用户名: 密码: 验证码:
益生乳酸杆菌的黏附及免疫调节作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸菌是益生菌的重要成员。乳酸菌是机体先天性免疫系统的重要成员,是机体维持免疫稳态不可缺少的部分。乳酸菌与肠粘膜免疫系统间的相互作用是肠道营养学要解决的重要课题。乳酸杆菌作为重要的益生菌来源,主要通过恢复或增强肠道稳态发挥作用,是一类具有佐剂活性的非病原细菌,并有作为粘膜疫苗载体使用的潜能。在食品、饲料与医药工业中,它们经常被添加用来帮助动物拮抗致病微生物,维持肠道健康,从而达到促进生长、防治疾病的目的,其使用价值日益受到重视。
     乳酸菌与肠上皮细胞黏附使其发挥最佳的益生功能。乳酸菌对肠道上皮细胞的黏附作用有助于其在肠道定植、增强乳酸菌与肠道细胞之间的信号交流、抑制病原菌在肠道的定植和提高机体的免疫力。因而乳酸菌的黏附性是评价其作为益生菌的重要标准。乳酸菌的黏附性具有菌株特异性和宿主特异性。目前几种黏附素已被鉴定,主要为脂磷壁酸、表层蛋白以及肽聚糖等菌体表面成分。这些黏附素与肠上皮细胞表面的特异性受体结合,启动一系列复杂的生理反应。
     乳酸菌黏附性是决定其免疫调节活性的重要因素。乳酸菌可调节粘膜免疫系统,保护宿主肠道健康。黏附性强的乳酸菌能延长与宿主细胞的相互作用时间,从而更好地增强机体的免疫应答。乳酸菌的黏附性与免疫调节作用具有显著的菌株特异性。本研究以我国自行分离的乳酸菌为研究对象,探讨其与肠粘膜上皮细胞的黏附特性,以及对宿主的免疫调节作用。主要的研究结果如下:
     系统评价了9株受试乳酸菌的表面疏水性和黏附性,筛选出高黏附性菌株。本研究先对4种疏水性检测方法和3种黏附性检测方法进行了评价。结果表明,微生物黏着碳烃化合物法(BATH)与自聚合实验适合于评价细胞表面疏水性。镜检法、涂板法和荧光标记法均可测定细菌黏附性。本研究筛选出唾液乳杆菌(L. salivarius,以下简写为Ls)和植物乳杆菌(L. plantarum,以下简写为Lp)为高黏附菌株进行后续研究。
     通过体内、外实验分析了影响受试乳酸菌黏附的因素。结果表明,温度、生长期及表层蛋白均显著影响受试乳酸菌的黏附性(P<0.001)。高温处理的菌体、在对数生长前期或稳定期收获的菌体以及去除表层蛋白后的菌体,其黏附性均显著下降。菌体浓度(10~7~10~9CFU/mL)对黏附性影响不显著。
     结合透射电镜、SDS-PAGE和肽质量指纹图谱技术,初步分离、鉴定了唾液乳杆菌的S层蛋白。结果表明,在电镜下可清楚地观察到Ls表面具有丰富的绒毛状表层蛋白,对其中的一条30KDa蛋白进行质谱分析,发现其中有15种可能与黏附性相关的蛋白。
     采用流式细胞术分析了受试乳酸菌在小鼠肠道中的定植与分布。结果表明,两株受试乳酸菌在肠道中的定植情况不相同。灌胃前期,Ls主要分布在回肠,结肠中最少;Lp主要分布在空肠,回肠中最少。灌胃后期,Ls主要分布在空肠,十二指肠中最少;Lp的分布情况与灌胃前期相同。
     采用RT-PCR和ELISA技术通过体内、外实验研究了受试乳酸菌对免疫器官、免疫细胞和免疫分子的影响。结果表明,两株受试乳酸菌都能提高小鼠脾脏指数,但只有Ls显著提高了胸腺指数(P<0.05)。两株受试乳酸菌均能显著提高小鼠脾淋巴细胞转化率(Ls最好),增强巨噬细胞能量代谢水平和吞噬能力(Lp最好),提高CD11c+CD80+双阳性细胞的数量(Ls最好)。在mRNA水平,两株受试乳酸菌均显著提高了TNF-α、TLR-2、TLR-4、TLR-9、IL-10、IFN-α1、IFN-β和TGF-β3等免疫分子的转录水平;下调了IL-1α、IL-8、NF-κB、TGF-β1和TGF-β2的转录水平。ELISA结果表明,两株受试乳酸菌都提高了IL-10、TLR-2和sIgA的表达量(Ls最好),对IFN-α和NF-κB的表达没有影响,未检测出IL-12和TNF-α。Ls还可以显著提高IFN-γ的表达量。
     通过体内、外实验评价了受试乳酸菌的益生功能。结果表明,两株受试乳酸菌对胃肠道环境有很好的抗逆性;其代谢物能抑制病原菌的生长;菌体可以抑制病原菌对肠上皮细胞的黏附及细菌易位;减轻病原菌对小鼠的感染症状;还具有抗炎(IL-8)、抗氧化、抗肿瘤(p53)、降低胆固醇、分解亚硝酸盐以及合成功能性胞外多糖等潜在功能。
     通过动物实验对受试乳酸菌的安全性进行了初步评价。结果表明,两株受试乳酸菌都能增加小鼠体重和料重比,提高小鼠血清中GSH含量,降低血清MDA含量,小鼠体态特征和饮食活动正常。
     综上所述,本研筛选了两株高黏附性乳酸菌菌株,并对其黏附性机制、免疫调节作用、及多项益生功能进行了分析与评价。两株受试乳酸菌在免疫调节和益生功能方面各有互补,表明受试菌株具有一定的应用价值。此研究结果有助于了解乳酸菌黏附及免疫调节分子机制,阐明哺乳动物肠道共生菌与宿主免疫稳态建立与维持的机理,从而为开发安全有效的益生菌微生态制剂或菌体产物相关免疫调节制剂提供理论依据。
Lactic acid bacteria (LAB) is an important member of the probiotics. LAB isalso an important part of the body's innate immune system and is indispensable tomaintain immune homeostasis. The interaction between the LAB with the intestinalimmune system is an important issue to be resolved by the intestinal nutrition. As animportant source of probiotics, LAB play certain helpful action mainly throughrestoring or enhancing intestinal homeostasisthe. LAB is a class of non-pathogenicbacteria, which have adjuvant activity and have potential for use as a mucosalvaccine vector. In food, feed and pharmaceutical industry, LAB are often added tohelp human an animals antagonize pathogenic microorganisms and maintainintestinal health. The value of the use of LAB have received increasing attention.
     Adhesion to intestinal epithelial cells is an important prerequisite forcolonization of probiotic strains in the gastrointestinal tract, preventing theirimmediate elimination by peristalsis and providing a competitive advantage in thisecosystem and improving the body's immune system. Therefore, adhesion isregarded as one of the main selection criteria for probiotic strains. The adhesionproperty of LAB is strain-specific and host specificity. Several adhesins have beenidentified, including lipoteichoic acid (LTA), surface layer protein (SLP) andpeptidoglycan. The binding of thses adhesins to specific receptors in the surface ofhost cells results in a complex series of physiological responses.
     The adhesion of LAB is an important factor involved in theirimmunomodulatory activity. LAB have been found to regulate mucosal immunesystem, protecting the host intestinal health. Strong adhesion of LAB can prolong theinteraction time with the host cell in order to better enhance the body's immuneresponse. The adhesion and immunomodulatory effects of LAB have significantstrain-specific. In the present study, adhesion of selected Lactobacillus strains to the intestinal mucus was investigated in vitro and in vivo. Stimulation of the hostimmune system via toll-like receptors signaling pathway by the probiotic was alsoanalyzed. The whole research projects include two parts. Part one, assessment of theadhesive properties of probiot, investigation of influence on the adherence ofLactobacillus; identification of adhesion-association protein.Part two, research onthe immunoregulation function of Lactobacillus strains via toll-like receptorssignaling pathway. The main findings are as follows:
     The surface hydrophobicity and adhesion of nine strains of LAB weresystematically evaluated and the strong adhesive strains were screened. First, fourmethods used to detect hydrophobicity and three methods used to detect adhesionwere evaluated in this study. The results showed that the the methods of BATH andautoaggregation are suitable for the evaluation of cell surface hydrophobicity. All ofthe methods of microscopic examination, plating and fluorescence labeling can beused to determine the adhesion capacity. L. salivarius and L. plantarum werechoosen as adhesive strains by their good surface hydrophobicity and adhesionproperties.
     Various factors involved in attachment were investigated by in vivo and in vitroexperiments. These factors include bacterial status and cell concentration, growthphase, competition patterns, and surface-layer proteins (SLP). The results indicatedthat live lactobacilli in the mid-log growth phase exhibit maximum adhesion.Moreover, this activity is not significantly influenced at cell concentrations rangingfrom1.0×10~7to1.0×10~9CFU/mL. However, the adhesion is significantly reducedwhen lactobacilli were treated by heating or LiCl.
     Separation, identification of the SLP of L. salivarius by transmission electronmicroscopy, SDS-PAGE and peptide mass fingerprinting technology. The resultsshowed that SLP of L. salivarius can be clearly observed in the electron microscope.The molecular weight of the SLP is about30KDa determined by SDS-PAGE. ThisSLP consists of15kinds of proteins involved in the adhesion of L. salivarius.
     Colonization and distribution of the tested Lactobacillus strains in miceintestine by a flow cytometric assay. The results showed that a portion of the testedstrains are able to colonize in different regions of mice intestine. In the primary stage after oral administration, L. salivarius are concentrated in ileum and little in thecolon; L. plantarum are concentrated in jejunum and little in the ileum. In the laterstage after oral administration, L. salivarius are concentrated in jejunum and little inthe duodenum; L. plantarum are as same as the primary stage.
     Effects of LAB on immune organs, immune cells and immune moleculesdetermined by RT-PCR and ELISA through in vivo and in vitro experiments. Theresults showed that the two tested LAT can increase the spleen index, but only L.salivarius significantly increased the thymus index (P<0.05). The two tested LABcan significantly improve the spleen lymphocyte transformation rate of mice (L.salivarius is best), enhance the energy metabolism level and phagocytic activity ofmacrophages (L. plantarum is best), and Improve the number of CD11c+CD80+double-positive cells (L. salivarius is best). The two tested of LAB significantlyincrease the transcriptional level of TNF-α, TLR-2, TLR-4, TLR-9, IL-10, IFN-α1,IFN-β and TGF-β3and decrease the transcriptional level of IL-1α, IL-8, NF-κB,TGF-β1and TGF-β2. The results of ELISA test showed that the two test LAB haveincrease the expression of Il-10、TLR-2and sIgA (L. salivarius is best) and have noeffect on the expression of IFN-α and NF-κB. IL-12and TNF-αwere not detected. L.salivarius can also significantly increase the expression of IFN-γ.
     Evaluation of probiotic properties of the tested LAB by in vivo and in vitroexperiments. The results showed that the two tested strains have good resistance tothe environment of the gastrointestinal tract. Their metabolites can inhibit the growthof pathogenic bacteria. The tested LAB bacteria can inhibit the adhesion ofpathogens to intestinal epithelial cells and inhibit the pathogens translocation. Thetested LAB can alleviate the symptoms of mice infected by pathogens. In addition,the tested LAB have other probiotic properties, such as anti-inflammation (IL-8),antioxidative activity, antitumor (p53), cholesterol-and nitrite-lowering ability, andexopolysaccharide (EPS) production.
     Preliminary evaluation on the safety of the tested LAB by in vivo and in vitroexperiments. The results showed that the tested two LAB strains can increase thebody weight of mice and feed to gain ratio, increase GSH content and reduce MDAcontent in mouse serum. In summary, this research screened two Lactobacillus strains with strong adhesioncapacity. The adhesion mechanism, immunomodulatory effects, and many probioticfunctions were investigated. The two tested strains are complementary as far as thethe immune regulation and functional aspects, suggesting that the two tested strainshave application potential. This research would be helpful to develop immunemodulating foods and products related to lactic acid bacteria,and explain roles ofcommensal microbiota on building and maintaining of host immune homeostasis.
引文
[1]中国益生菌网. http://www.bio149.cn.
    [2] LIU S, HAN Y, ZHOU Z. Lactic acid bacteria in traditional fermentedchinese foods[J]. Food Res Int,2011,44(3):643–651.
    [3]中华人民共和国卫生部. http://www.moh.gov.cn/mohbgt/s10787/201004/47133.shtml,2010.
    [4] BIBEL DJ. Elie Metchnikoff’s bacillus of long life[J]. ASM News,1988,54(12):661-665.
    [5] SMELT MJ, DE HAAN BJ, BRON PA, et al. L. plantarum, L. salivarius, andL. lactis attenuate Th2responses and increase treg frequencies in healthymice in a strain dependent manner[J]. PLoS ONE,2012,7(10): e47244.
    [6] ARAYA M, MORELLI L, REID G, et al. Guidelines for the evaluation ofprobiotics in food[C]. Report of a Joint FAO/WHO working group ondrafting guidelines for the evaluation of probiotics in food. London, Ontario,Canada,2002.
    [7] MA D, FORSYTHE P, BIENENSTOCK J. Live Lactobacillus reuteri isessential for the inhibitory effect on tumor necrosis factor alpha-inducedinterleukin-8expression[J]. Infect Immun,2004,72(9):5308-5314.
    [8] TIWARI G, TIWARI R, PANDEY S, et al. Promising future of probiotics forhuman health: Current scenario[J]. CYS,2012,3(1):17.
    [9] FUKUDA S, TOH H, HASE K, et al. Bifidobacteria can protect fromenteropathogenic infection through production of acetate[J]. Nature,2011,469(7331):543-547.
    [10] SAHADEVA R, LEONG S, CHUA K, et al. Survival of commercialprobiotic strains to pH and bile[J]. International Food Research Journal,2011,18(4):1515-1522.
    [11] YU J, WANG W, MENGHE B, et al. Diversity of lactic acid bacteriaassociated with traditional fermented dairy products in Mongolia[J]. J DairySci,2011,94(7):3229-3241.
    [12] TURNER DL, LAMOSA P, RODR GUEZ A, et al. Structure and propertiesof the metastable bacteriocin Lcn972from Lactococcus lactis[J]. J MolStruct,2012,1031(1):207–210.
    [13] TONG Z, DONG L, ZHOU L, et al. Nisin inhibits dental caries-associatedmicroorganism in vitro[J]. Peptides,2010,31(11):2003-2008.
    [14] IYER P, PRIYADARSHINI S. Probiotic product-nisin and bifidin againstpathogenic strains[J]. J Pharm Sci,2012,1(1):8-12.
    [15]邓凯,苏丽芳,张日俊.细菌素Subticin112对金黄色葡萄球菌CVCC1885的体内外抑菌活性[J].中国农业科学,2011,(13):2830-2837.
    [16] FIGUEIRA C, CRODA J, CHOY H, et al. Heterologous expression ofpathogen-specific genes ligA and ligB in the saprophyte Leptospira biflexaconfers enhanced adhesion to cultured cells and fibronectin[J]. BMCMicrobiol,2011,11(1):129.
    [17] GLASSER A, BOUDEAU J, BARNICH N, et al. Adherent invasiveEscherichia coli strains from patients with Crohn's disease survive andreplicate within macrophages without inducing host cell death[J]. InfectImmun,2001,69(9):5529-5537.
    [18] NISTICO L, KREFT R, GIESEKE A, et al. Adenoid reservoir for pathogenicbiofilm bacteria[J]. J Clin Microbiol,2011,49(4):1411-1420.
    [19] BURGAIN J, GAIANI C, FRANCIUS G, et al. In vitro interactions betweenprobiotic bacteria and milk proteins probed by atomic force microscopy[J].Colloids Surf B Biointerfaces,2012,104(1):153–162.
    [20] SAKARIDIS I, SOULTOS N, DOVAS CI, et al. Lactic acid bacteria fromchicken carcasses with inhibitory activity against Salmonella spp. andListeria monocytogenes[J]. Anaerobe,2012,18(1):62-66.
    [21] LIU Z, SHEN T, ZHANG P, et al. Lactobacillus plantarum surface layeradhesive protein protects intestinal epithelial cells against tight junctioninjury induced by enteropathogenic Escherichia coli[J]. Mol Biol Rep,2011,38(5):3471-3480.
    [22] ANDERSON R, COOKSON A, MCNABB W, et al. Lactobacillus plantarumMB452enhances the function of the intestinal barrier by increasing theexpression levels of genes involved in tight junction formation[J]. BMCMicrobiol,2010,10(1):316.
    [23] SCHNEEBERGER EE, LYNCH RD. The tight junction: a multifunctionalcomplex[J]. Am J Physiol-cell Ph,2004,286(6):1213-1228.
    [24] BADEL S, BERNARDI T, MICHAUD P. New perspectives for lactobacilliexopolysaccharides[J]. Biotechnol Adv,2011,29(1):54-66.
    [25] FORDE A, FITZGERALD GF. Analysis of exopolysaccharide (EPS)production mediated by the bacteriophage adsorption blocking plasmid,pCI658, isolated from Lactococcus lactis ssp. cremoris HO2[J]. Int Dairy J,1999,9(7):465-472.
    [26] L PEZ, GARC AE. Recent trends on the molecular biology of pneumococcalcapsules, lytic enzymes, and bacteriophage[J]. FEMS Microbiol Rev,2004,28(5):553-580.
    [27] SABIR F, BEYATLI Y, COKMUS C, et al. Assessment of potential probioticproperties of Lactobacillus spp., Lactococcus spp., and Pediococcus spp.strains isolated from kefir[J]. J Food Sci,2010,75(9):568-573.
    [28] GAMAR-NOURANI L, BLONDEAU K, SIMONET JM. Influence ofculture conditions on exopolysaccharide production by Lactobacillusrhamnosus strain C83[J]. J Appl Microbiol,1998,85(4):664-672.
    [29] LIN M, YEN C. Antioxidative ability of lactic acid bacteria[J]. J Agr FoodChem,1999,47(4):1460-1466.
    [30] AMDEKAR S, SINGH V, KUMAR A, et al. Lactobacillus casei andLactobacillus acidophilus regulate inflammatory pathway and improveantioxidant status in collagen-induced arthritic rats[J]. J Interferon CytokineRes,2012,33(1):1-8.
    [31] QIAN B, XING M, CUI L, et al. Antioxidant, antihypertensive, andimmunomodulatory activities of peptide fractions from fermented skim milkwith Lactobacillus delbrueckii ssp. bulgaricus LB340[J]. J Dairy Res,2011,78(1):72-79.
    [32] ORLANDO A, REFOLO M, MESSA C, et al. Antiproliferative andproapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2.1and Lactobacillus rhamnosus GG in HGC-27gastric and DLD-1colon celllines[J]. Nutr Cancer,2012,64(7):1103-1111.
    [33] LIN Y, MOU Y, SU C, et al. Antihepatocarcinoma activity of lactic acidbacteria fermented panax notoginseng[J]. J Agr Food Chem,2010,58(15):8528-8534.
    [34] YAZDI MH, SOLTAN DALLAL MM, HASSAN ZM, et al. Oraladministration of Lactobacillus acidophilus induces IL-12production inspleen cell culture of BALB/c mice bearing transplanted breast tumour[J].Brit J Nutr,2010,104(02):227-232.
    [35] RENNER H, M NZNER R. The possible role of probiotics as dietaryantimutagens[J]. Mutation Research Letters,1991,262(4):239-245.
    [36] NG S, HART A, KAMM M, et al. Mechanisms of action of probiotics: recentadvances[J]. Inflamm Bowel Dis,2009,15(2):300-310.
    [37] SANDERS ME. Probiotics: considerations for human health[J]. Nutr Rev,2003,61(3):91-99.
    [38] MARTEAU P, MINEKUS M, HAVENAAR R, et al. Survival of lactic acidbacteria in a dynamic model of the stomach and small intestine: validationand the effects of bile[J]. J Dairy Sci,1997,80(6):1031-1037.
    [39] GILL SR, POP M, DEBOY RT, et al. Metagenomic analysis of the humandistal gut microbiome[J]. science,2006,312(5778):1355-1359.
    [40] VAN BAARLEN P, TROOST FJ, VAN HEMERT S, et al. DifferentialNF-κB pathways induction by Lactobacillus plantarum in the duodenum ofhealthy humans correlating with immune tolerance[J]. P Natl Acad Sci USA,2009,106(7):2371-2376.
    [41] KRAVTSOV E, YERMOLAYEV A, ANOKHINA I, et al. Adhesioncharacteristics of Lactobacillus is a criterion of the probiotic choice[J]. B ExpBiol Med+,2008,145(2):232-234.
    [42] KAUSHIK JK, KUMAR A, DUARY RK, et al. Functional and probioticattributes of an indigenous isolate of Lactobacillus plantarum[J]. PLoS ONE,2009,4(12): e8099.
    [43] KOTZAMANIDIS C, KOURELIS A, LITOPOULOU-TZANETAKI E, et al.Evaluation of adhesion capacity, cell surface traits and immunomodulatoryactivity of presumptive probiotic Lactobacillus strains[J]. Int J FoodMicrobiol,2010,140(2):154-163.
    [44] BLUM S, RENIERO R, SCHIFFRIN E, et al. Adhesion studies for probiotics:need for validation and refinement[J]. Trends Food Sci Tech,1999,10(12):405-410.
    [45] MEMPEL M, SCHMIDT T, WEIDINGER S, et al. Role of Staphylococcusaureus surface-associated proteins in the attachment to cultured HaCaTkeratinocytes in a new adhesion assay[J]. J Invest Dermatol,1998,111(3):452-456.
    [46] TRISTAN A, YING L, BES M, et al. Use of multiplex PCR to identifyStaphylococcus aureus adhesins involved in human hematogenousinfections[J]. J Clin Microbiol,2003,41(9):4465-4467.
    [47] ZHANG Y, ZHANG L, TUO Y, et al. Inhibition of Shigella sonnei adherenceto HT-29cells by lactobacilli from chinese fermented food and preliminarycharacterization of S-layer protein involvement[J]. Res Microbiol,2010,161(8):667-672.
    [48] KIM Y, KIM S, WHANG K, et al. Inhibition of Escherichia coli O157: H7attachment by interactions between lactic acid bacteria and intestinalepithelial cells[J]. J Microbiol Biotechn,2008,18(7):1278.
    [49] GEELEN S, BHATTACHARYYA C, TUOMANEN E. The cell wallmediates pneumococcal attachment to and cytopathology in humanendothelial cells[J]. Infect Immun,1993,61(4):1538-1543.
    [50] SMOOT D, RESAU J, NAAB T, et al. Adherence of Helicobacter pylori tocultured human gastric epithelial cells[J]. Infect Immun,1993,61(1):350-355.
    [51] JOHNSON-HENRY K, DONATO K, SHEN-TU G, et al. Lactobacillusrhamnosus strain GG prevents enterohemorrhagic Escherichia coli O157:H7-induced changes in epithelial barrier function[J]. Infect Immun,2008,76(4):1340-1348.
    [52] ASAHARA T, SHIMIZU K, NOMOTO K, et al. Probiotic bifidobacteriaprotect mice from lethal infection with Shiga toxin-producing Escherichiacoli O157: H7[J]. Infect Immun,2004,72(4):2240-2247.
    [53] RAKOFF-NAHOUM S, PAGLINO J, ESLAMI-VARZANEH F, et al.Recognition of commensal microflora by toll-like receptors is required forintestinal homeostasis[J]. Cell,2004,118(2):229-241.
    [54] CHOI CH, KIM TI, LEE SK, et al. Effect of Lactobacillus GG andconditioned media on IL-1beta-induced IL-8production in Caco-2cells[J].Scand J Gastroenterol,2008,43(8):938-947.
    [55] ARGYRI AA, ZOUMPOPOULOU G, KARATZAS KA, et al. Selection ofpotential probiotic lactic acid bacteria from fermented olives by in vitrotests[J]. Food Microbiol,2013,33(2):282-291.
    [56] MURPHY L. In vivo assessment of potential probiotic Lactobacillussalivarius strains: evaluation of their establishment, persistence, andlocalisation in the murine gastrointestinal tract[J]. Microb Ecol Health Dis,1999,11(3):149-157.
    [57] HE F, OUWEHAN A, HASHIMOTO H, et al. Adhesion of Bifidobacteriumspp. to human intestinal mucus[J]. Microbiol Immunol,2001,45(3):259.
    [58] TANNOCK G, SZYLIT O, DUVAL Y, et al. Colonization of tissue surfacesin the gastrointestinal tract of gnotobiotic animals by Lactobacillus strains[J].Can J Microbiol,1982,28(10):1196-1198.
    [59] RINKINEN M, WESTERMARCK E, SALMINEN S, et al. Absence of hostspecificity for in vitro adhesion of probiotic lactic acid bacteria to intestinalmucus[J]. Vet Microbiol,2003,97(1):55-61.
    [60] JAKAVA-VILJANEN M, PALVA A. Isolation of surface (S) layer proteincarrying Lactobacillus species from porcine intestine and faeces andcharacterization of their adhesion properties to different host tissues[J]. VetMicrobiol,2007,124(3):264-273.
    [61] LEBEER S, CLAES I, TYTGAT HL, et al. Functional analysis of the pili ofLactobacillus rhamnosus GG in relation to adhesion and immunomodulatoryinteractions with intestinal epithelial cells[J]. Appl Environ Microbiol,2012,78(1):185-93.
    [62] PAGNINI C, SAEED R, BAMIAS G, et al. Probiotics promote gut healththrough stimulation of epithelial innate immunity[J]. P Natl Acad Sci USA,2010,107(1):454-459.
    [63] LI P, YU Q, YE X, et al. Lactobacillus S-layer protein inhibition ofSalmonella-induced reorganization of the cytoskeleton and activation ofMAPK signalling pathways in Caco-2cells[J]. Microbiology,2011,157(9):2639-2646.
    [64] VENTURA M, JANKOVIC I, WALKER DC, et al. Identification andcharacterization of novel surface proteins in Lactobacillus johnsonii andLactobacillus gasseri[J]. Appl Environ Microb,2002,68(12):6172-6181.
    [65] S NCHEZ B, URDACI MC, MARGOLLES A. Extracellular proteinssecreted by probiotic bacteria as mediators of effects that promotemucosa–bacteria interactions[J]. Microbiology,2010,156(11):3232-3242.
    [66] ACOSTA MP, PALOMINO MM, ALLIEVI MC, et al. Murein hydrolaseactivity in the surface layer of Lactobacillus acidophilus ATCC4356[J].Appl Environ Microb,2008,74(24):7824-7827.
    [67] RAMIAH K, VAN REENEN CA, DICKS LM. Surface-bound proteins ofLactobacillus plantarum423that contribute to adhesion of Caco-2cells andtheir role in competitive exclusion and displacement of Clostridiumsporogenes and Enterococcus faecalis[J]. Res Microbiol,2008,159(6):470-475.
    [68] BEGANOVI J, FRECE J, KOS B, et al. Functionality of the S-layer proteinfrom the probiotic strain Lactobacillus helveticus M92[J]. Antonie VanLeeuwenhoek,2011,100(1):43-53.
    [69] JOHNSON-HENRY KC, HAGEN KE, GORDONPOUR M, et al.Surface-layer protein extracts from Lactobacillus helveticus inhibitenterohaemorrhagic Escherichia coli O157:H7adhesion to epithelial cells[J].Cell Microbiol,2007,9(2):356-367.
    [70] VALL J, PALVA A. Lactobacillus surface layers and their applications[J].FEMS Microbiol Rev,2005,29(3):511-529.
    [71] MASUDA K, KAWATA T. Distribution and chemical characterization ofregular arrays in the cell walls of strains of the genus Lactobacillus[J].FEMS Microbiol Lett,1983,20(2):145-150.
    [72] ABACHIN E, POYART C, PELLEGRINI E, et al. Formation ofD-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeriamonocytogenes[J]. Mol Microbiol,2002,43(1):1-14.
    [73] HUSSAIN M, HEILMANN C, PETERS G, et al. Teichoic acid enhancesadhesion of Staphylococcus epidermidis to immobilized fibronectin[J].Microb Pathog,2001,31(6):261-270.
    [74] HOGG S, MANNING J. Inhibition of adhesion of viridans streptococci tofibronectin-coated hydroxyapatite beads by lipoteichoic acid[J]. J ApplMicrobiol,1988,65(6):483-489.
    [75] CHUGH TD, BURNS G, SHUHAIBER H, et al. Adherence ofStaphylococcus epidermidis to fibrin-platelet clots in vitro mediated bylipoteichoic acid[J]. Infect Immun,1990,58(2):315-319.
    [76] SCH R-ZAMMARETTI P, UBBINK J. The cell wall of lactic acid bacteria:surface constituents and macromolecular conformations[J]. Biophys J,2003,85(6):4076-4092.
    [77] MUKAI T, ASASAKA T, SATO E, et al. Inhibition of binding ofHelicobacter pylori to the glycolipid receptors by probiotic Lactobacillusreuteri[J]. FEMS Immunol Med Microbiol,2002,32(2):105-110.
    [78] FUJIWARA S, HASHIBA H, HIROTA T, et al. Inhibition of the binding ofenterotoxigenic Escherichia coli Pb176to human intestinal epithelial cellline HCT-8by an extracellular protein fraction containing BIF ofBifidobacterium longum SBT2928: suggestive evidence of blocking of thebinding receptor gangliotetraosylceramide on the cell surface[J]. Int J FoodMicrobiol,2001,67(1):97-106.
    [79]郑跃杰,潘令嘉,叶桂安,等.双歧杆菌粘附素受体的初步观察[J].中国微生态学杂志,1997,(3):16-17.
    [80] ROSENBERG M, JUDES H, WEISS E. Cell surface hydrophobicity ofdental plaque microorganisms in situ[J]. Infect Immun,1983,42(2):831-834.
    [81] CORCORAN B, STANTON C, FITZGERALD G, et al. Survival of probioticlactobacilli in acidic environments is enhanced in the presence ofmetabolizable sugars[J]. Appl Environ Microb,2005,71(6):3060-3067.
    [82] PAN W, LI P, LIU Z. The correlation between surface hydrophobicity andadherence of Bifidobacterium strains from centenarians’ faeces[J]. Anaerobe,2006,12(3):148-152.
    [83] SHAKIROVA L, GRUBE M, GAVARE M, et al. Lactobacillus acidophilusLa5and Bifidobacterium lactis Bb12cell surface hydrophobicity andsurvival of the cells under adverse environmental conditions[J]. J IndMicrobiol Biot,2013,40(1):85-93.
    [84] CARASI P, TREJO FM, P REZ PF, et al. Surface proteins from Lactobacilluskefir antagonize in vitro cytotoxic effect of Clostridium difficile toxins[J].Anaerobe,2012,18(1):135.
    [85] MARCIN PN, KOMON E, TARGONSKI Z. LC-MS/MS Analysis of surfacelayer proteins as a useful method for the identification of lactobacilli from theLactobacillus acidophilus group[J]. J Microbiol Biotechn,2011,21(4):421-429.
    [86] LARSEN N, NISSEN P, WILLATS WG. The effect of calcium ions onadhesion and competitive exclusion of Lactobacillus ssp. and E. coli O138[J].Int J Food Microbiol,2007,114(1):113-119.
    [87] BERGONZELLI GE, GRANATO D, PRIDMORE RD, et al. GroEL ofLactobacillus johnsonii La1(NCC533) is cell surface associated: potentialrole in interactions with the host and the gastric pathogen Helicobacterpylori[J]. Infect Immun,2006,74(1):425-434.
    [88] GRANATO D, BERGONZELLI GE, PRIDMORE RD, et al. Cellsurface-associated elongation factor Tu mediates the attachment ofLactobacillus johnsonii NCC533(La1) to human intestinal cells andmucins[J]. Infect Immun,2004,72(4):2160-2169.
    [89]蒋虹,胡宏,尹一兵,等.双歧杆菌及其表面分子粘附肠上皮细胞的研究[J].重庆医科大学学报,1999,24(2):126-129.
    [90] GUSILS C, CHAIA AP, GONZALEZ S, et al. Lactobacilli isolated fromchicken intestines: potential use as probiotics[J]. J Food Protect,1999,62(3):252-256.
    [91]伦永志,黄敏,袁杰利,等.灭活的双歧杆菌对肠上皮细胞粘附及其影响因素的研究[J].中国微生态学杂志,2000,12(6):314-316.
    [92]陈臣,周方方,吴正钧,等.荧光标记法初探植物乳杆菌ST-Ⅲ对Caco-2细胞的粘附机理[J].微生物学通报,2010,223(3):355-361.
    [93] KOS B, U KOVI J, VUKOVI S, et al. Adhesion and aggregation abilityof probiotic strain Lactobacillus acidophilus M92[J]. J Appl Microbiol,2003,94(6):981-987.
    [94] GALKIN A, PAKKANEN J, VUORELA P. Development of an automated7-day96-well Caco-2cell culture model[J]. Pharmazie,2008,63(6):464-469.
    [95] HUANG N, KATZ JP, MARTIN DR, et al. Inhibition of IL-8geneexpression in Caco-2cells by compounds which induce histonehyperacetylation[J]. Cytokine,1997,9(1):27-36.
    [96] THONGON N, KRISHNAMRA N. Omeprazole decreases magnesiumtransport across Caco-2monolayers[J]. World J Gastroentero,2011,17(12):1574.
    [97] GEERTSEMA-DOORNBUSCH G, VAN DER MEI H, BUSSCHER H.Microbial cell surface hydrophobicity the involvement of electrostaticinteractions in microbial adhesion to hydrocarbons (MATH)[J]. J MicrobiolMeth,1993,18(1):61-68.
    [98] DRUMM B, NEUMANN AW, POLICOVA Z, et al. Bacterial cell surfacehydrophobicity properties in the mediation of in vitro adhesion by the rabbitenteric pathogen Escherichia coli strain RDEC-1[J]. J Clin Invest,1989,84(5):1588.
    [99] ADLERBERTH I, AHRN S, JOHANSSON M, et al. A mannose-specificadherence mechanism in Lactobacillus plantarum conferring binding to thehuman colonic cell line HT-29[J]. Appl Environ Microb,1996,62(7):2244-2251.
    [100] WANG X-Q, DUAN X-M, LIU L-H, et al. Carboxyfluorescein diacetatesuccinimidyl ester fluorescent dye for cell labeling[J]. Acta Bioch Bioph Sin,2005,37(6):379-385.
    [101] HOEFEL D, GROOBY WL, MONIS PT, et al. A comparative study ofcarboxyfluorescein diacetate and carboxyfluorescein diacetate succinimidylester as indicators of bacterial activity[J]. J Microbiol Meth,2003,52(3):379-388.
    [102] LEE Y, HO P, LOW C, et al. Permanent colonization by Lactobacillus caseiis hindered by the low rate of cell division in mouse gut[J]. Appl EnvironMicrob,2004,70(2):670-674.
    [103] MAFU AA, ROY D, GOULET J, et al. Characterization of physicochemicalforces involved in adhesion of Listeria monocytogenes to surfaces[J]. ApplEnviron Microb,1991,57(7):1969-1973.
    [104] LINDAHL M, FARIS A, WADSTR M T, et al. A new test based on ‘saltingout’to measure relative hydrophobicity of bacterial cells[J]. Biochim BiophysActa,1981,677(3):471-476.
    [105] VAN LOOSDRECHT M, LYKLEMA J, NORDE W, et al. The role ofbacterial cell wall hydrophobicity in adhesion[J]. Appl Environ Microb,1987,53(8):1893-1897.
    [106] DILLON JK, FUERST JA, HAYWARD AC, et al. A comparison of fivemethods for assaying bacterial hydrophobicity[J]. J Microbiol Meth,1986,6(1):13-19.
    [107] OUWEHAND A, KIRJAVAINEN P, GR NLUND M, et al. Adhesion ofprobiotic micro-organisms to intestinal mucus[J]. Int Dairy J,1999,9(9):623-630.
    [108] SCHILLINGER U, GUIGAS C, HEINRICH HOLZAPFEL W. In vitroadherence and other properties of lactobacilli used in probiotic yoghurt-likeproducts[J]. Int Dairy J,2005,15(12):1289-1297.
    [109] ALZATE A, FERN NDEZ-FERN NDEZ A, PEREZ-CONDE M, et al.Comparison of biotransformation of inorganic selenium by Lactobacillus andSaccharomyces in lactic fermentation process of yogurt and kefir[J]. J AgrFood Chem,2008,56(18):8728-8736.
    [110] PERDIG N G, FULLER R, RAYA R. Lactic acid bacteria and their effect onthe immune system[J]. Curr Issues Intestinal Microbiol,2001,2(1):27-42.
    [111] CORTHESY B. Roundtrip ticket for secretory IgA: role in mucosal homeostasis?[J]. J Immunol,2008,178(1):27-32.
    [112] HOOIJKAAS H, BENNER R, PLEASANTS JR, et al. Isotypes andspecificities of immunoglobulins produced by germ‐free mice fedchemically defined ultrafiltered “antigen‐free” diet[J]. Eur J Immunol,1984,14(12):1127-1130.
    [113] BOS N, MEEUWSEN C, HOOIJKAAS H, et al. Early development ofIg-secreting cells in young of germ-free BALB/c mice fed a chemicallydefined ultrafiltered diet[J]. Cell Immunol,1987,105(1):235-245.
    [114] WOSTMANN BS, PLEASANTS JR. The germ-free animal fed chemicallydefined diet: a unique tool. Exp Bilol Med,1991,198(1):539-546.
    [115] CHALLACOMBE S, TOMASI T. Systemic tolerance and secretoryimmunity after oral immunization[J]. J Exp Med,1980,152(6):1459-1472.
    [116] MOWAT AM. The regulation of immune responses to dietary proteinantigens[J]. Immunol Today,1987,8(3):93-98.
    [117] MATTINGLY JA, WAKSMAN BH. Immunologic suppression after oraladministration of antigen I. specific suppressor cells formed in rat Peyer'spatches after oral administration of sheep erythrocytes and their systemicmigration[J]. J Immunol,1978,121(5):1878-1883.
    [118] MICHALEK SM, MCGHEE JR, KIYONO H, et al. The IgA response:inductive aspects, regulatory cells, and effector functions[J]. Ann Ny AcadSci,1983,409(1):48-71.
    [119] LISE L, AUDIBERT F. Immunoadjuvants and analogs of immunomodulatorybacterial structures[J]. Curr Opin Immunol,1989,2(2):269.
    [120] PHILLIPS J, EVERSON M, MOLDOVEANU Z, et al. Synergistic effect ofIL-4and IFN-gamma on the expression of polymeric Ig receptor (secretorycomponent) and IgA binding by human epithelial cells[J]. J Immunol,1990,145(6):1740-1744.
    [121] MOSMANN TR, COFFMAN RL. Two types of mouse helper T-cell clone:implications for immune regulation[J]. Immunol Today,1987,8(7):223-227.
    [122] LEBEER S, VANDERLEYDEN J, DE KEERSMAECKER SC. Hostinteractions of probiotic bacterial surface molecules: comparison withcommensals and pathogens[J]. Nat Rev Microbiol,2010,8(3):171-184.
    [123] HUSTER D. Best Practice&Research Clinical Gastroenterology[J]. BestPractice&Research Clinical Gastroenterology,2010,24:531-539.
    [124]陆扬,姚文,朱伟云.益生菌——新型免疫调节剂[J].微生物学通报,2005,(4):144-148.
    [125] WEI H, XU Y, CHENG B, et al. Synergistic effects of Lactobacillusrhamnosus ZDY114and bovine colostrums on the immunological functionof mouse in vivo and in vitro[J]. Appl Microbiol Biot,2007,75(2):427-434.
    [126] WANG Y, XIE J, WANG N, et al. Lactobacillus casei Zhang modulatecytokine and Toll-like receptor expression and beneficially regulate poly I:C-induced immune responses in RAW264.7macrophages[J]. MicrobiolImmunol,2013,57(1):54-62.
    [127] SHIDA K, NANNO M, NAGATA S. Flexible cytokine production bymacrophages and T cells in response to probiotic bacteria: A possiblemechanism by which probiotics exert multifunctional immune regulatoryactivities[J]. Gut Microbes,2011,2(2):109-114.
    [128] LIN WH, WU CR, FANG TJ, et al. Adherent properties and macrophageactivation ability of3strains of lactic acid bacteria[J]. J Food Sci,2011,76(1):1-7.
    [129] BLEAU C, MONGES A, RASHIDAN K, et al. Intermediate chains ofexopolysaccharides from Lactobacillus rhamnosus RW-9595M increaseIL-10production by macrophages[J]. J Appl Microbiol,2010,108(2):666-675.
    [130] CHON H, CHOI B, JEONG G, et al. Suppression of proinflammatorycytokine production by specific metabolites of Lactobacillus plantarum10hk2via inhibiting NF-kappa B and p38MAPK expressions[J]. CompImmunol Microbiol Infect Dis,2010,33(6): e41-49.
    [131] CHON H, CHOI B, LEE E, et al. Immunomodulatory effects of specificbacterial components of Lactobacillus plantarum KFCC11389P on themurine macrophage cell line RAW264.7[J]. J Appl Microbiol,2009,107(5):1588-1597.
    [132] TELLEZ A, CORREDIG M, BROVKO LY, et al. Characterization ofimmune-active peptides obtained from milk fermented by Lactobacillushelveticus[J]. J Dairy Res,2010,77(2):129.
    [133] RIZZELLO V, BONACCORSI I, DONGARR ML, et al. Role of natural killer and dendritic cell crosstalk in immunomodulation by commensal bacteria probiotics[J]. J Biomed Biotechnol,2011,2011: doi:10.1155/2011/473097
    [134] KOSAKA A, YAN H, OHASHI S, et al. Lactococcus lactis subsp. cremorisFC triggers IFN-gamma production from NK and T cells via IL-12andIL-18[J]. Int Immunopharmacol,2012,14(4):729-733.
    [135] EVRARD B, COUDEYRAS S, DOSGILBERT A, et al. Dose-dependentimmunomodulation of human dendritic cells by the probiotic Lactobacillusrhamnosus Lcr35[J]. PLoS ONE,2011,6(4): e18735.
    [136] BRANDTZAEG P, FARSTAD IN, JOHANSEN FE, et al. The B-cell systemof human mucosae and exocrine glands[J]. Immunol Rev,1999,171(1):45-87.
    [137] HANSON L, KOROTKOVA M, TELEMO E. Breast-feeding, infantformulas, and the immune system[J]. Ann Allergy Asthma Immunol,2003,90(6):59-63.
    [138] JOHANSEN F, BRAATHEN R, BRANDTZAEG P. Role of J chain insecretory immunoglobulin formation[J]. Scand J Immunol,2000,52(3):240-248.
    [139] ADEREM A, ULEVITCH RJ. Toll-like receptors in the induction of theinnate immune response[J]. Nature,2000,406(6797):782-787.
    [140] HARTSOCK A, NELSON WJ. Adherens and tight junctions: structure,function and connections to the actin cytoskeleton[J]. Biochim Biophys Acta,2008,1778(3):660-669.
    [141] G NZEL D, AMASHEH S, PFAFFENBACH S, et al. Claudin-16affectstranscellular Cl-secretion in MDCK cells[J]. J Physiol (Lond),2009,587(15):3777-3793.
    [142] ZHANG L, LI N, CAICEDO R, et al. Alive and dead Lactobacillusrhamnosus GG decrease tumor necrosis factor-α–induced interleukin-8production in caco-2cells[J]. J Nutr,2005,135(7):1752-1756.
    [143] TIEN MT, GIRARDIN SE, REGNAULT B, et al. Anti-inflammatory effectof Lactobacillus casei on Shigella-infected human intestinal epithelialcells[J]. J Immunol,2006,176(2):1228-1237.
    [144] SCHUH JM, BLEASE K, KUNKEL SL, et al. Chemokines and cytokines:axis and allies in asthma and allergy[J]. Cytokine Growth Factor Rev,2003,14(6):503-510.
    [145]李理,蔡琳,于宝丹,等.口服乳酸菌对尘螨致敏小鼠脾细胞MAPK通路的影响及机制探讨[J].中国呼吸与危重监护杂志,2011,2:8.
    [146] LU Y-C, YIN L-T, CHANG W-T, et al. Effect of Lactobacillus reuteriGMNL-263treatment on renal fibrosis in diabetic rats[J]. J Biosci Bioeng,2010,110(6):709-715.
    [147] LIU X, LIU W, ZHANG Q, et al. Screening of lactobacilli with antagonisticactivity against enteroinvasive Escherichia coli[J]. Food Control,2013,30(2):563-568.
    [148] CARAMIA G. Gastroenteric pathology and probiotics: from myth toscientific evidence. Current aspects[J]. Minerva Gastroenterol Dietol,2009,55(3):237.
    [149] SHANAHAN F. A commentary on the safety of probiotics[J]. GastroenterolClin N,2012,41(4):869-876.
    [150] JIN H, HIGASHIKAWA F, NODA M, et al. Establishment of an in vitroPeyer's patch cell culture system correlative to in vivo study using intestineand screening of lactic acid bacteria enhancing intestinal immunity[J]. BiolPharm Bull,2010,33(2):289-293.
    [151] JIM NEZ E, MART N R, MALDONADO A, et al. Complete genomesequence of Lactobacillus salivarius CECT5713, a probiotic strain isolatedfrom human milk and infant feces[J]. J Bacteriol,2010,192(19):5266-5267.
    [152] FEI G. Effects of micro-ecological agent feed on the reproductiveperformance of northern shaanxi white cashmere goat[J]. Animal Husbandryand Feed Science,2011,7:20.
    [153] LONNERMARK E, NOWROUZINAN F, ADLERBERTH I, et al. Oral andfaecal lactobacilli and their expression of mannose-specific adhesins inindividuals with and without IgA deficiency[J]. Int J Med Microbiol,2011,302(1):53-60.
    [154] ZEINHOM M, TELLEZ AM, DELCENSERIE V, et al. Yogurt containingbioactive molecules produced by Lactobacillus acidophilus la-5exerts aprotective effect against enterohemorrhagic escherichia coli in mice[J]. JFood Prot,2012,75(10):1796-1805.
    [155] RHEE SJ, LEE JE, LEE CH. Importance of lactic acid bacteria in Asianfermented foods[J]. Microbial cell factories,2011,10(Suppl1): S5.
    [156] TSAI Y, CHENG P, PAN T. The immunomodulatory effects of lactic acidbacteria for improving immune functions and benefits[J]. Appl MicrobiolBiot,2012,96(4):1-10.
    [157] LAPARRA JM, SANZ Y. Comparison of in vitro models to study bacterialadhesion to the intestinal epithelium[J]. Lett Appl Microbiol,2009,49(6):695-701.
    [158] YANAGIHARA S, HIROTA T, YAMAMOTO N. Transcriptional response ofLactobacillus acidophilus L-92after attachment to epithelial Caco-2cells[J].J Biosci Bioeng,2012,114(6):582-585.
    [159] REN D, LI C, QIN Y, et al. Inhibition of Staphylococcus aureus adherence toCaco-2cells by lactobacilli and cell surface properties that influenceattachment[J]. Anaerobe,2012,18(5):508-515.
    [160] SATISH KUMAR R, KANMANI P, YUVARAJ N, et al. Lactobacillusplantarum AS1binds to cultured human intestinal cell line HT-29andinhibits cell attachment by enterovirulent bacterium Vibrioparahaemolyticus[J]. Lett Appl Microbiol,2011,53(4):481-487.
    [161] GAO Q, QI L, WU T, et al. Clostridium butyricum activates TLR2-mediatedMyD88-independent signaling pathway in HT-29cells[J]. Mol Cell Biochem,2012,361(1-2):31-37.
    [162] GRANATO D, PEROTTI F, MASSEREY I, et al. Cell surface-associatedlipoteichoic acid acts as an adhesion factor for attachment of Lactobacillusjohnsonii La1to human enterocyte-like Caco-2cells[J]. Appl EnvironMicrobiol,1999,65(3):1071-1077.
    [163] LINDHOLM A, SMEDS A, PALVA A. Receptor binding domain ofEscherichia coli F18fimbrial adhesin FedF can be both efficiently secretedand surface displayed in a functional form in Lactococcus lactis[J]. ApplEnviron Microbiol,2004,70(4):2061-2071.
    [164] MALDONADO NC, DE RUIZ CS, OTERO MC, et al. Lactic acid bacteriaisolated from young calves-Characterization and potential as probiotics[J].Res Vet Sci,2012,92(2):342-9.
    [165] ZAGO M, FORNASARI ME, CARMINATI D, et al. Characterization andprobiotic potential of Lactobacillus plantarum strains isolated fromcheeses[J]. Food Microbiol,2011,28(5):1033-1040.
    [166] American type culture collection (ATCC). http://wwwatccorg/Products/All/HTB-37aspx#85786B46AA23451B94BC5D45200673F7.
    [167] XU H, JEONG H, LEE H, et al. Assessment of cell surface properties andadhesion potential of selected probiotic strains[J]. Lett Appl Microbiol,2009,49(4):434-442.
    [168] HUANG T, WEI B, VELAZQUEZ P, et al. Commensal microbiota alter theabundance and TCR responsiveness of splenic naive CD4+T lymphocytes[J].Clin Immunol,2005,117(3):221-230.
    [169] WANG C, LIN P, NG C, et al. Probiotic properties of Lactobacillus strainsisolated from the feces of breast-fed infants and Taiwanese pickledcabbage[J]. Anaerobe,2010,16(6):578-585.
    [170] SUGIMURA Y, HAGI T, HOSHINO T. Correlation between in vitro mucusadhesion and the in vivo colonization ability of lactic acid bacteria: Screeningof new candidate carp probiotics[J]. Biosci Biotechnol Biochem,2011,75(3):511-515.
    [171] VON OSSOWSKI I, SATOKARI R, REUNANEN J, et al. Functionalcharacterization of a mucus-specific LPXTG surface adhesin from probioticLactobacillus rhamnosus GG[J]. Appl Environ Microb,2011,77(13):4465-4472.
    [172] MARIN ML, BENITO Y, PIN C, et al. Lactic acid bacteria: hydrophobicityand strength of attachment to meat surfaces[J]. Lett Appl Microbiol,1997,24(1):14-18.
    [173] MORITA H, HE F, FUSE T, et al. Adhesion of lactic acid bacteria to caco-2cells and their effect on cytokine secretion[J]. Microbiol Immunol,2002,46(4):293-297.
    [174] KONSTANTINOV SR, SMIDT H, DE VOS WM, et al. S layer protein A ofLactobacillus acidophilus NCFM regulates immature dendritic cell and T cellfunctions[J]. Proc Natl Acad Sci U S A,2008,105(49):19474-19479.
    [175] PELLETIER C, BOULEY C, CAYUELA C, et al. Cell surface characteristicsof Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei,and Lactobacillus rhamnosus strains[J]. Appl Environ Microbiol,1997,63(5):1725-1731.
    [176] KIELY LJ, OLSON NF. The physicochemical surface characteristics ofLactobacillus casei[J]. Food Microbiol,2000,17(3):277-291.
    [177] ROSENBERG M, GUTNICK D, ROSENBERG E. Adherence of bacteria tohydrocarbons: a simple method for measuring cell-surface hydrophobicity[J].FEMS Microbiol Lett,1980,9(1):29-33.
    [178] M YR‐M UKINEN A, MNNINEN M, GYLLENBERG H. The adherenceof lactic acid bacteria to the columnar epithelial cells of pigs and calves[J]. JAppl Microbiol,1983,55(2):241-245.
    [179] SUN J, LE GW, SHI YH, et al. Factors involved in binding of Lactobacillusplantarum Lp6to rat small intestinal mucus[J]. Lett Appl Microbiol,2007,44(1):79-85.
    [180] PRETZER G, SNEL J, MOLENAAR D, et al. Biodiversity-basedidentification and functional characterization of the mannose-specific adhesinof Lactobacillus plantarum[J]. J Bacteriol,2005,187(17):6128-6136.
    [181] BOURLIOUX P, KOLETZKO B, GUARNER F, et al. The intestine and itsmicroflora are partners for the protection of the host: report on the DanoneSymposium “The Intelligent Intestine,” held in Paris, June14,2002[J]. Am JClin Nutr,2003,78(4):675-683.
    [182] HU S, KONG J, SUN Z, et al. Heterologous protein display on the cellsurface of lactic acid bacteria mediated by the s-layer protein[J]. Microbialcell factories,2011,10(1):86.
    [183] ZHOU M, THEUNISSEN D, WELS M, et al. LAB-Secretome: agenome-scale comparative analysis of the predicted extracellular andsurface-associated proteins of Lactic Acid Bacteria[J]. BMC Genomics,2010,11(1):651.
    [184] BARRANGOU R, HORVATH P. Lactic Acid Bacteria Defenses AgainstPhages. Stress Responses of Lactic Acid Bacteria: Springer2011:459-478.
    [185] RUAS-MADIEDO P, S NCHEZ B, HIDALGO-CANTABRANA C, et al.Exopolysaccharides from lactic acid bacteria and bifidobacteria[J].Handbook of animal-based fermented food and beverage technology,2nd ednCRC Press, Florida,2012:125-152.
    [186] LY-CHATAIN MH, LE ML, THANH ML, et al. Cell surface properties affectcolonisation of raw milk by lactic acid bacteria at the microstructure level[J].Food Res Int,2010,43(6):1594-1602.
    [187] GUO X-H, KIM J-M, NAM H-M, et al. Screening lactic acid bacteria fromswine origins for multistrain probiotics based on in vitro functionalproperties[J]. Anaerobe,2010,16(4):321-326.
    [188] OSTAD S, SALARIAN A, GHAHRAMANI M, et al. Live andheat-inactivated lactobacilli from feces inhibit Salmonella typhi andEscherichia coli adherence to Caco-2cells[J]. Folia Microbiol,2009,54(2):157-160.
    [189] S RA M, SLEYTR UB. S-layer proteins[J]. J Bacteriol,2000,182(4):859-868.
    [190] WANG B, WEI H, YUAN J, et al. Identification of a surface protein fromLactobacillus reuteri JCM1081that adheres to porcine gastric mucin andhuman enterocyte-like HT-29cells[J]. Curr Microbiol,2008,57(1):33-38.
    [191] PODLESNY M, JAROCKI P, KOMON E, et al. LC-MS/MS Analysis ofsurface layer proteins as a useful method for the identification of lactobacillifrom the Lactobacillus acidophilus group[J]. J Microbiol Biotechnol,2011,21(4):421-429.
    [192] LIU Z, MA Y, YANG J, et al. Expression of the Lactobacillus plantarumsurface layer MIMP protein protected NCM460epithelial cells fromenteroinvasive Escherichia coli infection[J]. Cell Physiol Biochem,2011,27(1):99-108.
    [193] JAKAVA-VILJANEN M, VALL-J SKEL INEN S, MESSNER P, et al.Isolation of three new surface layer protein genes (slp) from Lactobacillusbrevis ATCC14869and characterization of the change in their expressionunder aerated and anaerobic conditions[J]. J Bacteriol,2002,184(24):6786-6795.
    [194] REID G, TIESZER C, LAM D. Influence of lactobacilli on the adhesion ofStaphylococcus aureus and Candida albicans to fibers and epithelial cells[J].J Ind Microbiol,1995,15(3):248-253.
    [195] HICKSON M. Probiotics in the prevention of antibiotic-associated diarrhoeaand Clostridium difficile infection[J]. Therap Adv Gastroenterol,2011,4(3):185-197.
    [196] CASAS V, MALOY S. Role of bacteriophage-encoded exotoxins in theevolution of bacterial pathogens[J]. Future Microbiology,2011,6(12):1461-1473.
    [197] OPAL SM. Endotoxins and other sepsis triggers[J]. Contrib Nephrol,2010,167:14-24
    [198] SOKURENKO EV, CHESNOKOVA V, DYKHUIZEN DE, et al. Pathogenicadaptation of Escherichia coli by natural variation of the FimH adhesin[J]. PNatl Acad Sci USA,1998,95(15):8922-8926.
    [199] ALLEN HK, LEVINE UY, LOOFT T, et al. Treatment, promotion,commotion: antibiotic alternatives in food-producing animals[J]. TrendsMicrobiol,2013,21(3):114-119.
    [200] TUOMOLA EM, OUWEHAND AC, SALMINEN SJ. The effect of probioticbacteria on the adhesion of pathogens to human intestinal mucus[J]. FEMSImmunol Med Microbiol,1999,26(2):137-142.
    [201] SCANNAPIECO FA, WANG B, SHIAU HJ. Oral bacteria and respiratoryinfection: effects on respiratory pathogen adhesion and epithelial cellproinflammatory cytokine production[J]. Ann Periodontol,2001,6(1):78-86.
    [202] MOAYYEDI P, FORD AC, TALLEY NJ, et al. The efficacy of probiotics inthe treatment of irritable bowel syndrome: a systematic review[J]. Gut,2010,59(3):325-332.
    [203] TODOROV SD, FURTADO DN, SAAD SMI, et al. Bacteriocin productionand resistance to drugs are advantageous features for Lactobacillusacidophilus La-14, a potential probiotic strain[J]. New Microbiol,2011,34(4):357-370.
    [204] BUCKLEY ND, CHAMPAGNE CP, MASOTTI AI, et al. Harnessingfunctional food strategies for the health challenges of space travel-fermentedsoy for astronaut nutrition[J]. AcAau,2011,68(7):731-738.
    [205] CAPOZZI V, RUSSO P, DUE AS MT, et al. Lactic acid bacteria producingB-group vitamins: a great potential for functional cereals products[J]. ApplMicrobiol Biot,2012,96(6):1383-1394.
    [206] COLLADO MC, SURONO I, MERILUOTO J, et al. Indigenous dadih lacticacid bacteria: cell‐surface properties and interactions with pathogens[J]. JFood Sci,2007,72(3): M89-M93.
    [207] SAMARANAYAKE Y, WU P, SAMARANAYAKE L, et al. Relationshipbetween the cell surface hydrophobicity and adherence of Candida kruseiand Candida albicans to epithelial and denture acrylic surfaces[J]. APMIS,1995,103(7-8):707-713.
    [208] GRZE KOWIAK, COLLADO MC, SALMINEN S. Evaluation ofaggregation abilities between commensal fish bacteria and pathogens[J].Aquaculture,2012,356-357(1):412–414.
    [209] MERRIFIELD DL, HARPER GM, DIMITROGLOU A, et al. Possibleinfluence of probiotic adhesion to intestinal mucosa on the activity andmorphology of rainbow trout (Oncorhynchus mykiss) enterocytes[J]. AquacRes,2010,41(8):1268-1272.
    [210] SOHAIL A, TURNER MS, COOMBES A, et al. The viability ofLactobacillus rhamnosus GG and Lactobacillus acidophilus NCFMfollowing double encapsulation in alginate and maltodextrin[J]. Food andBioprocess Technology,2012, DOI:10.1007/s11947-012-0938-y.
    [211] HARTMANN HA, WILKE T, ERDMANN R. Efficacy ofbacteriocin-containing cell-free culture supernatants from lactic acid bacteriato control Listeria monocytogenes in food[J]. Int J Food Microbiol,2011,146(2):192-9.
    [212] CASTRO MP, PALAVECINO NZ, HERMAN C, et al. Lactic acid bacteriaisolated from artisanal dry sausages: characterization of antibacterialcompounds and study of the factors affecting bacteriocin production[J]. MeatSci,2011,87(4):321-329.
    [213] TODOROV SD, WACHSMAN M, TOME E, et al. Characterisation of anantiviral pediocin-like bacteriocin produced by Enterococcus faecium[J].Food Microbiol,2010,27(7):869-879.
    [214] SANCHEZ J, BORRERO J, GOMEZ-SALA B, et al. Cloning andheterologous production of Hiracin JM79, a Sec-dependent bacteriocinproduced by Enterococcus hirae DCH5, in lactic acid bacteria and Pichiapastoris[J]. Appl Environ Microbiol,2008,74(8):2471-2479.
    [215] MATHIAS A, DUC M, FAVRE L, et al. Potentiation of polarized intestinalCaco-2cell responsiveness to probiotics complexed with secretory IgA[J]. JBiol Chem,2010,285(44):33906-33913.
    [216] YAN F, POLK DB. Probiotics and immune health[J]. Curr OpinGastroenterol,2011,27(6):496-501.
    [217] KIMOTO H, MIZUMACHI K, OKAMOTO T, et al. New Lactococcus strainwith immunomodulatory activity: enhancement of Th1-type immuneresponse[J]. Microbiol Immunol,2004,48(2):75-82.
    [218] SUZUKI C, KIMOTO-NIRA H, KOBAYASHI M, et al. Immunomodulatoryand cytotoxic effects of various Lactococcus strains on the murinemacrophage cell line J774.1[J]. Int J Food Microbiol,2008,123(1-2):159-165.
    [219] PERDIGON G, MACIAS M, ALVAREZ S. Prevention of gastrointestinalinfection using immunobiological methods with milk fermented withLactobacillus casei and Lactobacillus acidophilus[J]. J Dairy Res,1990,57:255-264.
    [220] DE WAARD R, GARSSEN J, SNEL J, et al. Enhanced antigen-specificdelayed-type hypersensitivity and immunoglobulin G2b responses after oraladministration of viable Lactobacillus casei YIT9029in Wistar and Brownnorway rats[J]. Clin Diagn Lab Immun,2001,8(4):762-767.
    [221] RYU YH, BAIK JE, YANG JS, et al. Differential immunostimulatory effectsof Gram-positive bacteria due to their lipoteichoic acids[J]. IntImmunopharmacol,2009,9(1):127-133.
    [222] LIVAK KJ, SCHMITTGEN TD. Analysis of Relative Gene Expression DataUsing Real-Time Quantitative PCR and the2-ΔΔCTMethod[J]. Methods,2001,25(4):402-408.
    [223] VIZOSO PINTO MG, RODRIGUEZ G MEZ M, SEIFERT S, et al.Lactobacilli stimulate the innate immune response and modulate the TLRexpression of HT29intestinal epithelial cells in vitro[J]. Int J Food Microbiol,2009,133(1):86-93.
    [224] LUIS G. Lactococcus lactis as a live vector for mucosal delivery oftherapeutic proteins[J]. Hum Vaccin,2009,5(4):264-267.
    [225] RACHMILEWITZ D, KATAKURA K, KARMELI F, et al. Toll-like receptor9signaling mediates the anti-inflammatory effects of probiotics in murineexperimental colitis[J]. Gastroenterology,2004,126(2):520-528.
    [226] FURET JP, KONG LC, TAP J, et al. Differential adaptation of human gutmicrobiota to bariatric surgery-induced weight loss: links with metabolic andlow-grade inflammation markers[J]. Diabetes,2010,59(12):3049–3057.
    [227] LI CY, LIN HC, LAI CH, et al. Immunomodulatory effects of Lactobacillusand Bifidobacterium on both murine and human mitogen-activated T cells[J].Int Arch Allergy Immunol,2011,156(2):128-136.
    [228] SATO K, SAITO H, TOMIOKA H, et al. Enhancement of host resistanceagainst Listeria infection by Lactobacillus casei: efficacy of cell wallpreparation of Lactobacillus casei[J]. Microbiol Immunol,1988,32(12):1189-1200.
    [229] DONNET-HUGHES A, ROCHAT F, SERRANT P, et al. Modulation ofnonspecific mechanisms of defense by lactic acid bacteria: effective dose[J].J Dairy Sci,1999,82(5):863-869.
    [230] BOYLE RJ, ISMAIL IH, KIVIVUORI S, et al. Lactobacillus GG treatmentduring pregnancy for the prevention of eczema: a randomized controlledtrial[J]. Allergy,2011,66(4):509-516.
    [231] HONG YS, AHN YT, PARK JC, et al.1H NMR-based metabonomicassessment of probiotic effects in a colitis mouse model[J]. Arch Pharm Res,2010,33(7):1091-1101.
    [232] INDRIO F, RIEZZO G, RAIMONDI F, et al. Lactobacillus reuteriaccelerates gastric emptying and improves regurgitation in infants[J]. Eur JClin Invest,2011,41(4):417-22.
    [233] KUMAR R, GROVER S, BATISH VK. Hypocholesterolaemic effect ofdietary inclusion of two putative probiotic bile salt hydrolase-producingLactobacillus plantarum strains in Sprague-Dawley rats[J]. Br J Nutr,2011,105(4):561-73.
    [234] NERMES M, KANTELE JM, ATOSUO TJ, et al. Interaction of orallyadministered Lactobacillus rhamnosus GG with skin and gut microbiota andhumoral immunity in infants with atopic dermatitis[J]. Clin Exp Allergy,2011,41(3):370-377.
    [235] PIEPER R, JANCZYK P, URUBSCHUROV V, et al. Effect of Lactobacillusplantarum on intestinal microbial community composition and response toenterotoxigenic Escherichia coli challenge in weaning piglets[J]. LivestockScience,2010,133(1-3):98–100.
    [236]中华人民共和国卫生部.保健食品检验与评价技术规范[M].2003.
    [237]陈晓月.禽流感重组枯草芽孢杆菌的构建及实验免疫研究[D].吉林大学,2008.
    [238] DONGARRA ML, RIZZELLO V, MUCCIO L, et al. Mucosal Immunologyand Probiotics[J]. Curr Allergy Asthma Rep,2013,13(1):19-26.
    [239] LIU Z, SHEN T, CHEN H, et al. Functional characterization of MIMP for itsadhesion to the intestinal epithelium[J]. Front Biosci,2011,17:2106-2127.
    [240] STEINMAN RM, PACK M, INABA K. Dendritic cells in the T-cell areas oflymphoid organs[J]. Immunol Rev,1997,156(1):25-37.
    [241] ABREU-MARTIN MT, VIDRICH A, LYNCH DH, et al. Divergent inductionof apoptosis and IL-8secretion in HT-29cells in response to TNF-alpha andligation of Fas antigen[J]. J Immunol,1995,155(9):4147-4154.
    [242] GEWIRTZ AT, RAO AS, SIMON PO, et al. Salmonella typhimurium inducesepithelial IL-8expression via Ca2+-mediated activation of the NF-κBpathway[J]. J Clin Invest,2000,105(1):79-92.
    [243] INA K, KUSUGAMI K, YAMAGUCHI T, et al. Mucosal interleukin-8isinvolved in neutrophil migration and binding to extracellular matrix ininflammatory bowel disease[J]. Am J Gastroenterol,1997,92(8):1342-1346.
    [244] TSAI YT, CHENG PC, PAN TM. Immunomodulating activity ofLactobacillus paracasei subsp. paracasei NTU101in EnterohemorrhagicEscherichia coli O157H7-infected mice[J]. J Agric Food Chem,2010,58(21):11265-11272.
    [245] DE WAAL MALEFYT R, ABRAMS J, BENNETT B, et al. Interleukin10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatoryrole of IL-10produced by monocytes[J]. J Exp Med,1991,174(5):1209-1220.
    [246] SCHOTTELIUS AJ, MAYO MW, SARTOR RB, et al. Interleukin-10signaling blocks inhibitor of kappaB kinase activity and nuclear factorkappaB DNA binding[J]. J Biol Chem,1999,274(45):31868-31874.
    [247] WANG P, WU P, SIEGEL MI, et al. Interleukin (IL)-10inhibits nuclearfactor b (nfb) activation in human monocytes Il-10and Il-4suppress cytokinesynthesis by different mechanisms[J]. J Biol Chem,1995,270(16):9558-9563.
    [248] LEE J, YUN HS, CHO KW, et al. Evaluation of probiotic characteristics ofnewly isolated Lactobacillus spp.: Immune modulation and longevity[J]. Int JFood Microbiol,2011,148(2):80-86.
    [249] GHADIMI D, DE VRESE M, HELLER KJ, et al. Lactic acid bacteriaenhance autophagic ability of mononuclear phagocytes by increasing Th1autophagy-promoting cytokine (IFN-gamma) and nitric oxide (NO) levelsand reducing Th2autophagy-restraining cytokines (IL-4and IL-13) inresponse to Mycobacterium tuberculosis antigen[J]. Int Immunopharmacol,2010,10(6):694-706.
    [250] NOGUCHI S, HATTORI M, SUGIYAMA H, et al. Lactobacillus plantarumNRIC1832enhances IL-10production from CD4+T cells in vitro[J]. BiosciBiotechnol Biochem,2011,76(10):1925-1931.
    [251] DOGI C, GALDEANO CM, PERDIG N G. Gut immune stimulation by nonpathogenic Gram (+) and Gram () bacteria. Comparison with a probioticstrain[J]. Cytokine,2008,41(3):223-231.
    [252] ALIPRANTIS AO, YANG R-B, MARK MR, et al. Cell activation andapoptosis by bacterial lipoproteins through toll-like receptor-2[J]. Science,1999,285(5428):736-739.
    [253] PODOLSKY DK. Inflammatory bowel disease[J]. New Engl J Med,1991,325(13):928-937.
    [254] MIETTINEN M, VECKMAN V, LATVALA S, et al. Live Lactobacillusrhamnosus and Streptococcus pyogenes differentially regulate Toll-likereceptor (TLR) gene expression in human primary macrophages[J]. JLeukocyte Biol,2008,84(4):1092-1100.
    [255] VINDEROLA G, MATAR C, PERDIGON G. Role of intestinal epithelialcells in immune effects mediated by gram-positive probiotic bacteria:involvement of toll-like receptors[J]. Clin Diagn Lab Immun,2005,12(9):1075-1084.
    [256] OTTE JM, PODOLSKY DK. Functional modulation of enterocytes bygram-positive and gram-negative microorganisms[J]. Am J Physiol-gastr L,2004,286(4): G613-G626.
    [257] YA T, ZHANG Q, CHU F, et al. Immunological evaluation of Lactobacilluscasei Zhang: a newly isolated strain from koumiss in Inner Mongolia,China[J]. BMC Immunol,2008,9:68.
    [258] SHIMOSATO T, TOMIDA K, OTANI H. Effect of Lactobacillus pentosusONRIC b0240on intestinal IgA production in mice fed differing levels ofprotein[J]. J Agric Food Chem,2011,59(6):2646-2651.
    [259] KOBAYASHI N, SAITO T, UEMATSU T, et al. Oral administration ofheat-killed Lactobacillus pentosus strain b240augments protection againstinfluenza virus infection in mice[J]. Int Immunopharmacol,2011,11(2):199-203.
    [260] KOTANI Y, SHINKAI S, OKAMATSU H, et al. Oral intake of Lactobacilluspentosus strain b240accelerates salivary immunoglobulin A secretion in theelderly: A randomized, placebo-controlled, double-blind trial[J]. ImmunAgeing,2010,7(1):11.
    [261] AMMOR MS, MAYO B. Selection criteria for lactic acid bacteria to be usedas functional starter cultures in dry sausage production: An update[J]. MeatSci,2007,76(1):138-146.
    [262]任大勇,李昌,秦艳青,等.乳酸菌益生功能及作用机制研究进展[J].中国兽药杂志,2011,45(2):47-50.
    [263] SANDINE W. Roles of Lactobacillus in the intestinal tract[J]. J Food Prot,1979,42(3):259-262.
    [264] VINDEROLA C, REINHEIMER J. Lactic acid starter and probiotic bacteria:a comparative “in vitro” study of probiotic characteristics and biologicalbarrier resistance[J]. Food Res Int,2003,36(9):895-904.
    [265] WANG J, ZHANG H, CHEN X, et al. Selection of potential probioticlactobacilli for cholesterol-lowering properties and their effect on cholesterolmetabolism in rats fed a high-lipid diet[J]. J Dairy Sci,2012,95(4):1645-1654.
    [266] RUDEL L, MORRIS M. Determination of cholesterol usingo-phthalaldehyde[J]. J Lipid Res,1973,14(3):364-366.
    [267] OH CK, OH MC, KIM SH. The depletion of sodium nitrite by lactic acidbacteria isolated from kimchi[J]. J Med Food,2004,7(1):38-44.
    [268] YAN P, XUE W, TAN S, et al. Effect of inoculating lactic acid bacteria startercultures on the nitrite concentration of fermenting Chinese paocai[J]. FoodControl,2008,19(1):50-55.
    [269] WANG A, YI X, YU H, et al. Free radical scavenging activity ofLactobacillus fermentum in vitro and its antioxidative effect ongrowing-finishing pigs[J]. J Appl Microbiol,2009,107(4):1140-1148.
    [270] MARKLUND S, MARKLUND G. Involvement of the superoxide anionradical in the autoxidation of pyrogallol and a convenient assay forsuperoxide dismutase[J]. Eur J Biochem,1974,47(3):469-474.
    [271] ZOU C, DU Y, LI Y, et al. Preparation and in vitro antioxidant activity oflacquer polysaccharides with low molecular weights and their sulfatedderivatives[J]. Int J Biol Macromol,2010,46(2):140-144.
    [272] LIU CF, TSENG KC, CHIANG SS, et al. Immunomodulatory andantioxidant potential of Lactobacillus exopolysaccharides[J]. J Sci FoodAgric,2011,91(12):2284-91.
    [273] DUBOIS M, GILLES KA, HAMILTON JK, et al. Colorimetric method fordetermination of sugars and related substances[J]. Anal Chem,1956,28(3):350-356.
    [274] BAUTISTA-GALLEGO J, ARROYO-L PEZ FN, RANTSIOU K, et al.Screening of lactic acid bacteria isolated from fermented table olives withprobiotic potential[J]. Food Res Int,2013,50(1):135-142.
    [275] AHMADOVA A, TODOROV SD, CHOISET Y, et al. Evaluation ofantimicrobial activity, probiotic properties and safety of wild strainEnterococcus faecium AQ71isolated from Azerbaijani Motal cheese[J]. FoodControl,2013,30(2):631-641.
    [276] YU Z, ZHANG X, LI S, et al. Evaluation of probiotic properties ofLactobacillus plantarum strains isolated from Chinese sauerkraut[J]. World JMicrobiol Biotechnol,2012,29(3):489-498.
    [277] SHI T, NISHIYAMA K, NAKAMATA K, et al. Isolation of potentialprobiotic Lactobacillus rhamnosus strains from traditional fermented maremilk produced in sumbawa island of indonesia[J]. Biosci BiotechnolBiochem,2012,76(10):1897-903.
    [278] RANADHEERA CS, EVANS CA, ADAMS MC, et al. In vitro analysis ofgastrointestinal tolerance and intestinal cell adhesion of probiotics in goat'smilk ice cream and yogurt[J]. Food Res Int,2012,49(2):619-625.
    [279] ABBES S, SALAH-ABBES JB, SHARAFI H, et al. Ability of Lactobacillus rhamnosus GAF01to remove AFM(1) in vitro and to counteractAFM(1) immunotoxicity in vivo[J]. J Immunotoxicol,2012, doi:10.3109/1547691X.2012.718810.
    [280] FRANCO TS, GARCIA S, HIROOKA EY, et al. Lactic acid bacteria in theinhibition of Fusarium graminearum and deoxynivalenol detoxification[J]. JAppl Microbiol,2011,111(3):739-748.
    [281] DE SOUZA OLIVEIRA RP, RODRIGUES FLORENCE AC, PEREGO P, etal. Use of lactulose as prebiotic and its influence on the growth, acidificationprofile and viable counts of different probiotics in fermented skim milk[J].Int J Food Microbiol,2011,145(1):22-27.
    [282]王松,张娟,王淼,等.乳酸菌对微囊藻毒素的清除[J].微生物学报,2010,50(6):729-735.
    [283] FERNANDEZ M, BORIS S, BARBES C. Probiotic properties of humanlactobacilli strains to be used in the gastrointestinal tract[J]. J Appl Microbiol,2003,94(3):449-455.
    [284] CONWAY PL, GORBACH SL, GOLDIN BR. Survival of lactic acid bacteriain the human stomach and adhesion to intestinal cells[J]. J Dairy Sci,1987,70(1):1-12.
    [285] CHARTERIS WP, KELLY PM, MORELLI L, et al. Gradient diffusionantibiotic susceptibility testing of potentially probiotic lactobacilli[J]. Journalof Food Protection,2001,64(12):2007-2014.
    [286] SANDERS M, WALKER D, WALKER K, et al. Performance of commercialcultures in fluid milk applications[J]. J Dairy Sci,1996,79(6):943-955.
    [287] G NZLE MG, HERTEL C, VAN DER VOSSEN JM, et al. Effect ofbacteriocin-producing lactobacilli on the survival of Escherichia coli andListeria in a dynamic model of the stomach and the small intestine[J]. Int JFood Microbiol,1999,48(1):21-35.
    [288] GARCIA R. Phenotypic Characterization of Exopolysaccharide Productionin Lactococcus[D]. Collections,2012.
    [289] FORDE A, FITZGERALD GF. Molecular organization of exopolysaccharide(EPS) encoding genes on the lactococcal bacteriophage adsorption blockingplasmid, pCI658[J]. Plasmid,2003,49(2):130-142.
    [290] ZHANG S, LIU L, SU Y, et al. Antioxidative activity of lactic acid bacteriain yogurt[J]. Afr J Microbiol Res,2011,29:5194-5201.
    [291] CAPCAROVA M, HASCIK P, KOLESAROVA A, et al. The effect ofselected microbial strains on internal milieu of broiler chickens after peroraladministration[J]. Res Vet Sci,2011,91(1):132-137.
    [292] HUANG HC, HUANG WY, CHIU SH, et al. Antimelanogenic andantioxidative properties of Bifidobacterium bifidum[J]. Arch Dermatol Res,2011,303(7):527-531.
    [293] CHRISTIAN REINHARDT H, SCHUMACHER B. The p53network:cellular and systemic DNA damage responses in aging and cancer[J]. TrendsGenet,2012,28(3):128-136.
    [294] AYLON Y, OREN M. Living with p53, dying of p53[J]. Cell,2007,130(4):597-600.
    [295] ORLANDO A, REFOLO MG, MESSA C, et al. Antiproliferative andproapoptotic effects of viable or heat-killed Lactobacillus paracaseiIMPC2.1and Lactobacillus rhamnosus GG in HGC-27gastric and DLD-1colon cell lines[J]. Nutr Cancer,2012,64(7):1103-1111.
    [296] SMILLIE CS SM, FRIEDMAN J, CORDERO OX, DAVID LA, ALM EJ.Ecology drives a global network of gene exchange connecting the humanmicrobiome[J]. Nature,2011,480(7376):241-244.
    [297] NAWAZ M, WANG J, ZHOU A, et al. Characterization and transfer ofantibiotic resistance in lactic acid bacteria from fermented food products[J].Curr Microbiol,2011,62(3):1081-1089.
    [298] SAXELIN M. Colonization of the human gastrointestinal tract by probioticbacteria[J]. Nutrition Today,1996,31(6):9S.
    [299] UCHIDA Y, MORITA H, ADACHI S, et al. Bacterial meningitis andsepticemia of neonate due to Lactococcus lactis[J]. Pediatr Int,2011,53(1):119-120.
    [300] KULEY E, BAL KC E, ZO UL, et al. Stimulation of cadaverineproduction by foodborne pathogens in the presence of Lactobacillus,Lactococcus, and Streptococcus spp[J]. J Food Sci,2012,77(12):650-658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700