Chapter 2:Unit 2D 8.
    [11]Ananthanarayanan B, Little L, Schaffer D V, et al. Neural stem cell adhesion and proliferation on phospholipid bilayers functionalized with rgd peptides [J]. Biomaterials,2010,31 (33):8706-8715.
    [12]Zhang Y, Liu J, Yao S, et al. Nuclear factor kappa b signaling initiates early differentiation of neural stem cells [J]. Stem Cells,2011,30(3):510-524.
    [13]Pal R, Mamidi M K. Das A K. et al. Comparative analysis of cardiomyocyte differentiation from human embryonic stem cells under 3-d and 2-d culture conditions[J].J Biosci Bioeng,2012, 115(2):200-206.
    [14]Justice B A, Badr N A, Felder R A.3d cell culture opens new dimensions in cell-based assays[J]. Drug Discov Today,2009,14(1-2):102-107.
    [15]Goldman S A, Chen Z. Perivascular instruction of cell genesis and fate in the adult brain [J]. Nat Neurosci,2011,14(11):1382-1389.
    [16]Moore K A, Lemischka I R. Stem cells and their niches [J]. Science,2006,311(5769):1880-1885.
    [17]Grandel H, Brand M. Comparative aspects of adult neural stem cell activity in vertebrates [J]. Dev Genes Evol,2012,223(1-2):131-147.
    [18]Bautch V L. Stem cells and the vasculature [J]. Nat Med,2011,17(11):1437-1443.
    [19]Adams D H, Gahan P B. Mechanisms involved in living systems organisation, especially the programming necessary to enable the construction of individuals in three dimensions [J]. Med Hypotheses,1994,43(1):46-54.
    [20]Pek Y S, Wan A C, Ying J Y. The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3d thixotropic gel [J]. Biomaterials,2009,31(3):385-391.
    [21]Cukierman E, Pankov R, Yamada K M. Cell interactions with three-dimensional matrices [J]. Curr Opin Cell Biol,2002,14(5):633-639.
    [22]Smalley K S, Lioni M, Herlyn M. Life isn't flat:Taking cancer biology to the next dimension [J]. In Vitro Cell Dev Biol Anim,2006,42(8-9):242-247.
    [23]Li Z, Boubriak O A, Urban J P, et al. Microdialysis for monitoring the process of functional tissue culture [J]. Int J Artif Organs,2006,29(9):858-865.
    [24]Schindler M, Nur E K A, Ahmed I, et al. Living in three dimensions:3d nanostructured environments for cell culture and regenerative medicine [J]. Cell Biochem Biophys,2006, 45(2):215-227.
    [25]Sowa M B, Chrisler W B, Zens K D, et al. Three-dimensional culture conditions lead to decreased radiation induced cytotoxicity in human mammary epithelial cells [J]. Mutat Res,2010, 687(1-2):78-83.
    [26]Lai Y, Asthana A, Cheng K. et al. Neural cell 3d microtissue formation is marked by cytokines' up-regulation [J]. PLoS One,2011,6(10):e26821.
    [27]Drago A, Crisafulli C, Sidoti A, et al. The molecular interaction between the glutamatergic, noradrenergic, dopaminergic and serotoninergic systems informs a detailed genetic perspective on depressive phenotypes [J]. Progress in Neurobiology,2011,94(4):418-460.
    [28]Pan L, Ren Y, Cui F, et al. Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold [J]. J Neurosci Res,2009,87(14):3207-3220.
    [29]Bianco P, Robey P G. Stem cells in tissue engineering [J]. Nature,2001,414(6859):118-121.
    [30]Zandonella C. Tissue engineering:The beat goes on [J]. Nature,2003,421(6926):884-886.
    [31]Yoon H H, Bhang S H, Shin J Y, et al. Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells [J]. Tissue Eng Part A,2012,18(19-20):1949-1956.
    [32]Ramasamy T S, Yu J S. Selden C, et al. Application of three-dimensional culture conditions to human embryonic stem cell-derived definitive endoderm cells enhances hepatocyte differentiation and functionality [J]. Tissue Eng Part A,2012,19(3-4):360-367.
    [33]Quaegebeur A, Lange C. Carmeliet P. The neurovascular link in health and disease:Molecular mechanisms and therapeutic implications [J]. Neuron,2011,71(3):406-424.
    [34]He H, Li M W, Niu C S. The pathological characteristics of glioma stem cell niches [J]. J Clin Neurosci,2011,19(1):121-127.
    [35]Rodrigues C A, Fernandes T G, Diogo M M, et al. Stem cell cultivation in bioreactors [J]. Biotechnol Adv,2011,29(6):815-829.
    [36]Lichtenberg A, Dumlu G, Walles T, et al. A multifunctional bioreactor for three-dimensional cell (co)-culture [J]. Biomaterials,2005,26(5):555-562.
    [37]Zhang Q, Austin R H. Applications of microfluidics in stem cell biology [J]. Bionanoscience,2013, 2(4):277-286.
    [38]Whitesides G M. The origins and the future of microfluidics [J]. Nature,2006,442(7101):368-373.
    [39]Choudhury D, Mo X, Iliescu C, et al. Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics [J]. Biomicrofluidics,2011,5(2):22203.
    [40]Mu X, Zheng W, Xiao L, et al. Engineering a 3d vascular network in hydrogel for mimicking a nephron[J]. Lab Chip,2013,13(8):1612-1618.
    [41]Torisawa Y S, Shiku H, Yasukawa T, et al. Multi-channel 3-d cell culture device integrated on a silicon chip for anticancer drug sensitivity test [J]. Biomaterials,2005,26(14):2165-2172.
    [42]孙久荣.脑科学导论(M),北京:北京大学出版社,2001.
    [43]Okada Y, Matsumoto A, Shimazaki T, et al. Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell-derived neural stem/progenitor cells [J]. Stem Cells, 2008,26(12):3086-3098.
    [44]Favaro R. Valotta M, Ferri A L, et al. Hippocampal development and neural stem cell maintenance require sox2-dependent regulation of shh [J]. Nat Neurosci,2009,12(10):1248-1256.
    [45]Farkas L M, Huttner W B. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development [J]. Curr Opin Cell Biol.2008,20(6):707-715.
    [46]Eriksson P S, Perfilieva E, Bjork-Eriksson T. et al. Neurogenesis in the adult human hippocampus[J]. Nat Med,1998,4(11):1313-1317.
    [47]Brus M. Meurisse M. Franceschini I, et al. Evidence for cell proliferation in the sheep brain and its down-regulation by parturition and interactions with the young [J]. Horm Behav,2010. 58(5):737-746.
    [48]Fuentealba L C, Obernier K, Alvarez-Buylla A. Adult neural stem cells bridge their niche [J]. Cell Stem Cell.2012.10(6):698-708.
    [49]Low V F. Dragunow M. Tippett L J, et al. No change in progenitor cell proliferation in the hippocampus in huntington's disease [J].2011, Neuroscience,199:577-588.
    [50]Curtis M A, Low V F, Faull R L. Neurogenesis and progenitor cells in the adult human brain:A comparison between hippocampal and subventricular progenitor proliferation [J]. Dev Neurobiol. 2012,72(7):990-1005.
    [51]Petrik D, Lagace D C, Eisch A J. The neurogenesis hypothesis of affective and anxiety disorders:Are we mistaking the scaffolding for the building? [J]. Neuropharmacology,2011,62(1):21-34.
    [52]Winner B. Cooper-Kuhn C M, Aigner R. et al. Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb[J]. Eur J Neurosci.2002,16(9):1681-1689.
    [53]Kernie S G, Parent J M. Forebrain neurogenesis after focal ischemic and traumatic brain injury [J]. Neurobiol Dis,2009,37(2):267-274.
    [54]Marei H E, Ahmed A E, Michetti F, et al. Gene expression profile of adult human olfactory bulb and embryonic neural stem cell suggests distinct signaling pathways and epigenetic control [J]. PLoS One,2012.7(4):e33542.
    [55]Tavazoie M, Van der Veken L, Silva-Vargas V, et al. A specialized vascular niche for adult neural stem cells [J]. Cell Stem Cell,2008.3(3):279-288.
    [56]Temple S. The development of neural stem cells [J]. Nature,2001,414(6859):! 12-117.
    [57]Doe C Q. Neural stem cells:Balancing self-renewal with differentiation [J]. Development,2008, 135(9):1575-1587.
    [58]Chang K C, Wang C, Wang H. Balancing self-renewal and differentiation by asymmetric division: Insights from brain tumor suppressors in drosophila neural stem cells [J]. Bioessays,2012, 34(4):301-310.
    [59]Komitova M, Mattsson B, Johansson B B. et al. Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats [J]. Stroke,2005,36(6):1278-1282.
    [60]Furutachi S, Matsumoto A, Nakayama K I, et al. P57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis [J]. EMBO J.2013,32(7):970-81.
    [61]Joo K M, Jin J, Kang B G, et al. Trans-differentiation of neural stem cells:A therapeutic mechanism against the radiation induced brain damage [J]. PLoS One,2012,7(2):e25936.
    [62]刘靖,曲静,徐晓静,等.神经干细胞迁移的研究进展[J].中国细胞生物学学报,2012,1(03):201-211.
    [63]Suzuki S O, Goldman J E. Multiple cell populations in the early postnatal subventricular zone take distinct migratory pathways:A dynamic study of glial and neuronal progenitor migration [J]. J Neurosci,2003,23(10):4240-4250.
    [64]Noctor S C, Martinez-Cerdeno V, Ivic L, et al. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases [J]. Nat Neurosci.2004,7(2):136-144.
    [65]Sanai N, Nguyen T, Ihrie R A, et al. Corridors of migrating neurons in the human brain and their decline during infancy [J]. Nature,2011,478(7369):382-386.
    [66]Bernier P J, Bedard A, Vinet J, et al. Newly generated neurons in the amygdala and adjoining cortex of adult primates [J]. Proc Natl Acad Sci U S A,2002,99(17):11464-11469.
    [67]Kam M, Curtis M A, McGlashan S R, et al. The cellular composition and morphological organization of the rostral migratory stream in the adult human brain [J]. J Chem Neuroanat,2009,37(3):196-205.
    [68]向云,燕铁斌.脑梗死后内源性神经干细胞激活机制研究进展[J].神经损伤与功能重建,2009,4(05):319-323.
    [69]罗江兵,赵鹏洲,欧英雄,等.神经干细胞在脑损伤模型中的迁移、成活和神经生长因子表达[J].中国微侵袭神经外科杂志,2012,17(05):232-234.
    [70]Tropepe V, Hitoshi S, Sirard C, et al. Direct neural fate specification from embryonic stem cells:A primitive mammalian neural stem cell stage acquired through a default mechanism [J]. Neuron,2001, 30(1):65-78.
    [71]Luo S, Zhang X, Yu M, et al. Folic acid acts through DNA methyltransferases to induce the differentiation of neural stem cells into neurons [J]. Cell Biochem Biophys,2013, DO1 10.1007/S12013-012-9503-6.
    [72]Xiong L, Wang F, Huang X, et al. DNA demethylation regulates the expression of mir-210 in neural progenitor cells subjected to hypoxia [J]. FEBS J,2012,279(23):4318-4326.
    [73]Chittka A, Nitarska J, Grazini U, et al. Transcription factor positive regulatory domain 4 (prdm4) recruits protein arginine methyltransferase 5 (prmt5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation [J]. J Biol Chem,2012, 287(51):42995-43006.
    [74]Gangaraju V K, Lin H. Micrornas:Key regulators of stem cells [J]. Nat Rev Mol Cell Biol,2009, 10(2):116-125.
    [75]Shi Y, Zhao X. Hsieh J, et al. Microrna regulation of neural stem cells and neurogenesis [J]. J Neurosci,2010.30(45):14931-14936.
    [76]Ivey K N, Srivastava D. Micrornas as regulators of differentiation and cell fate decisions [J]. Cell Stem Cell,2010,7(1):36-41.
    [77]Liu C. Teng Z Q, Santistevan N J, et al. Epigenetic regulation of mir-184 by mbd1 governs neural stem cell proliferation and differentiation [J]. Cell Stem Cell,2010,6(5):433-444.
    [78]Wei H, Wang C, Zhang C, et al. Comparative profiling of microrna expression between neural stem cells and motor neurons in embryonic spinal cord in rat [J]. Int J Dev Neurosci.2010.8(6):545-551.
    [79]Panman L. Andersson E, Alekseenko Z. et al. Transcription factor-induced lineage selection of stem-cell-derived neural progenitor cells [J]. Cell Stem Cell,2011,8(6):663-675.
    [80]Stock K. Nolden L, Edenhofer F, et al. Transcription factor-based modulation of neural stem cell differentiation using direct protein transduction [J]. Cell Mol Life Sci.2010.67(14):2439-2449.
    [81| Sansom S N. Griffiths D S. Faedo A. et al. The level of the transcription factor pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis [J]. PLoS Genet, 2009.5(6):e 1000511.
    [82]Nogueira L. Ruiz-Ontanon P. Vazquez-Barquero A, et al. Blockade of the nfkappab pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo [J]. Oncogene, 2011,30(32):3537-3548.
    [83]Li J, Tang Y, Cai D. Ikkbeta/nf-kappab disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes [J]. Nat Cell Biol.2012, 14(10):999-1012.
    [84]Komine O, Nagaoka M, Hiraoka Y, et al. Rbp-j promotes the maturation of neuronal progenitors [J]. Dev Biol.2011,354(1):44-54.
    [85]Hu J G, Wang Y X, Wang H J. et al. Pdgf-aa mediates b104cm-induced oligodendrocyte precursor cell differentiation of embryonic neural stem cells through erk. pi3k. and p38 signaling [J].J Mol Neurosci,2011.46(3):644-653.
    [86]Hu J G. Fu S L, Wang Y X, et al. Platelet-derived growth factor-aa mediates oligodendrocyte lineage differentiation through activation of extracellular signal-regulated kinase signaling pathway [J]. Neuroscience,2008.151 (1):138-147.
    [87]Kageyama R, Ohtsuka T, Hatakeyama J, et al. Roles of bhlh genes in neural stem cell differentiation [J]. Exp Cell Res.2005,306(2):343-348.
    [88]Decimo I, Bifari F, Krampera M, et al. Neural stem cell niches in health and diseases [J]. Curr Pharm Des,2012.18(13):1755-1783.
    [89]Johansson S, Price J. Modo M. Effect of inflammatory cytokines on major histocompatibility complex expression and differentiation of human neural stem/progenitor cells [J]. Stem Cells,2008, 26(9):2444-2454.
    [90]Cui Y, Madeddu P. The role of chemokines, cytokines and adhesion molecules in stem cell trafficking and homing [J]. Curr Pharm Des,2011,17(30):3271-3279.
    [91]Schmidt M H, Bicker F, Nikolic I, et al. Epidermal growth factor-like domain 7 (egfl7) modulates notch signalling and affects neural stem cell renewal [J]. Nat Cell Biol,2009,11(7):873-880.
    [92]Zheng W, Nowakowski R S, Vaccarino F M. Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone [J]. Dev Neurosci,2004, 26(2-4):181-196.
    [93]Palmer T D, Markakis E A, Willhoite A R, et al. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult cns [J]. J Neurosci,1999, 19(19):8487-8497.
    [94]Choi K C, Yoo D S, Cho K S, et al. Effect of single growth factor and growth factor combinations on differentiation of neural stem cells [J]. J Korean Neurosurg Soc,2008,44(6):375-381.
    [95]Kirschenbaum B, Goldman S A. Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone [J]. Proc Natl Acad Sci U S A,1995, 92(1):210-214.
    [96]Chen K. Henry R A, Hughes S M, et al. Creating a neurogenic environment:The role of bdnf and fgf2 [J]. Mol Cell Neurosci,2007,36(1):108-120.
    [97]Fan Y J, Wu L L, Li H Y, et al. Differential effects of pro-bdnf on sensory neurons after sciatic nerve transection in neonatal rats [J]. Eur J Neurosci,2008,27(9):2380-2390.
    [98]Kim H, Li Q, Hempstead B L, et al. Paracrine and autocrine functions of brain-derived neurotrophic factor (bdnf) and nerve growth factor (ngf) in brain-derived endothelial cells [J]. J Biol Chem,2004, 279(32):33538-33546.
    [99]Hosomi S, Yamashita T, Aoki M, et al. The p75 receptor is required for bdnf-induced differentiation of neural precursor cells [J]. Biochem Biophys Res Commun,2003,301 (4):1011-1015.
    [100]Kells A P, Henry R A, Hughes S M, et al. Verification of functional aav-mediated neurotrophic and anti-apoptotic factor expression [J]. J Neurosci Methods,2007,161 (2):291-300.
    [101]Taga T, Fukuda S. Role of il-6 in the neural stem cell differentiation [J]. Clin Rev Allergy Immunol, 2005,28(3):249-256.
    [102]Nandi S. Gokhan S, Dai X M, et al. The csf-1 receptor ligands il-34 and csf-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation [J]. Dev Biol,2012,367(2):100-113.
    [103]Nakashima K, Taga T. Mechanisms underlying cytokine-mediated cell-fate regulation in the nervous system [J]. Mol Neurobiol,2002,25(3):233-244.
    [104]Hodge R D, D'Ercole A J, O'Kusky J R. Insulin-like growth factor-i accelerates the cell cycle by decreasing g1 phase length and increases cell cycle reentry in the embryonic cerebral cortex [J]. J Neurosci,2004,24(45):10201-10210.
    [105]朱登纳,贾延劫,王军,等.人胰岛素样生长因子-1基因修饰的神经干细胞移植对缺氧缺血性脑损伤新生大鼠的治疗作用[J].实用儿科临床杂志,2001,26(16):1279-1282.
    [106]Sung R J, Chen S H, Luo C Y, et al. Enhancement of vascular formation but not improvement of ventricular function of infarcted rat hearts by a high dose of adenovirus-carried vegf transgene [J]. Chin J Physiol,2009,52(5 Suppl):384-394.
    [107]Darland D C, Cain J T, Berosik M A, et al. Vascular endothelial growth factor (vegf) isoform regulation of early forebrain development [J]. Dev Biol,2011,358(1):9-22.
    [108]Mani N, Khaibullina A, Krum J M, et al. Vascular endothelial growth factor enhances migration of astroglial cells in subventricular zone neurosphere cultures [J]. J Neurosci Res,2009, 88(2):248-257.
    [109]Kin H M, Hwang D H, Lee J E, et al. Ex vivo vegf delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis, and tissue sparing after spinal cord injury [J]. PLoS One,2009,4(3):e4987.
    [110]Fournier E, Blaikie P, Rosnet O, et al. Role of tyrosine residues and protein interaction domains of she adaptor in vegf receptor 3 signaling [J]. Oncogene,1999,18(2):507-514.
    [111]Gobeske K T, Das S, Bonaguidi M A, et al. Bmp signaling mediates effects of exercise on hippocampal neurogenesis and cognition in mice [J]. PLoS One,2009,4(10):e7506.
    [112]Holzschuh J. Wada N, Wada C, et al. Requirements for endoderm and bmp signaling in sensory neurogenesis in zebrafish [J]. Development,2005,132(16):3731-3742.
    [113]Lim D A, Tramontin A D, Trevejo J M, et al. Noggin antagonizes bmp signaling to create a niche for adult neurogenesis [J]. Neuron,2000,28(3):713-726.
    [114]景乃禾,盛能印,谢治慧.Bmp信号通路在中枢神经系统发育过程中的作用[J].细胞生物学杂志,2009,31(01):2.8.
    [115]Sailer M H, Hazel T G, Panchision D M. et al. Bmp2 and fgf2 cooperate to induce neural-crest-like fates from fetal and adult ens stem cells [J].J Cell Sci,2005, 118(Pt 24):5849-5860.
    [116]齐志国,朱哓峰.不同细胞外基质对神经干细胞分化影响的实验研究[J].黑龙江医药科学.2007,30(03):1-3.
    [117]McBeath R, Pirone D M, Nelson C M, et al. Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment [J]. Dev Cell,2004,6(4):483-495.
    [118]Suh H N, Han H J. Laminin regulates mouse embryonic stem cell migration:Involvement of epacl/rap1 and rac1/cdc42 [J]. Am J Physiol Cell Physiol,2010,298(5):C1159-1169.
    [119]Dityatev A, Seidenbecher C l, Schachner M. Compartmentalization from the outside:The extracellular matrix and functional microdomains in the brain [J]. Trends Neurosci,2010. 33(11):503-512.
    [120]Nguyen-Ngoc K. V, Cheung K J, Brenot A. et al. Ecm microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium[J]. Proc Natl Acad Sci U S A,2012,109(39):E2595-2604.
    [121]Benya P D, Shaffer J D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels [J]. Cell,1982,30(1):215-224.
    [122]Buschmann M D, Gluzband Y A, Grodzinsky A J. et al. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix [J]. J Orthop Res,1992,10(6):745-758.
    [123]Bursac N, Papadaki M, White J A, et al. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties [J]. Tissue Eng,2003, 9(6):1243-1253.
    [124]Drago F, Russo M S, Marazzi R, et al. Atrial tachycardias in patients with congenital heart disease: A minimally invasive simplified approach in the use of three-dimensional electroanatomic mapping [J]. Europace,2011,13(5):689-695.
    [125]Lai Y, Asthana A, Cheng K, et al. Neural cell 3d microtissue formation is marked by cytokines' up-regulation [J]. PLoS One,2011,6(10):e26821.
    [126]Lee G Y, Kenny P A, Lee E H, et al. Three-dimensional culture models of normal and malignant breast epithelial cells [J]. Nat Methods,2007,4(4):359-365.
    [127]Horning J L, Sahoo S K, Vijayaraghavalu S, et al.3-d tumor model for in vitro evaluation of anticancer drugs [J]. Mol Pharm,2008,5(5):849-862.
    [128]王洁,董银英,崔杰峰.三维细胞培养技术在肿瘤基础实验研究中的新进展[J].中华临床医师杂志(电子版),2012,6(10):2738-2741.
    [129]Szot C S, Buchanan C F, Freeman J W, et al.3d in vitro bioengineered tumors based on collagen i hydrogels [J]. Biomaterials,2011,32(31):7905-7912.
    [130]Chen Z, Htay A, Dos Santos W, et al. In vitro angiogenesis by human umbilical vein endothelial cells (huvec) induced by three-dimensional co-culture with glioblastoma cells [J]. J Neurooncol, 2009,92(2):121-128.
    [131]Hori J, Ng T F, Shatos M, et al. Neural progenitor cells lack immunogenicity and resist destruction as allografts [J]. Stem Cells,2003,21(4):405-416.
    [132]Bossolasco P, Cova L, Calzarossa C, et al. Neuro-glial differentiation of human bone marrow stem cells in vitro [J]. Exp Neurol,2005,193(2):312-325.
    [133]Condorelli G, Borello U, De Angelis L, et al. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle:Implications for myocardium regeneration [J]. Proc Natl Acad Sci U S A,2001,98(19):10733-10738.
    [134]da Silva Meirelles L, Chagastelles P C, Nardi N B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues [J]. J Cell Sci,2006,119(Pt 11):2204-2213.
    [135]Potian J A, Aviv H, Ponzio N M, et al. Veto-like activity of mesenchymal stem cells:Functional discrimination between cellular responses to alloantigens and recall antigens [J]. J Immunol,2003, 171(7):3426-3434.
    [136]Salameh A, Dhein S. Effects of mechanical forces and stretch on intercellular gap junction coupling [J]. Biochim Biophys Acta,2012,1828(1):147-156.
    [137]Sellamuthu S, Manikandan R, Thiagarajan R, et al. In vitro trans-differentiation of human umbilical cord derived hematopoietic stem cells into hepatocyte like cells using combination of growth factors for cell based therapy [J]. Cytotechnology,2011,63(3):259-268.
    [138]Xie C, Hu J, Ma H, et al. Three-dimensional growth of ips cell-derived smooth muscle cells on nanofibrous scaffolds [J]. Biomaterials,2011,32(19):4369-4375.
    [139]Labouesse M. Role of the extracellular matrix in epithelial morphogenesis:A view from c. Elegans [J]. Organogenesis,2012,8(2):65-70.
    [140]Hynes R O. The extracellular matrix:Not just pretty fibrils [J]. Science,2009, 326(5957):1216-1219.
    [141]Chun T H, Hotary K B, Sabeh F, et al. A pericellular collagenase directs the 3-dimensional development of white adipose tissue [J]. Cell,2006,125(3):577-591.
    [142]Komosinska-Vassev K. Olczyk P, Winsz-Szczotka K. et al. Plasma biomarkers of oxidative and age-mediated damage of proteins and glycosaminoglycans during healthy ageing:A possible association with ecm metabolism [J]. Mech Ageing Dev,2012,133(8):538-548.
    [143]Lonai P. Epithelial mesenchymal interactions, the ecm and limb development [J]. J Anat,2003, 202(I):43-50.
    [144]Fereol S, Fodil R, Barnat M, et al. Micropatterned ecm substrates reveal complementary contribution of low and high affinity ligands to neurite outgrowth [J]. Cytoskeleton (Hoboken), 2011,68(7):373-388.
    [145]Wang L, Murthy S K, Barabino G A, et al. Synergic effects of crypt-like topography and ecm proteins on intestinal cell behavior in collagen based membranes [J]. Biomaterials,2010, 31(29):7586-7598.
    [146]Choi H J, Sanders T A, Tormos K. V, et al. Ecm-dependent hif induction directs trophoblast stem cell fate via limkl-mediated cytoskeletal rearrangement [J]. PLoS One,2013,8(2):e56949.
    [147]Lee W Y, Wei H J, Lin W W, et al. Enhancement of cell retention and functional benefits in myocardial infarction using human amniotic-fluid stem-cell bodies enriched with endogenous ecm [J]. Biomaterials,2011,32(24):5558-5567.
    [148]Charles-Harris M. Koch M A, Navarro M, et al. A pla/calcium phosphate degradable composite material for bone tissue engineering:An in vitro study [J]. J Mater Sci Mater Med,2008, 19(4):15O3-1513.
    [149]Cont L. Grant D, Scotchford C, et al. Composite pla scaffolds reinforced with pdo fibers for tissue engineering [J]..1 Biomater Appl,2011,27(6):707-716.
    [150]Hsieh C Y, Tsai S P, Wang D M, et al. Preparation of gamma-pga/chitosan composite tissue engineering matrices [J]. Biomaterials,2005,26(28):5617-5623.
    [151]Comolli N. Neuhuber B. Fischer I, et al. In vitro analysis of pnipaam-peg, a novel, injectable scaffold for spinal cord repair [J]. Acta Biomater,2009,5(4):1046-1055.
    [152]Patel N G, Cavicchia J P, Zhang G, et al. Rapid cell sheet detachment using spin-coated pnipaam films retained on surfaces by an aminopropyltriethoxysilane network [J]. Acta Biomater,2012, 8(7):2559-2567.
    [153]Benesch J, Mano J F. Reis R L. Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering [J]. Tissue Eng Part B Rev,2008,14(4):433-445.
    [154]Kohn D H, Sarmadi M, Helman J I, et al. Effects of ph on human bone marrow stromal cells in vitro: Implications for tissue engineering of bone [J]. J Biomed Mater Res,2002.60(2):292-299.
    [155]Jikko A, Harris S E, Chen D, et al. Collagen integrin receptors regulate early osteoblast differentiation induced by bmp-2 [J]. J Bone Miner Res,1999,14(7):1075-1083.
    [156]杨志明,余希杰,黄富国,等.外源性Ⅰ型胶原对人胚骨膜细胞生物学特性的影响[J].华西医科大学学报,2001,32(01):1-4.
    [157]陈静涛,徐政,顾其胜.胶原蛋白研发的坡新进展[J].上海生物医学工程,2004,25(02):52-56.
    [158]顾其胜,严凯.胶原蛋白在组织工程及临床中的应用[J].上海生物医学工程,1999,20(03):35-38.
    [159]宁志刚,杨柳.胶原蛋白水凝胶在软骨组织工程中的应用[J].中国骨伤,2011,24(10):884-886.
    [160]王树森,胡蕴玉,罗卓荆,等.硫酸肝素复合胶原蛋白制备新型神经组织工程支架材料[J].第四军医大学学报,2004,25(10):869-873.
    [161]徐新宇.组织工程应用的胶原蛋白制备与改性研究[D].天津:天津医科大学,2005.
    [162]Ma W, Tavakoli T, Chen S, et al. Reconstruction of functional cortical-like tissues from neural stem and progenitor cells [J]. Tissue Eng Part A,2008,14(10):1673-1686.
    [163]林小敏,关水,葛丹,等.壳聚糖-明胶-透明质酸-硫酸肝素复合支架的制备及性能评价[J].高校化学工程学报,2012,26(02):265-271.
    [164]Mori Y, Kubokawa M, Hagiwara N, et al. Role of ph-sensitive ion channels in regulation of cell volume in opossum kidney cells [J]. Jpn J Physiol,1994,44 Suppl 2:S81-86.
    [165]Motizuki M, Xu Z. Importance of polarisome proteins in reorganization of actin cytoskeleton at low ph in saccharomyces cerevisiae [J]. J Biochem,2009,146(5):705-712.
    [166]Schultheiss E, Weiss S, Winterer E, et al. Esterase autodisplay:Enzyme engineering and whole-cell activity determination in microplates with ph sensors [J]. Appl Environ Microbiol,2008. 74(15):4782-4791.
    [167]张玉芹,王照宇,聂辉,等.Ph变化对非洲爪蟾卵母细胞atp受体激活电流的影响[J].中国病理生理杂志,2007,23(07):1434-1433.
    [168]Achyuta A K, Conway A J, Crouse R B, et al. A modular approach to create a neurovascular unit-on-a-chip [J]. Lab Chip,2012,13(4):542-553.
    [169]周亚浩,李雷,叶大田.用于细胞成像的便携型微流控芯片检测系统[J].清华大学学报(自然科学版),2009,:49(09):1569-1572.
    [170]Chung S E, Lee S A, Kim J, et al. Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics [J]. Lab Chip,2009,9(19):2845-2850.
    [171]Pantoja R, Nagarah J M, Starace D M, et al. Silicon chip-based patch-clamp electrodes integrated with pdms microfluidics [J]. Biosens Bioelectron,2004,20(3):509-517.
    [172]Lockyear L L. Reversible, room temperature bonding of glass devices for microfluidics [J]. Methods Mol Biol,2006,321:39-43.
    [173]Saitoh T, Suzuki Y, Hiraide M. Preparation of poly(n-isopropylacrylamide)-modified glass surface for flow control in microfluidics [J]. Anal Sci,2002,18(2):203-205.
    [174]Zhang W, Lin S, Wang C, et al. Pmma/pdms valves and pumps for disposable microfluidics [J]. Lab Chip,2009,9(21):3088-3094.
    [175]Zheng Y, Dai W, Wu H. A screw-actuated pneumatic valve for portable, disposable microfluidics [J]. Lab Chip,2009,9(3):469-472.
    [176]李玲巧.细胞培养芯片的研制及芯片内骨髓间充质干细胞分化控制的前期研究[D].厦门:厦门大学,2009.
    [177]张金玲.基于微流控芯片的免疫反应快速检测系统研究[D].上海:复旦大学,2012.
    [178]Gang Z. Qi Q, Jing C, et al. Measuring microenvironment mechanical stress of rat liver during diethylnitrosamine induced hepatocarcinogenesis by atomic force microscope [J]. Microsc Res Tech, 2009,72(9):672-678.
    [179]Kohles S S, Neve N, Zimmerman J D, et al. Mechanical stress analysis of microfluidic environments designed for isolated biological cell investigations [J]. J Biomech Eng.2009, 131(12):121006.
    [180]Plessy C. Desbois L, Fujii T, et al. Population transcriptomics with single-cell resolution:A new field made possible by microfluidics:A technology for high throughput transcript counting and data-driven definition of cell types [J]. Bioessays,2013,35(2):131-140.
    [181]Ooi S L, Shoemaker D D, Boeke J D. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in saccharomyces cerevisiae [J]. Science,2001,294(5551):2552-2556.
    [182]Gresham D. Ruderfer D M, Pratt S C. et al. Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray [J]. Science,2006,311(5769):1932-1936.
    [183]Robertson R M, Laib S. Smith D E. Diffusion of isolated DNA molecules:Dependence on length and topology [J]. Proc Natl Acad Sci U S A,2006.103(19):7310-7314.
    [184]Lee H H. Smoot J. McMurray Z. et al. Recirculating flow accelerates DNA microarray hybridization in a microfluidic device [J]. Lab Chip,2006,6(9):1163-1170.
    [185]Zhou X, Cai S. Hong A. et al. Microfluidic picoarray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences [J]. Nucleic Acids Res.2004. 32(18):5409-5417.
    [186]Dutse S W, Yusof N A. Microfluidics-based lab-on-chip systems in DNA-based biosensing:An overview [J]. Sensors (Basel),2011,11(6):5754-5768.
    [187]Malic L, Veres T, Tabrizian M. Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization [J]. Biosens Bioelectron,2009,24(7):2218-2224.
    [188]Hert D G, Fredlake C P, Barron A E. DNA sequencing by microchip electrophoresis using mixtures of high-and low-molar mass poly(n,n-dimethylacrylamide) matrices [J]. Electrophoresis,2008, 29(23):4663-4668.
    [189]deMello A J. Microfluidics:DNA amplification moves on [J]. Nature,2003,422(6927):28-29.
    [190]Schneegass I. Brautigam R, Kohler J M. Miniaturized flow-through per with different template types in a silicon chip thermocycler [J]. Lab Chip,2001,1(1):42-49.
    [191]Focke M. Stumpf F, Faltin B. et al. Microstructuring of polymer films for sensitive genotyping by real-time per on a centrifugal microfluidic platform [J]. Lab Chip,2010,10(19):2519-2526.
    [192]Focke M, Stumpf F, Roth G, et al. Centrifugal microfluidic system for primary amplification and secondary real-time per [J]. Lab Chip,2010,10(23):3210-3212.
    [193]Clamp M, Fry B, Kamal M, et al. Distinguishing protein-coding and noncoding genes in the human genome [J]. Proc Natl Acad Sci U S A,2007,104(49):19428-19433.
    [194]Kotz K T, Xiao W, Miller-Graziano C, et al. Clinical microfluidics for neutrophil genomics and proteomics [J]. Nat Med,2010,16(9):1042-1047.
    [195]Lee J, Soper S A, Murray K K. Microfluidics with maldi analysis for proteomics--a review [J]. Anal Chim Acta,2009,649(2):180-190.
    [196]Wheeler A R, Moon H, Bird C A, et al. Digital microfluidics with in-line sample purification for proteomics analyses with maldi-ms [J]. Anal Chem,2005,77(2):534-540.
    [197]Kim E Y, Bang J Y, Chang S I, et al. A novel integrin alpha5betal antagonistic peptide, a5-1, screened by protein chip system as a potent angiogenesis inhibitor [J]. Biochem Biophys Res Commun,2008,377(4):1288-1293.
    [198]Zhou Y, Liu A, Wang W, et al. Using the protein chip to screen agonists and antagonists of the androgen receptor [J]. J Biomol Screen,2008,13(4):276-284.
    [199]Papp K, Vegh P. Hobor R, et al. Characterization of factors influencing on-chip complement activation to optimize parallel measurement of antibody and complement proteins on antigen microarrays [J]. J Immunol Methods,2011,375(1-2):75-83.
    [200]Dhouib K, Khan Malek C. Pfleging W, et al. Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal x-ray analysis [J]. Lab Chip,2009, 9(10):1412-1421.
    [201]Kisselman G, Qiu W, Romanov V, et al. X-chip:An integrated platform for high-throughput protein crystallization and on-the-chip x-ray diffraction data collection [J]. Acta Crystallogr D Biol Crystallogr,2011,67(Pt 6):533-539.
    [202]Cheng I F, Chang H C, Hou D. An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting [J]. Biomicrofluidics,2007,1 (2):21503.
    [203]Burke D P, Kelly D J. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration:A mechanobiological model [J]. PLoS One,2012,7(7):e40737.
    [204]Lozoya O A, Wauthier E, Turner R A, et al. Regulation of hepatic stem/progenitor phenotype by microenvironment stiffness in hydrogel models of the human liver stem cell niche [J]. Biomaterials, 2011,32(30):7389-7402.
    [205]Lawrenz A, Nason F, Cooper-White J J. Geometrical effects in microfiuidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells [J]. Biomicrofluidics, 2012,6(2):24112-24117.
    [206]刘洋.机械应力对表皮干细胞增殖、分化影响的研究[D].重庆:第三军医大学,2006.
    [207]Rajamannan N M. Oxidative-mechanical stress signals stem cell niche mediated Irp5 osteogenesis in eNOS null mice [J]. J Cell Biochem,2012,113(5):1623-1634.
    [208]Didwania M, Didwania A, Mehta G, et al. Artificial hematopoietic stem cell niche:Bioscaffolds to microfluidics to mathematical simulations [J]. Curr Top Med Chem,2011,11(13):1599-1605.
    [209]Edalat F, Bae H, Manoucheri S, et al. Engineering approaches toward deconstructing and controlling the stem cell environment [J]. Ann Biomed Eng,2011,40(6):1301-1315.
    [210]Xu T, Yue W, Li C W, et al. Real-time monitoring of suspension cell-cell communication using an integrated microfluidics [J]. Lab Chip,2010,10(17):2271-2278.
    [211]戴小珍,蔡绍晳,蒋稼欢,等.微流控技术对细胞微环境的模拟及应用研究[J].生物物理学报,2010,26(03):209-215.
    [212]杨振华.微环境对牙周再生及相关间充质干细胞分化影响的研究[D].西安:第四军医大学,2008.
    [213]Kuczenski B, Geyer R, Boughton B. Tracking toxicants:Toward a life cycle aware risk assessment [J]. Environ Sci Technol,2010,45(1):45-50.
    [214]Shamloo A, Ma N, Poo M M, et al. Endothelial cell polarization and chemotaxis in a microfluidic device [J]. Lab Chip,2008,8(8):1292-1299.
    [215]Abhyankar V V, Toepke M W, Cortesio C L, et al. A platform for assessing chemotactic migration within a spatiotemporally defined 3d microenvironment [J]. Lab Chip,2008,8(9):1507-1515.
    [216]Churchill G C, Galione A. Spatial control of ca2+ signaling by nicotinic acid adenine dinucleotide phosphate diffusion and gradients [J]. J Biol Chem,2000,275(49):38687-38692.
    [217]Xu J, Liu Z, Ornitz D M. Temporal and spatial gradients of fgf8 and fgf 17 regulate proliferation and differentiation of midline cerebellar structures [J]. Development,2000,127(9):1833-1843.
    [218]Chung B G, Flanagan L A, Rhee S W, et al. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device [J]. Lab Chip,2005,5(4):401-406.
    [219]Park J Y. Kim S K, Woo D H. et al. Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient [J]. Stem Cells.2009.27(11):2646-2654.
    [220]Moeller H C, Mian M K. Shrivastava S, et al. A microwell array system for stem cell culture [J]. Biomaterials.2008.29(6):752-763.
    [221]Carrion B. Huang C P. Ghajar C M, et al. Recreating the perivascular niche ex vivo using a microfluidic approach [J]. Biotechnol Bioeng,2010,107(6):1020-1028.
    [222]Anderson D G, Levenberg S. Langer R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells [J]. Nat Biotechnol.2004,22(7):863-866.
    [223]Huang C P, Lu J. Seon H, et al. Engineering microscale cellular niches for three-dimensional multicellular co-cultures [J]. Lab Chip,2009,9(12):1740-1748.
    [224]Dufva M, Stangegaard M. Comment on "Microfluidics meets cell biology:Bridging the gap by validation and application of microscale techniques for cell biological assays"[J]. Bioessays,2009, 31(2):255.
    [225]Holmes D, Gawad S. The application of microfluidics in biology [J]. Methods Mol Biol,2009, 583:55-80.
    [226]Paguirigan A L, Beebe D J. Microfluidics meet cell biology:Bridging the gap by validation and application of microscale techniques for cell biological assays [J]. Bioessays,2008.30(9):811-821.
    [227]McKay R. Stem cells in the central nervous system[J]. Science,1997,276(5309):66-71.
    [228]Shihabuddin L S, Palmer T D, Gage F H. The search for neural progenitor cells:Prospects for the therapy of neurodegenerative disease [J]. Mol Med Today,1999,5(11):474-480.
    [229]Doetsch F. Caille I, Lim D A, et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain [J]. Cell,1999,97(6):703-716.
    [230]Doetsch F, Garcia-Verdugo J M, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain [J]. J Neurosci,1997, 17(13):5046-5061.
    [231]Hartfuss E, Galli R, Heins N, et al. Characterization of ens precursor subtypes and radial glia [J]. Dev Biol,2001,229(1):15-30.
    [232]Lendahl U, Zimmerman L B, McKay R D. Cns stem cells express a new class of intermediate filament protein [J]. Cell,1990,60(4):585-595.
    [233]Strojnik T, Rosland G V, Sakariassen P O, et al. Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma:Correlation of nestin with prognosis of patient survival [J]. Surg Neurol,2007,68(2):133-143; discussion 143-134.
    [234]Kaneko Y, Sakakibara S, Imai T, et al. Musashi 1:An evolutionally conserved marker for cns progenitor cells including neural stem cells [J]. Dev Neurosci,2000,22(1-2):139-153.
    [235]Arnold K, Sarkar A, Yram M A, et al. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice [J]. Cell Stem Cell,2011,9(4):317-329.
    [236]Graham V, Khudyakov J, Ellis P, et al. Sox2 functions to maintain neural progenitor identity [J]. Neuron,2003,39(5):749-765.
    [237]Ellis P, Fagan B M, Magness S T, et al. Sox2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult [J]. Dev Neurosci,2004, 26(2-4):148-165.
    [238]Florek M, Haase M, Marzesco A M, et al. Prominin-1/cd133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer [J]. Cell Tissue Res,2005,319(1):15-26.
    [239]Limoli C L, Rola R, Giedzinski E, et al. Cell-density-dependent regulation of neural precursor cell function [J]. Proc Natl Acad Sci U S A,2004,101 (45):16052-16057.
    [240]Kanemura Y, Mori H, Kobayashi S, et al. Evaluation of in vitro proliferative activity of human fetal neural stem/progenitor cells using indirect measurements of viable cells based on cellular metabolic activity [J]. J Neurosci Res,2002,69(6):869-879.
    [241]Guan S, Ge D, Liu T Q, et al. Protocatechuic acid promotes cell proliferation and reduces basal apoptosis in cultured neural stem cells [J]. Toxicol In Vitro,2009,23(2):201-208.
    [242]Svendsen C N, Skepper J, Rosser A E, et al. Restricted growth potential of rat neural precursors as compared to mouse [J]. Brain Res Dev Brain Res,1997,99(2):253-258.
    [243]Svendsen C N, ter Borg M G, Armstrong R J, et al. A new method for the rapid and long term growth of human neural precursor cells [J]. J Neurosci Methods,1998,85(2):141-152.
    [244]Zheng K, Liu T Q, Dai M S, et al. Comparison of different culture modes for long-term expansion of neural stem cells [J]. Cytotechnology,2006,52(3):209-218.
    [245]Wachs F P. Couillard-Despres S, Engelhardt M, et al. High efficacy of clonal growth and expansion of adult neural stem cells [J]. Lab Invest,2003,83(7):949-962.
    [246]Chang T C, Chen Y C. Yang M H, et al. Rho kinases regulate the renewal and neural differentiation of embryonic stem cells in a cell plating density-dependent manner [J]. PLoS One,2010, 5(2):e9187.
    [247]Bez A, Corsini E, Curti D, et al. Neurosphere and neurosphere-forming cells:Morphological and ultrastructural characterization [J]. Brain Research,2003,993(1-2):18-29.
    [248]Hulspas R, Quesenberry P J. Characterization of neurosphere cell phenotypes by flow cytometry [J]. Cytometry,2000,40(3):245-250.
    [249]Singec I, Knoth R. Meyer R P, et al. Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology [J]. Nature Methods,2006,3(10):801-806.
    [250]Sen A, Kallos M S, Behie L A. New tissue dissociation protocol for scaled-up production of neural stem cells in suspension bioreactors [J]. Tissue Eng,2004,10(5-6):904-913.
    [251]Vander Heiden M G, Locasale J W, Swanson K D, et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells [J]. Science,2010,329(5998):1492-1499.
    [252]Maranga L, Goochee C F. Metabolism of per.C6 cells cultivated under fed-batch conditions at low glucose and glutamine levels [J]. Biotechnol Bioeng,2006,94(1):139-150.
    [253]Chen T. Zhou Y, Tan W S. Influence of lactic acid on the proliferation, metabolism, and differentiation of rabbit mesenchymal stem cells [J]. Cell Biol Toxicol,2009.25(6):573-586.
    [254]Zeng A P, Deckwer W D. Mathematical modeling and analysis of glucose and glutamine utilization and regulation in cultures of continuous mammalian cells [J]. Biotechnol Bioeng,1995, 47(3):334-346.
    [255]杨晓运,李智,秦绿叶,等.星形胶质细胞和神经元之间谷氨酸-谷氨酰胺的代谢偶联[J].生理科学进展,2003,34(04):350-352.
    [256]张淑香,陈彦田,齐念民.葡萄糖和谷氨酰浓度对人脐带间充质干细胞体外培养的影响[J].组织工程与重建外科杂志, 2012, 8(04): 185-188.
    [257]高红亮,丛威,欧阳藩.体外培养的哺乳动物细胞的葡萄糖和谷氨酰代谢[J].生物技术通报,2000,2:17-22.
    (258] Yan H, Zhang X. Luo S, et al. Effects of homocysteine on erk signaling and cell proliferation in fetal neural stem cells in vitro [J]. Cell Biochem Biophys.2012. DO1:10.1007/s 12013-012-9461-z.
    [259]Greiner J F, Hauser S, Widera D, et al. Efficient animal-serum free 3d cultivation method for adult human neural crest-derived stem cell therapeutics [J]. Eur Cell Mater,2011,22:403-419.
    [260]Kim M, Habiba A, Doherty J M, et al. Regulation of mouse embryonic stem cell neural differentiation by retinoic acid [J]. Dev Biol,2009,328(2):456-471.
    [261]Zielke H R, Zielke C L, Ozand P T. Glutamine:A major energy source for cultured mammalian cells [J]. Fed Proc,1984.43(1):121-125.
    [262]Linz M, Zeng A P, Wagner R. et al. Stoichiometry. kinetics, and regulation of glucose and amino acid metabolism of a recombinant bhk cell line in batch and continuous cultures[J]. Biotechnol Prog,1997.13(4):453-463.
    [263]Dos Santos F, Andrade P Z, Boura J S. et al. Ex vivo expansion of human mesenchymal stem cells: A more effective cell proliferation kinetics and metabolism under hypoxia [J]. J Cell Physiol,2009, 223(1):27-35.
    [264]Mermall V, Post P L, Mooseker M S. Unconventional myosins in cell movement, membrane traffic, and signal transduction [J]. Science,1998.279(5350):527-533.
    [265]Shen C F, Hawari J, Kamen A. Micro-quantitation of lipids in serum-free cell culture media:A critical aspect is the minimization of interference from medium components and chemical reagents [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004,810(1):119-127.
    [266]Kan M, Yamane I. In vitro proliferation and lifespan of human diploid fibroblasts in serum-free bsa-containing medium [J]. J Cell Physiol,1982,111(2):155-162.
    [267]Gage F H. Stem cells of the central nervous system [J]. Curr Opin Neurobiol,1998,8(5):671-676.
    [268]Jagatha B, Divya M S, Sanalkumar R, et al. In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors [J]. Biochem Biophys Res Commun,2009, 380(2):230-235.
    [269]Meng X T, Chen D, Dong Z Y, et al. Enhanced neural differentiation of neural stem cells and neurite growth by amniotic epithelial cell co-culture [J]. Cell Biol Int,2007,31 (7):691-698.
    [270]Ma W, Fitzgerald W, Liu Q Y, et al. Cns stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels [J]. Exp Neurol,2004,190(2):276-288.
    [271]Lee K Y, Mooney D J. Hydrogels for tissue engineering [J]. Chem Rev,2001,101 (7):1869-1879.
    [272]Scott R, Marquardt L, Willits R K. Characterization of poly(ethylene glycol) gels with added collagen for neural tissue engineering [J]. J Biomed Mater Res A,2010,93(3):817-823.
    [273]Suri S, Schmidt C E. Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering [J]. Tissue Eng Part A,2010,16(5):1703-1716.
    [274]赵红斌,马敬.杨银书,等.胶原神经导管对外周神经缺损修复的实验研究[J].生物医学工程与临床,2010,14(02):100-104.
    [275]O'Connor S M, Stenger D A, Shaffer K M, et al. Primary neural precursor cell expansion, differentiation and cytosolic ca(2+) response in three-dimensional collagen gel [J]. J Neurosci Methods,2000.102(2):l87-195.
    [276]Cahoy J D, Emery B, Kaushal A, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes:A new resource for understanding brain development and function [J]. J Neurosci, 2008,28(1):264-278.
    [277]Leipzig N D, Wylie R G, Kim H, et al. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds [J]. Biomaterials,2010,32(1):57-64.
    [278]Cristini S, Alessandri G, Acerbi F, et al. Three-dimensional self-organizing neural architectures:A neural stem cells reservoir and a system for neurodevelopmental studies [J]. Tissue Eng Part C Methods,2011,17(11):1109-1120.
    [279]Yang X Z, Kataoka K, Medina R, et al. A novel three-dimensional culture system for isolation and clonal propagation of neural stem cells using a thermo-reversible gelation polymer [J]. Tissue Eng Part C Methods,2009,15(4):615-623.
    [280]Irons H R, Cullen D K, Shapiro N P, et al. Three-dimensional neural constructs:A novel platform for neurophysiological investigation [J]. J Neural Eng,2008,5(3):333-341.
    [281]Mazzoleni G, Di Lorenzo D, Steimberg N. Modelling tissues in 3d:The next future of pharmaco-toxicology and food research? [J]. Genes Nutr,2009,4(1):13-22.
    [282]Erecinska M, Silver I A. Tissue oxygen tension and brain sensitivity to hypoxia [J]. Respir Physiol, 2001.128(3):263-276.
    [283]Yue X, Mehmet H, Penrice J, et al. Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia [J]. Neuropathol Appl Neurobiol,1997,23(1):16-25.
    [284]Li Q, Liu J, Michaud M, et al. Strain differences in behavioral and cellular responses to perinatal hypoxia and relationships to neural stem cell survival and self-renewal:Modeling the neurovascular niche [J]. Am J Pathol,2009,175(5):2133-2146.
    [285]Discher D E, Janmey P, Wang Y L. Tissue cells feel and respond to the stiffness of their substrate [J]. Science,2005,310(5751):1139-1143.
    [286]Beebe D J, Mensing G A, Walker G M. Physics and applications of microfluidics in biology [J]. Annu Rev Biomed Eng,2002.4:261-286.
    [287]Han S, Yang K, Shin Y, et al. Three-dimensional extracellular matrix-mediated neural stem cell differentiation in a microfluidic device [J]. Lab Chip,2012,12(13):2305-2308.
    [288]Choi J, Kim S. Jung J, et al. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3d microfluidic cell culture system [J]. Biomaterials,2011,32(29):7013-7022.
    [289]Toh Y C, Zhang C, Zhang J, et al. A novel 3d mammalian cell perfusion-culture system in microfluidic channels [J]. Lab Chip,2007,7(3):302-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700