用户名: 密码: 验证码:
长耳鸮翅膀气动与声学特性及其仿生应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,能源危机和环境污染是人类迫切需要解决的两大问题。现代高速列车、民营飞机等大功率空气动力机械的日益增多,节能降噪显得更加重要。改善气动性能、降低气动噪声便成为空气动力机械的研究热点。
     自然界中许多鸟类具有优良的飞行特性,如极狭长型翼的信天翁(Diomedeaexulan),鸮形目和隼形目的中长而宽阔型翼的鸟类等。另外,鸮形目鸟类还具有“静音飞行”能力,如长耳鸮(Asio otus)、灰林鸮(Strix aluco)、雕鸮(Bubo bubo)等。鸮类为了能悄无声息地扑食猎物,进化出的独特翼型和翅膀羽毛特征使其无论是在扑翼还是滑翔飞行均产生低强度的噪声。此外,鸮类在降低飞行速度同时具有小的翅膀扑翼频率和幅度,这是其他大部分鸟类很难做到的,因此同样低速飞行,其他鸟类所消耗的能量要远大于鸮类。鸮形目鸟类进化出的高效飞行和静音特性,对于改善风机叶片、飞机机翼等空气动力机械的气动性能和声学特性具有借鉴意义,为工程增效降噪研究提供了新的研究思路和方法。
     本文从仿生学角度出发,选取长耳鸮(Asio otus)和雀鹰(Accipiter nisus)两种鸟为研究对象。这两种鸟都善于滑翔,体型相近,但飞行噪声差距较大。对比分析了长耳鸮与雀鹰的翅膀及羽毛几何形态学特征。建立了两种鸟类静态翅膀的三维实体模型并加工出模型样件,通过试验研究和数值模拟,得到了两种鸟类翅膀的空气动力学及声学特性。分析了长耳鸮、雀鹰翅膀气动特性和声学特性与其翅膀及羽毛结构及形态的内在联系,初步揭示了长耳鸮高效低噪飞行机理。运用长耳鸮的降噪特征,根据仿生学原理,建立了仿生风机叶片的实体模型,并加工出成品样件,试验研究了仿生叶片的气动特性和噪声特性。
     本文对体型及飞行方式相似的长耳鸮和雀鹰翅膀进行了几何参数的测量。测量结果表明,长耳鸮翅膀前缘较厚,后缘很薄,厚度主要集中在翅膀根部,从根部到端部,翼型厚度和弯度都快速减小,而雀鹰翅膀也是前缘厚,后缘比较薄,但其厚度分布较长耳鸮均匀,从翅膀根部到端部,翼型厚度变化较小,弯度减小也平缓。长耳鸮最外侧的初级飞羽前缘具有梳子齿结构,后缘及端部都有刘海状毛边,而雀鹰翅膀羽毛不具有这些特征。两种鸟翅膀表面羽片相互扣覆均形成辐射状的V型沟槽形态。
     本文对长耳鸮与雀鹰翅膀各截面翼型几何参数进行了提取,拟合修正建立了滑翔姿态时的光滑翅膀三维模型,并采用Profili翼型设计软件对长耳鸮与雀鹰翅膀展向截面翼型分别进行了气动性能计算分析,对比发现雀鹰翅膀翼型的气动特性要优于长耳鸮的翼型。从翅膀根部到端部两翅膀翼型的升力系数都下降,其中长耳鸮翅膀翼型升力系数下降幅度要大,但升阻比变化趋势一样,而在展向40%处两者截面翼型的升阻比都最大。分析发现,气动特性与翼型的厚度分布、弯度等因素有关。
     运用开口式低湍流度风洞,对翅膀模型的气动特性进行了试验分析。分别测量了2m/s和20m/s两种速度下的翅膀升力和阻力,对比分析了翅膀升阻特性。在2m/s和20m/s下,长耳鸮升力系数达到最大时的攻角分别为28°和30°,雀鹰最大升力系数攻角都为28°。随着速度的增大,长耳鸮翅膀失速攻角增大,这说明长耳鸮翅膀在高速时更不容易发生边界层分离。随着速度的增大,长耳鸮与雀鹰翅膀升力系数都有所增加,小攻角时的增大速度明显大于大攻角时的增大速度;阻力系数随速度增大而减小,相同速度时随攻角的增大而增大,但在20m/s风速条件下长耳鸮翅膀阻力系数增大速度要明显小于2m/s时的增长速度。通过设计旋转试验台,在半消声室测量了线速度为20m/s,攻角为20°时翅膀模型的气动噪声,发现长耳鸮与雀鹰翅膀模型主要产生低频噪声,且长耳鸮翅膀的气动噪声明显低于雀鹰翅膀模型。
     采用部分正交多项式回归设计,研究了长耳鸮前缘梳子锯齿几何尺寸参数对翅膀声学性能的影响。结果表明,前缘梳子锯齿能够有效降低长耳鸮翅膀的气动噪声。在攻角为20°,风速为20m/s时,前缘梳子锯齿的翅膀模型A声级噪声值最大可降低8dB。极差分析结果表明,锯齿宽度是影响翅膀声学特性的主要因素,其次是梳子齿与展向夹角,锯齿高度影响最小。建立了翅膀噪声降低量与梳子锯齿展向夹角、齿宽、齿高的回归方程,并对回归方程优化得出展向夹角为30度,锯齿宽度为1mm,锯齿高度为1mm时翅膀噪声降低最大。
     数值分析结果表明,小攻角下长耳鸮翅膀根部因弯度和厚度都要大,翅膀上表面后缘更容易发生边界层分离,随攻角增大翅膀翼尖部靠近前缘处最先发生了边界层的分离,而雀鹰翅膀边界层分离区域要大于长耳鸮翅膀。因此,雀鹰翅膀的边界层分离涡脱落噪声要大,并且前缘梳子锯齿相当于涡流发生器能推迟翅膀表面的边界层分离,使分离区减小。可见翅膀翼型和前缘梳子锯齿结构都是影响长耳鸮静音飞行能力的重要因素。对比压力云图发现,雀鹰翅膀上下表面的压力差要比长耳鸮翅膀的大,这表明,在相同条件下雀鹰翅膀升力系数要比长耳鸮翅膀高。
     基于长耳鸮、雀鹰翅膀表面呈现的V型沟槽形态,在轴流风机平板叶片上进行仿生构建,设计了V型和圆弧型两种截面,进行全部试验。结果表明,采用V型截面的效果优于圆弧型截面,仿生风机的气动性能优于原型风机,最大流量提高了6.1%,最大静压提高了7.0%。从速度分布图可以看出,相对原型风机,仿生风机的出口气流要更平稳,更靠近轴心;比较两者全压分布发现,仿生风机出口全压分布较好,且明显大于原型风机出口全压。原因可能是,逆渐开线波折状叶片表面能阻碍气流沿径向扩散,减少径向流失,且起导流作用使更多的气流靠近轴心流出,从而使出口流量和压力都增大。
     基于长耳鸮、雀鹰翅膀特征,对轴流风机叶片翼型进行了仿生设计,并对仿生叶片进行了气动与噪声试验。试验结果表明,采用雀鹰40%截面翼型风机气动性能最好,但气动噪声相对较大,而从叶根到叶顶采用长耳鸮翅膀变化的翼型对风机的气动特性改善较小,但对降低气动噪声效果显著。选取雀鹰40%截面翼型,对中弧线按长耳鸮翅膀展向截面翼型的弯度变化规律进行修改。试验结果表明,此仿生风机同时具有良好的气动性能和声学性能。
At present, energy crisis and environmental pollution have become two major urgentproblems that need to be solved. Energy saving and noise reduction become more importantwith High-power and high-speed machine like high speed train, private plane increasingquickly. Improving aerodynamic performance and reducing aerodynamic noise are becomingthe front of air power mechanical research.
     Many birds with elongated wings, such as the albatross(Diomedea exulans), or birdswith long and broad wings, such as strigiformes and falconiformes fly efficiently for goodaerodynamic characteristics of wings. Moreover, many birds of strigiformes, like long-earedowl(Asio otus), tawny owl(Strix aluco) and eagle owl(Bubo Bubo) have the ability to flysilently. During hunting, owls reduce flight speed; wing beat frequency and amplitude inorder to detect their prey and probably to reduce noise emission. That is hard for most of theother birds. Such birds require more flight power for wing movements to produce enough liftwhile flying slowly. Owls with special wing sections and structure of feather in gliding andflapping flight generate lower intensity sound. The silent flight of owl has given a new ideaand method for aerodynamic performance improvement and noise reduction of fan blade andaircraft wing.
     Long-eared owl and Sparrowhawk are also perfectly adapted to gliding flight;Long-eared owl can fly silently, while Sparrowhawk can’t. Based on the bionics theory, thecomparative analysis of the geometry morphological features of the Long-eared owl and theSparrow hawk feathers were studied. Static three-dimensional wing models and physicalmodels were established, with the help of wind tunnel test and numerical simulation,aerodynamic and acoustic characteristics of the wings were studied. The mechanism ofexcellent aerodynamic characteristics of Sparrowhawk and owl’s silent flight wereunderstood preliminary. The bionic optimized axial fans were designed, the test showed that the efficiency of fan was improved and the noise reduced.
     The geometric parameters of Long-eared owl and Sparrowhawk were measured. Themeasurement results showed that the leading edge of owl was thicker and the trailing edgewas thinner, the thickness was mainly concentrated in the root of wing. The airfoil thicknessand camber decreased rapidly from the root to the end portion of the owl wing, while theSparrow hawk wing reduced gently. The outermost primaries on leading edge have the combtooth structure and the trailing edge have fringe-like edges, while Sparrow hawk wingfeather didn’t have these features. There were radial V-grooves on the surface of two wings.
     In this paper, the airfoil geometric parameters of owl and hawk wing were extracted,and the smooth wing models were reconstructed. Aerodynamic performance of wing werecalculated and analysis by Profili software. The aerodynamic performance of hawk wing wasbetter than the owl’s. The airfoil lift coefficient of owl wing decreased larger from root to theend of wing, but the changed trend of lift-drag ratio were the same, the lift-drag ratio of40%cross-sectional airfoil was largest. We found that the aerodynamic characteristic of the airfoilwas affected by the thickness distribution, camber and other factors.
     An opening low turbulence wing tunnel for testing wing aerodynamic characteristicswas built. The lift and drag test were made at two speeds,2m/s and20m/s. The maximumangle of attack of owl wing at2m/s and20m/s was28°and30°respectively, while hawks’were the same of28°. With the increase of speed, the stalling angle of attack increased.There was less bounder layer separation at high speed for Long-eared owl wing. With thespeed increasing, the lift coefficients of Long-eared owl and hawk were also improved, andthe growth rate in small angle of attack was significantly greater than the high angle of attack.Drag coefficient decreased with speed increasing, but the growth rate at20m/s was smallerthan the growth rate at2m/s. The rotating test was made at the line speed of20m/s, andaerodynamic noise of wing model was measured. Long-eared owl and Sparrowhawk wingmodels mainly produced low-frequency noise. Aerodynamic noise of Long-eared owl wingswas significantly lower than the Sparrow hawk wing model’s.
     In order to determine the effect of the comb tooth shape parameters on aerodynamic andacoustic performance of Long-eared wing model, the regressive analysis of orthogonal multinomial were performed under20m/s speed and20°angle of attack. The results showedthat the leading edge comb teeths reduced the aerodynamic noise of Long-eared owl wingeffectively. The maximum value of noise (A) reduced8dB with leading edge comb teeths.The results of the range analysis showed that the main factor which influence theaerodynamic and acoustic characteristics was angle with spanwise(β), followed by toothwidth(d) and tooth height(h) had the smallest impact. The best combination of the factorsresulting in the lowest noise was: β=30°, d=1mm, h=1mm. Through the regression analysis,the regression equation between noise reduction and the teeth dimensions (β, d, h) wasobtained.
     Numerical analysis was made in two speeds,2m/s and20m/s. The results showed thatthe boundary layer on the trailing edge surface of the root wings more likely to occurseparation under small angle of attack due to big curvature and thickness. Wing tipseparation took place close to the leading edge under high angle of attack. The boundarylayer separation increased the boundary layer vortex shedding noise. The boundary layerseparation area of Sparrowhawk wings was greater than the Long-eared owl wing’s, so theaerodynamic noise of the Sparrowhawk was larger. The comb teeths on the leading edgeacted as vortex generators defered the boundary layer separation of wing surface. The airfoiland the comb structures were the main factors for owl silent flight obviously. The pressuredifference of upper and lower surface of hawk was larger than owl’s, thus lift coefficient ofhawk was larger than owl’s in the same conditions.
     V-shaped and circular section were designed on axial fan flat blade, based on theLong-eared owl and Sparrow hawk wings, the test results showed that, V-shapedcross-section was better than arc-shaped cross-section, the aerodynamic performances of thebionic fans were better than the prototype fan, the maximum flow increased by6.1%, themaximum static pressure increased by7.0%. The outlet flow of bionic fans was more stableand closer to the axis, total pressure was significantly greater. The inverse involute groovesreduced the loss of flow and made the outlet flow closer to axis.
     Based on characteristics of Long-eared owl and Sparrow hawk wing, six bionic fanswere designed. Tests showed that aerodynamic performance of fan with40%cross-sectional airfoil of hawk was the best, but the aerodynamic noise was larger relatively. Theaerodynamic characteristics of fan with Airfoils changed from the blade root to tip likeLong-eared owl wing was only slightly improved, but aerodynamic noise reducedsignificantly. The40%cross-sectional airfoil camber was modified like the development ofthe Long-eared owl wing, and test results showed that this bionic fan had a goodaerodynamic performance and acoustic performance at the same time.
引文
[1]任露泉,梁云虹.耦合仿生学[M].北京:科学出版社,2011.
    [2] Fish F E, Battle J M. Hydronamic design of the humpback whale flipper[J]. J Morphol,1995,225(1):51-60.
    [3] M iklosovic D S, MURRAY M M, HOWLE L E, et al. Leading-edge tubercles delaystall on humpback whale(Megaptera novaeangliae) flippers[J]. Phys Fluids,2004,16(5):39-42
    [4] Fish F E, Lauder G V. Passive and active flow control bu swimming fishes andmammals[J]. Annu Rev Fluid Mech,2006,38:193-224.
    [5] Bushnell D M, Moore K J. Drag reduction in nature[J]. Annual Review of FluidMechanics,1991,23(1):65-79.
    [6] Derrick Custodio. The effect of humpback whale-like leading edge protuberances onhydrofoil performace[D]. Worcester Polytechnic Institute,2007.
    [7]新浪科技.九大仿生应用:翠鸟嘴巴帮日本新干线降噪[J].科技传播,2011,(17):1-3.
    [8] Gregory D B, Bharat Bhushan. Biofouling: lessons from nature[J]. PhilosophicalTransactions of the Royal SocietyA,2010,370:2381-2417.
    [9] Bechert D W, Hoppe G, Reif W E. On the drag reduction of the shark skin. AIAAShear Flow Control Conference,AIAA-85-0546,1985:1-18.
    [10] Bechert D W, Bartenwerfer M, Hoppe G, et al. Drag reduction mechanisms derivedfrom shark skin. Presented at the15thICAS Congress,London,1986:1044-1068.
    [11] Thomas Willem Bachmann. Anatomical, morphometrical and biomechanical studies ofbarn owls’and pigeons’wings[D]. RWTHAachen University,Germany,2010.
    [12] Konishi, Masakazu. How the owl tracks its prey[J].American Scientist,1973,61(4):414-424.
    [13] Kroeger. R. A.,Grushlca. H. D. Low Speed Aerodynamics for Ultra-quiet Flight[J].AFFDLTR,1971,71:1-155.
    [14] Schwind R G, Allen H J. The effects of leading-edge serrations on reducing flowunsteadiness about airfoils[J].1973.
    [15] Lockard D P, Lilley G M. The airframe noise reduction challenge[J]. NASA/TM,2004–213013,2004,1-26.
    [16] Lilley G.M.A Quest for Quiet Commercial Passenger Transport Aircraft for Take-offand Landing[C].10thAIAA/CEAS Aeroacoustics Conference,2004:2922-2928.
    [17] Keennon M T, Grasmeyer J M. Development of the Black Widow and Microbat MAVsand a Vision of the Future of MAV Design[C].AIAA/ICAS International Air and SpaceSymposium and Exposition: The Next.2003,100.
    [18] Schenato L, Campolo D, Sastry S. Controllability issues in flapping flight forbiomimetic micro aerial vehicles (MAVs)[C]. Decision and Control,2003. Proceedings.42nd IEEE Conference on. IEEE,2003,6:6441-6447.
    [19]吴怀宇,周兆英,熊沈蜀.微型飞行器的研究现状及其关键技术[J].武汉科技大学学报(自然科学版),2000,23(2):170-173.
    [20]肖永利,张琛.微型飞行器的研究现状与关键技术[J].宇航学报,2001,22(5):26-32.
    [21]李强,丁珏,翁培奋.上海大学低湍流度低速风洞及气动设计[J].上海大学学报(自然科学版),2007.
    [22]崔尔杰.生物运动仿生力学与智能微型飞行器[J].力学与实践,2004,26(2).
    [23]虞晓林.电厂风机节能研究与改造[J].水利电力机械,2007,29(10):22-25.
    [24]谭兴昀.发电厂锅炉风机节能技术分析[J].科技情报开发与经济,2007,18(18):127-128.
    [25]王荣,于文燕.发电厂引风机节能分析[J].应用能源技术,2008,129(5):29-30.
    [26]李敬超.电厂吸、送风机叶片堆焊工艺[J].水利电力机械,2007,29(6):63-65.
    [27]刘秋洪,祁大同,曹淑珍.风机降噪研究的现状与分析[J].流体机械,2001,29(2):29-32.
    [28]陈坤.三种鸮形态学、飞行运动学特征规律及其仿生研究[D].长春:吉林大学,2012
    [29] Hileman J I,Spakovszky Z S,Drela M, Sargeant M A. Airframe design for “silentaircraft”[J].45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2007-453,2007,1-15.
    [30] Hall C A,Schwartz E,Hileman J I. Assessment of technologies for the silent aircraftinitiative[J]. Journal of Propulsion and Power,2009,25(6):1153-1162.
    [31] Lighthill M J. On sound generated aerodynamically general theory[J]. Proceedings ofthe Royal Society of London Series A-mathematical and Physical Sciences,1952,211(1107):564-587.
    [32] Lighthill M J. Sound generated aerodynamically[J]. Proceedings of the Royal Societyof London, Series A, Mathematical and Physical Sciences,1962,267:147-182.
    [33] Curle N. The influence of solid boundaries on aerodynamic sound[J]. Philosophicaltransactions of the royal societyA,1955,231(1187):504-514.
    [34] Lowson M V. The sound field for singulanties in motion[J]. Philosophical transactionsof the royal societyA,1965,286:559-572.
    [35] Ffowcs Williams J E,Hawkings D L. Sound generation by turbulence and surfaces inarbitrary motion[J]. Philosophical transactions of the royal society A,1969,264:321-342.
    [36] Goldstein M. Unified approach to aerodynamic sound generation in the presence ofsound boundaries[J].The Journal of the Acoustical Society of America,1974,56:497-509.
    [37] Powell A. Theory of vortex sound[J]. The journal of the acoustical society ofAmerica,1964,36:177-195.
    [38] Howe M S. Contributions to the theory of aerodynamic sound with application toexcess jet noise and to theory of the flute[J]. Journal of fluid mechanics,1975,71:625-673.
    [39] Graham R R.The silent flight of owls[J]. The journal of the royal aeronautical society,1934,38:837–843.
    [40] Neuhaus W, Bretting H, Schweizer B. Morphologische und funktionelleUntersuchungen uber den 'lautlosen' Flugder Eulen (Strix aluco) im Vergleich zumFlug der Enten (Anas platyrhynchos)[J]. Biologisches Zentralblatt,1973,92:495-512.
    [41] Gruschka H D,Borchers I U,Coble J G. Aerodynamic noise produced by a glidingowl[J]. Nature,1971,233:409-441.
    [42] Thorpe W H,Griffin D R. Lack of ultrasonic components in the flight noise of owls[J].Nature,1962,193:594-595.
    [43] Sick H. Morphologisch-funktionelle Untersuchungen über die Feinstruktur derVogelfeder[J]. Journal für Ornithologie,1937,85(2):206-372.
    [44] Sarradj E, Fritzsche C, Geyer T.Silent Owl Flight: Bird Flyover NoiseMeasurements[J]. AIAA Journal,2011,49(4):769-779.
    [45] Geyer T, Sarradj E, Fritzsche C. Silent owl flight: experiments in the aeroacoustic windtunnel[C]. The NAG/DAGA2009International Conference on Acoustics, Rotterdam,Netherlands,2009.
    [46] Bachmann T,Kl n S,Baumgartner W,Klaas M,Schr der W,Wagner H.Morphometric characterisation of wing feathers of the barn owl tyto alba pratincolaand the pigeon columbia livia[J]. Frontiers in Zoology,2007,4:23.
    [47] Bachmann T,Wagner H. The three-dimensional shape of serrations at barn owl wings:towards a typical natural serration as a role model for biomimetic applications[J].Journal ofAnatomy,2011,219(2):192–202.
    [48] Liu T S,Kuykendoll K,Rhew R,Jones S. Avian wings[J]. AIAA paper,AIAA-2004-2186,2004.
    [49] Kl n S,Bachmann T,Klaas M,Wagner H,Schr der W. Experimental analysis of theflow field over a novel owl based airfoil[J]. Experiments in Fluids,2009,46:975-989.
    [50] Soderman P T. Aerodynamic effects of leading-edge serrations on a two-dimensionalairfoil. NASA-TM-X-2643,1972.
    [51] Soderman P T. Leading-edge serrations which reduce the noise of low-speed rotors.NASATN D-7371,1973.
    [52] Schwind R G, Allen H J. The effects of leading-edge serrations on reducing flowunsteadiness about airfoils[J]. AIAApaper, AIAA-1973,1973:73-89.
    [53] Hersh A S,Hayden R E. Aerodynamic sound radiation from lifting surfaces with andwithout leading-edge serrations. NASA-CR-114370,1971.
    [54] Hersh A S,Soderman P T,Hayden R E. Investigation of Acoustic Effects ofLeading-Edge Serrations on Airfoils[J]. Journal of Aircraft,1974,11(4):197-202.
    [55] Shinichiro ITO. Aerodynamic influence of leading edge serrations on an airfoil in alow Reynolds number[J]. Journal of Biomechanical Science and Engineering,2009,4(1):117-123.
    [56] Dassen T, Parchen R, Bruggeman J, Hagg F. Results of a wing tunnel study on thereduction of airfoil self-noise by the application of serrated blade trailing edges[C].The1996European Union Wing Energy Conference and Exhibition, Gothenburg,Sweden,1996.
    [57] Howe M S. Noise produced by a sawtooth trailing edge[J]. Journal of the AcousticalSociety ofAmerica,1991,90(1):482-487.
    [58] OERLEMANS Stefan, FISHER Murray, MAEDER Thierry, K GLER Klaus.Reduction of wing turbine noise using optimized airfoils and trailing-edge serrations[J].AIAAjournal,2009,47(6):1470-1481.
    [59] Arthur Finez, Emmanuel Jondeau, Michel Roger. Broadband noise reduction withtrailing edge brushes.16thAIAA/CEAS Aeroacoustics Conference,2010-3980:1-13.
    [60] Sandberg R D, Jones L E. Direct numerical simulations of low Reynolds number flowover airfoils with trailing-edge serrations. Journal of Sound and Vibration,2011,330:3818-3831.
    [61] Chong T P, Joseph P F, Gruber M. Airfoil self noise reduction by non-flat plate typetrailing edge serrations[J]. Applied Acoustics,2013,74:607-613.
    [62]许影博,李晓东.锯齿型翼型尾缘噪声控制实验研究[J].空气动力学学报,2012,30(1):120-124.
    [63]许影博,李晓东,何敬玉.刷毛翼型尾缘噪声控制实验研究[J].南京航空航天大学学报,2011,43(5):612-616.
    [64]周长海,田丽梅,任露泉,等.信鸽羽毛非光滑表面形态学及仿生技术的研究[J].农业机械学报,2008(11).
    [65] Vad J, Koscsó G, Gutermuth M, et al. Study of the aero-acoustic and aerodynamiceffects of soft coating upon airfoil[J]. JSME International Journal Series C,2006,49(3):648-656.
    [66] Kl n S, Burgmann S, Bachmann T, et al. Surface structure and dimensional effects onthe aerodynamics of an owl-based wing model[J]. European Journal ofMechanics-B/Fluids,2012.
    [67] Geyer T,Sarradj E,Fritzsche C. Measurement of the noise generation at the trailingedge of porous airfoils[J]. Experiments in fluids,2010,48:291-308.
    [68]何波.小型高速轴流风机的设计与实验验证[D].西安:西北工业大学,2002.
    [69] GB/T1236.2000,工业通风机用标准化风道进行性能试验。
    [70] Sarraf C, Nouri H, Ravelet F, et al. Experimental study of blade thickness effects onthe overall and local performances of a Controlled Vortex Designed axial-flow fan[J].Experimental Thermal and Fluid Science,2011,35(4):684-693.
    [71] Lee K S, Kim K Y, Samad A. Design optimization of low-speed axial flow fan bladewith three-dimensional RANS analysis[J]. Journal of mechanical science andtechnology,2008,22(10):1864-1869.
    [72] Chen N, Zhang H, Xu Y, et al. Blade parameterization and aerodynamic designoptimization for a3D transonic compressor rotor[J]. Journal of Thermal Science,2007,16(2):105-114.
    [73]刘瑞.前弯前掠低压低噪轴流风机的气动计算的研究[D].东北大学,2008.
    [74]吴学凤,黄家友.弯掠动叶在对旋通风机中的应用[J].风机技术,2006,2:22-23.
    [75] Hah C. Aerodynamic lean and sweep for improvements in compressor performance[J].Lecture series-van Kareman Institute for fluid dynamics,1999,2: J1-J81.
    [76] Breugelmans F A E. Experimental investigation of sweep and dihedral incompressors[J]. Lecture series-van Kareman Institute for fluid dynamics,1999,2:K1-K65.
    [77] Benini E, Biollo R. Aerodynamics of swept and leaned transonic compressor-rotors[J].Applied energy,2007,84(10):1012-1027.
    [78] Oyama A, Liou M S, Obayashi S. High fidelity swept and leaned rotor blade designoptimization using evolutionary algorithm[C]. AIAA Computational Fluid DynamicsConference.2003.
    [79] LI Y, LIU J, OUYANG H, et al. Internal flow mechanism and experimental research oflow pressure axial fan with forward-skewed blades[J]. Journal of Hydrodynamics, Ser.B,2008,20(3):299-305.
    [80] Hurault J, Kouidri S, Bakir F, et al. Experimental and numerical study of the sweepeffect on three-dimensional flow downstream of axial flow fans[J]. Flow measurementand instrumentation,2010,21(2):155-165.
    [81]王仲奇,郑严.叶轮机械弯扭叶片的研究现状及发展趋势[J].中国工程科学,2000,2(6):40-48.
    [82] Deich M E, Gubalev A B, Filippov G A. A new method of profiling the guide vanecascade of stage with small ratios diameter to length[J]. Teplienergetika,1962,8:42-46.
    [83]宋彦萍.弯扭叶片的主要研究成果及其应用[J].热能动力工程,1999,14(5):159-163.
    [84]王仲奇,苏杰先.弯扭叶片栅内减少能量损失机理研究的新进展[J].工程热物理学报,1994,15(002):147-152.
    [85]王企鲲,陈康民.叶片弯曲对微型轴流风扇气动性能影响的数值研究[J]. FLUIDMACHINERY,2007,35(10).
    [86]刘富斌,杜朝辉.轴流通风机动叶前弯对扩大稳定工况的试验研究[J].风机技术,1999(006):5-9.
    [87]杨波,刘富斌,钟芳源,等.轴流式前弯动叶的变工况气动性能实验研究[J].实验流体力学,2005,19(001):40-46.
    [88]卞兆喜.弯扭叶片的作用机理及工程应用[J].科技创新导报,2007,32:080.
    [89]张宗茂,顾熙棠.降低轴流风机噪声的两种方法[J].宁波大学学报(理工版),1989,1:010.
    [90]梁锡智,吴海.轴流风机的噪声及降噪[J].流体机械,1999,27(001):30-34.
    [91]陈鱼.轴向间隙对对旋叶栅做功能力的影响[J].风机技术,2012(1):19-22.
    [92]金永平,刘德顺,文泽军,等.叶片数及轴向间隙对矿用对旋式轴流通风机气动性能的影响[J].湖南科技大学学报(自然科学版),2010,4:008.
    [93]乔慧丽,陈鱼,何元新,等.轴向间隙对对旋风机噪声特性影响的试验研究[J].风机技术,2011(1):16-18.
    [94]刘敏,王嘉冰,吴克启.数值模拟不等距叶片对贯流风机的影响[J].工程热物理学报,2007,28(2):211-214.
    [95] Chanaud R C. Noise Reduction in Propeller Fans Using Porous Blades at Free‐FlowConditions[J]. The Journal of theAcoustical Society ofAmerica,1972,51(1A):15-18.
    [96]刘秋洪,祁大同,曹淑珍.风机降噪研究的现状与分析[J].流体机械,2001,29(2):29-32.
    [97] Tinetti A F. On the use of surface porosity to reduce wake-stator interaction noise[D].Virginia Polytechnic Institute and State University,2001.
    [98] Tinetti A F, Kelly J J, Thomas R H, et al. Reduction of wake-stator interaction noiseusing passive porosity[C].40th AIAA Aerospace Sciences Meeting and Exhibit.2002:01-14.
    [99] Thomas R H, Choudhari M M, Joslin R D. Flow and noise control: Toward a closerlinkage[C]//23rd Congress of the International Council of Aeronautical Sciences.2002:09-08.
    [100]Campos E. Aeroacoustics research in Europe: the CEAS-ASC report on2002highlights[J]. Journal of sound and vibration,2003,268(4):809-824.
    [101]Lilienthal O. Der vogelflug als grundlage der fliegekunst: Ein beitrag zur systematikder flugtechnik[M]. R. Gaertner,1889.
    [102]Nachtigall P D W, Wieser J. Profilmessungen am Taubenflügel[J]. Zeitschrift fürvergleichende Physiologie,1966,52(4):333-346.
    [103]Park K J, Rosén M, Hedenstr m A. Flight kinematics of the barn swallow Hirundorustica over a wide range of speeds in a wind tunnel[J]. The Journal of ExperimentalBiology,2001,204:2741-2750.
    [104]Liu T, Kuykendoll K, Rhew R, et al. Avian wing geometry and kinematics[J]. AIAAjournal,2006,44(5):954-963.
    [105]Oehme H, Kitzler U. On the Geometry of the Avian Wing (Studies on the Biophysicsand Physiology ofAvian Flight2)[J].1976.
    [106]常慧英,何玉林,代海涛,等.风机翼形动力模型及翼形设计软件开发[J].经济发展方式转变与自主创新——第十二届中国科学技术协会年会(第二卷),2010.
    [107]郗忠祥,解来君. NF—3风洞设计特点[J].气动实验与测量控制,2003,10(4):40-49.
    [108]范吉川,樊玉辰.世界风洞[M].北京:航空工业出版社,1992.
    [109]伍荣林,王振羽.风洞设计原理[M].北京:北京航空学院出版社,1985.
    [110]李强.可调低湍流度的低速风洞设计及低雷诺数下微型飞行器机翼绕流控制的数值模拟[D].上海:上海大学,2006.
    [111]李广宁.三维NS方程数值求解及SA湍流模型应用研究[D].西安:西北工业大学,2006.
    [112]Liu S H, Huang R F, Lin C A. Computational and experimental investigations ofperformance curve of an axial flow fan using downstream flow resistance method[J].Experimental Thermal and Fluid Science,2010,34(7):827-837.
    [113]Burguburu S,Toussaint C, Bonhomme C,Leroy G. Numerical optimization ofturbomachinery bladings, Journal of Turbomachinery,2004,126,91-100.
    [114]Ki-Sang L, Kwang-Yong K, Abdus S. Design optimization of low-speed axial flow fanblade with three-dimensional RANS analysis. Journal of Mechanical Science andTechnology,2008,22,1864-1869.
    [115]Soo-Yong C, Eui-Soo Y, Bum-Seog C. A study on an axial-type2-D turbine bladeshape foe reducing the blade profile loss. KSME International Journal,2002,16(8):1154-1164.
    [116]Li Y, OuYang H, Du Z H. Experimental research on aerodynamic performance and exitflow of low pressure axial flow fan with circumferential skewed blades. Journal ofHydrodynamics,2007,19(5):579-586.
    [117]Li Y, Liu J. Internal flow mechanism and experimental research of low pressure axialfan with forward-skewed blades. Journal of Hydrodynamics,2008,20(3):299-305.
    [118]Hurault J,Kouidri S,Bakir F,Rey R. Experimental and numerical study of the sweepeffect on three-dimensional flow downstream of axial flow fans. Flow Measurementand Instrumentation,2010,21,155-165.
    [119]Alessandro Corsini, Franco Rispoli, A G Sheard.Aerodynamic performance of bladetip end-plates designed for low-noise operation in axial flow fans.Journal of FluidsEnginerring,2009,131,0811011-08110113.
    [120]Ali Aktürk, Cengiz Camci. Axial flow fan tip leakage flow control using tip platformextensions. Journal of Fluids Engineering,2010,132,051109:1-10.
    [121]Shuming Chen, Dengfeng Wang, Shaoming Sun. Bionic fan optimization based ontaguchi method[J]. Engineering Applications of Computational Fluid Mechanis,2011,5(3):302-314.
    [122]孙少明,徐成宇,任露泉,张永智.轴流风机仿生叶片降噪试验研究及机理分析[J].吉林大学学报:工学版,2009,39(2):382-387.
    [123]周长海,田丽梅,任露泉,等.信鸽羽毛非光滑表面形态学及仿生技术的研究[J].农业机械学报,2006,37(11):180-183.
    [124]郝卫东,黄淑娟,徐忠.等厚薄板翼型的气动力特性研究[J].工程热物理学报,1996,17(1):41-45.
    [125]杨春信,周建辉,鲁俊勇.小型轴流CPU风扇设计与数值模拟[J].电子器件,2007(5).
    [126]唐永伟.汽车发动机冷却风扇气动性能和声学性能研究[D].长春:吉林大学,2007.
    [127]AMCA B.210-Laboratory Methods of Testing Fans for Aerodynamic PerformanceRating[J]. Air Movement and ControlAssociation International, Inc,1999.
    [128]田彬.基于CATIA软件轴流风机设计初步研究[D].西北:西北工业大学,2005.
    [129]苑国强,孙泽涛.混流风机叶片截面参数的坐标转换[J].工程图学学报,2008,29(003):74-76.
    [130]商景泰.通风机实用技术手册[M].机械工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700