用户名: 密码: 验证码:
稀土掺杂钙钛矿型复合氧化物的制备及其发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土离子因其具有稳定的物理化学性质、丰富的能级结构和较长的能级寿命,可作为发光中心掺杂到适当基质材料中,在近紫外或蓝光激发下,得到丰富的光致发光性质。稀土发光材料是一类重要的稀土功能材料,其中稀土掺杂氧化物发光材料已广泛应用于照明和显示技术等领域。随着稀土发光基础研究的不断深入和科学技术的发展,人们对发光材料的性能提出越来越高的要求。由于稀土离子具有独特的4f电子组态、4f5d电子组态及电荷迁移带结构,使其发光特性与基质材料的组成、结构等性质有很强的依赖关系,因此,寻找新型、有利于稀土离子掺杂的基质材料成为提高荧光性能的一个重要研究方向。
     钙钛矿型复合氧化物的结构稳定且性能优异,其电学、磁学和催化等性质备受关注。近年来,人们开始对稀土掺杂钙钛矿型复合氧化物的光学性质产生越来越浓厚的兴趣。另外,钙钛矿结构氧化物所包含的晶体种类十分丰富,并且允许大量离子替换,因此稀土掺杂钙钛矿型氧化物的光学性质极具研究价值和应用前景。
     本论文研究了一系列稀土掺杂钙钛矿型复合氧化物发光材料的制备方法及其发光性能。通过溶胶-凝胶法和高温固相法制备了一系列稀土离子掺杂钙钛矿型复合氧化物,并研究了掺杂离子(以Eu~(3+)为主)在不同钙钛矿基质中的发光性质。通过室温荧光激发和发射光谱、荧光衰减特性分析及高分辨格位选择性激光光谱等测试手段,对合成的样品进行表征分析并总结实验数据,结合部分理论计算,研究了稀土离子发光性能与基质组成和结构的关系。论文的具体研究内容如下:
     第一部分:Eu~(3+)离子掺杂LnAlO_3(Ln=Gd, La)荧光粉的制备及光谱分析。
     LnAlO_3(Ln=La, Gd)是典型的A~(3+)B~(3+)O_3钙钛矿型复合氧化物,我们采用溶胶-凝胶法合成Eu~(3+)离子掺杂LnAlO_3(Ln=La, Gd)荧光粉,通过综合热分析(TG-DSC)和X射线衍射(XRD)来表征其结晶化过程,并且对二者的发光性质进行了较细致地研究。通过较系统地研究掺杂浓度和退火温度对两种材料发光强度的影响,得到最优掺杂浓度及最佳煅烧温度。研究发现,在适当紫外光激发下,GdAlO_3:Eu~(3+)具有较好的红橙光发光亮度,有潜力成为理想的光学显示用红橙色荧光粉。LnAlO_3:Eu~(3+)(Ln=Gd, La)的室温荧光激发谱表明基质结构对Eu~(3+)―O2–电荷迁移能有一定的影响,因此我们根据复杂晶体化学键的介电理论进行理论计算,结合实验数据,研究Eu~(3+)―O~(2–)电荷迁移能与基质化学键的键长、键性的关系。另外,通过进一步测量LnAlO_3:Eu~(3+)(Ln=Gd, La)的室温高分辨格位选择性激光光谱及5D0能级寿命,研究两种基质中Eu~(3+)周围晶场环境和格位分布情况,结果显示Eu~(3+)在LaAlO_3:Eu~(3+)中存在三种不同格位,而在GdAlO_3:Eu~(3+)中仅占据一种格位。
     第二部分:CaRlO_3:Ln (R=Zr, Ti; Ln=Pr~(3+), Eu~(3+), Tb~(3+), Tm~(3+), Dy~(3+), Sm~(3+))荧光粉的制备及光谱调控。
     CaZrO_3和CaTiO_3都是典型的A2+B4+O_3钙钛矿型复合氧化物,我们采用高温固相法合成CaRlO_3:Ln (R=Zr, Ti; Ln=Pr~(3+), Eu~(3+), Tb~(3+), Tm~(3+), Dy~(3+), Sm~(3+))荧光粉,并对其发光性质进行研究。通过测量室温荧光光谱,对Pr3+/Eu~(3+)在CaZrO_3和CaTiO_3中不同的发光行为进行定性研究;另外,我们进一步研究了改变掺杂稀土离子对CaZrO_3的光谱调控作用,发现CaZrO_3是一种良好的可供稀土离子掺杂的基质材料,在近紫外光或蓝光激发下,通过改变掺杂离子可实现发光颜色调控,有潜力成为新型光学显示用荧光粉基质材料。
     第三部分:Eu~(3+)掺杂立方复杂钙钛矿氧化物Ba_3Y_2WO_9的制备及发光性质研究。
     前两部分所研究的基质材料属于简单钙钛矿结构氧化物,接下来将对复杂钙钛矿结构A(B′_(2/3)B″_(1/3))O_3型复合氧化物的发光性质进行研究,因为目前对此类型氧化物光学性质的研究是十分有限的。我们采用溶胶-凝胶法合成Eu~(3+)掺杂立方结构的复杂钙钛矿复合氧化物Ba_3Y_2WO_9(Ba(Y_(2/3)W_(1/3))O_3),通过XRD和场发射扫描电镜(FE-SEM)对合成样品的物相及微观形貌进行表征。通过测量Ba_3Y_2WO_9:Eu~(3+)的室温荧光光谱、高分辨格位选择性激光光谱及~5D0能级寿命,研究了Eu~(3+)在该基质中的发光性能和格位分布情况。研究表明Ba_3Y_2WO_9:Eu~(3+)是一种良好的可允许大量稀土离子掺杂(约为30mol%)的红橙色发光材料;Eu~(3+)取代Bs~(2+)和Y~(3+)格位,且其取代Bs~(2+)格位的同时形成电荷补偿缺陷,这种缺陷结构使Eu~(3+)周围晶格环境产生剧烈扰动。
     本论文的研究,有助于更好地理解稀土离子的发光行为,丰富对稀土掺杂钙钛矿结构氧化物发光性能的认识,对进一步研究稀土掺杂钙钛矿结构氧化物的光学性质及其实际应用具有一定的科学参考价值。
Rare earth ions have stable physical and chemical properties, abundant levelstructure and longer lifetime.Under proper near UV or blue light excitation, rare earthions can be doped into appropriate host as the activator, to get excellent luminescenceproperties. Rare earth doped phosphors is an important class of function materials,and the rare eath doped oxides phosphors could be widely used in the field ofillumination and displays. With the advance of science and technology, and the basictheoretical study goes deeper and wider, people make higher demand on theluminescence properties of optical materials. The optical properities of rare earth ionsshow strong dependce on the compositon and structure of matrix materials, because oftheir unique4f intraconfiguration,4f5d configuration and the charge transfer bandstructure. Therefore, in the exploration of new phosphors, a selection of new hostmaterials to enhance the optical properties is a major concern.
     Perovskite oxides are one of the most studied groups of materials, owing to theirwidely technological applications. In recent years, the optical properties of rareearth-doped perovskie oxides have attracted more and more interest of scientist.Furthermore, an incredibly high versatility of structures and phases with totallydifferent functions can be obtained depending upon the combination of chemicalelements into the formula ABO_3. So the optical properties of rare earth-dopedperovskite composite oxides show well research value and potential applications.
     In this thesis, we systematically investigated on the synthesis and opticalproperties of rare earth-doped perovskite composite oxides. We synthesized a serielsof rare-earth-doped-perovskite composite oxides through sol-gel method and high temperature solid state reaction method, study on the optical properties of the rareearth ions (mainly Eu~(3+)) doped in different host materials. The main experimentalresearch includes photoluminescence excitation and emission spectra, concentrationquenching, lifetime and high resolution laser spectra. The experimental data weresummarized, analyzed and followed by partial theoretical calculation and analysis, toinvestigate the relation between composition, structure and luminescent properties.The thesis mainly consists of three parts, as follows:
     Firstly, the preparation and analysis of Eu~(3+)-doped LnAlO_3(Ln=Gd, La).
     LnAlO_3(Ln=Gd, La) are typical A~(3+)B~(3+)O_3perovskites. In this part, Eu~(3+)-dopedLaAlO_3and GdAlO_3phosphors were synthesized with sol-gel method. Thecrystallization processes of the phosphors were characterized by X-ray diffraction(XRD) and thermogravimetry-differential scanning calorimetry (TG-DSC), and theoptical properties were investigated in details. The influences of doping concentrationand annealing temperature on the luminescent intensity were investigated, and finallywe got the optimal doping concentration and calcining temperature for the twophosphors. Under appropriate UV-radiation, the reddish orange light emitted fromGdAlO_3:Eu~(3+)was brighter than that from LaAlO_3:Eu~(3+). Such a brightly luminescentphosphor could be considered as an ideal optical material for the development of newoptical display systems. As can be seen from the PLE spectra of Eu~(3+)-doped LaAlO_3and GdAlO_3, the CT band energy of Eu~(3+)―O2-was strongly influenced by the hostmaterials. Correspondingly, we calculated the bond lengths and bond covalency ofLa-O and Gd-O based on the chemical bond theory to investigate relations betweenthe CT band energy and bond convalency. Furthermore, the site-selective laserspectroscopy and luminescence decay of Eu~(3+)-doped GdAlO_3and LaAlO_3preparedby sol-gel method have been investigated at room temperature. As can be seen fromthe site-selective excitation spectra in the7F0→5D0region, there were threecrystallographic sites for Eu~(3+)in LaAlO_3:Eu~(3+), and one crystallographic site for Eu~(3+)in GdAlO_3:Eu~(3+).
     Secondly, preparation and tunable spectra of CaRlO_3:Ln (R=Zr, Ti; Ln=Pr~(3+), Eu~(3+)),Tb~(3+), Tm~(3+), Dy~(3+), Sm~(3+)).
     CaZrO_3and CaTiO_3are typical A2+B4+O_3perovskites. In this part, CaRlO_3:Ln(R=Zr, Ti; Ln=Pr~(3+), Eu~(3+), Tb~(3+), Tm~(3+), Dy~(3+), Sm~(3+)) phosphors were prepared byconventional solid state reaction. We investigated luminescent properties thePr3+/Eu~(3+)-doped CaRlO_3:Ln (R=Zr, Ti) through photoluminescence spectrameasurement, although CaZrO_3and CaTiO_3both possess orthorhombic structure,their luminescent properties were different. Furthermore, the tunable spectra ofCaZrO_3were investigated by changing the doped rare earth ions. As a result, CaZrO_3is a kind of well host materials, under appropriate UV or blue light excitation, CaZrO_3could get tunable color light emission, can be exploited as potential host materials foroptical display systems to get better color light output.
     Thirdly, synthesis and investigation of luminescence properties of Eu~(3+)-dopedcubic perovskite Ba_3Y_2WO_9.
     In the above two sections, we investigated the optical properties of rare earthdoped simple perovskite oxides. In this part, we focused on the luminescenceproperties of A(B′_(2/3)B″_(1/3))O_3type complex provskiteoxides, and the study on theoptical properties of this kind of provskite oxides is limited at present. Eu~(3+)-dopedcubic Ba_3Y_2WO_9phosphors were synthesized by sol-gel method. The preparedsamples were characterized by XRD and field emission-scanning electron microscopy(FE-SEM). The luminescence excitation emission spectra in the UV region, thesite-selective laser spectra along with luminescence decay were measured in the5D0-7F0region were used to characterize the luminescence properties and the sitedistributions of Eu~(3+)in Ba_3Y_2WO_9. As the result, the Ba_3Y_2WO_9:Eu~(3+)phosphorsexhibit strong orange-red luminescence, and the optimal concentration of Eu~(3+)in thehost of cubic Ba_3Y_2WO_9is30mol%; Eu~(3+)ions replace both theY~(3+)and Bs~(2+)ions,and the Eu~(3+)in Bs~(2+)sites accompanied by a charge-compensating defect leading tothe disordered surrounding.
引文
[1]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社材料科学与工程出版中心,2003.
    [2]张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社,2011.
    [3]刘光华.稀土固体材料学[M].北京:机械工业出版社,1997.
    [4]刘光华.稀土材料学[M].北京:化学工业工业出版社,2007.
    [5] Harada H, Tanaka K. Photoluminescence from Pr3+-doped chalcogenide glassesexcited by bandgap light [J]. J. Non-Cryst. Solids,1999,246:189-196.
    [6] Wu X, Hommerich U, MacKenzie J D, et al. Photoluminescence study ofEr-doped AlN [J]. J. Lumin.,1997,72-74:284-286.
    [7] Rebohle L, Tyschenko I E, Fr b H, et al. Blue and violet photoluminescence fromhigh-dose Si+-and Ge+-implanted silicon dioxide layers [J]. Microelectron. Eng.,1997,36:107-110.
    [8]张希艳,卢利平,柏朝辉,等.稀土发光材料[M].北京:国防工业出版社,2005.
    [9] Zhang X M, Lang H Y, Seo H J. On the luminescence of Ce3+, Eu3+, and Tb3+innovel borate LiSr4(BO3)3[J]. J. Fluoresc.,2011,21:1111-1115.
    [10] Huang C H, Wu P J, Lee J F, et al.(Ca, Mg, Sr)9Y(PO4)7: Eu2+, Mn2+Phosphorsfor white-light near-UV LEDs through crystal field tuning and energy transfer [J].J. Mater. Chem.,2011,21:10489-10495.
    [11] Li G G, Geng D L, Shang M M, et al. Color tuning luminescenc ofCe3+/Mn2+/Tb3+-triactivated Mg2Y8(SiO4)6O2via energy transfer: potentialsingle-phase white-light-emitting phosphors [J]. J. Phys. Chem. C,2011,115:21882-21892.
    [12] Tang Z L, Zhang F, Zhang Z T, et al. Luminescent properties of SrAl2O4: Eu, Dymaterial prepared by the gel method [J]. J. Eur. Ceram. Soc.,2000,20:2129-2132.
    [13] Guo C F, Zhang W, Luan L, et al. A promising red-emitting phosphor for whitelight emitting diodes prepared by sol-gel method [J]. Sens. Actuators B,2008,133:33-39.
    [14] Guo C F, Chen T, Luan L, et al. Luminescent properties of R2(MoO4)3: Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process [J]. J. Phys. Chem. Solids.,2008,69:1905-1911.
    [15] Guo C F, Gao F, Liang L F, et al. Synthesis, characterization and luminescentproperties of novel red emitting phosphor Li3Ba2Ln3(MoO4)8: Eu3+(Ln=La, Gdand Y) for white light-emitting diodes [J]. J. Alloys Compd.,2009,479:607-612.
    [16] Felix A M H, Hernández T, Parra S D L, et al. Sol-gel based Phechini methodsynthesis and characterization of Sm1-xCaxFeO3perovskite0.1≤x≤0.5[J].Powder Technology,2012,229:290-293.
    [17] Zhong X H, Yang B P, Zhang X L, et al. Effect of calcining temperature and timeon the characteristics of Sb-doped SnO2nanoparticle synthesized by the sol-gelmethod. Particuology,2012,10:365-370.
    [18] Grzyb T, Lis S. Photoluminescent properties of LaF3: Eu3+and GdF3: Eu3+nanoparticles prepared by co-precipitation method [J]. Journal of Rare Earth,2009,27:588-592.
    [19] Atabaev T S, Kim H K, Hwang Y H. Submicro Y2O3particales codoped with Euand Tb ions: Size controlled synthesis and tuning the luminescence emission [J].J. Colloid Interface Sci.,2012,373:14-19.
    [20] Wang Y H, Wu C F, Wei J. Hydrothermal synthesis an luminescent properties ofLnPO4: Tb, Bi (Ln=La, Gd) phosphors under UV/VUV excitation [J]. J. Lumin.,2007,126:503-507.
    [21] Gong W D, Fu Z L, Zhou S H, et al. Template-free hydrothermal synthesis andluminescent properties of octahedral NaGd(MoO4)2:Eu3+microcrystals [J]. J.Electrochem. Soc.,2010,157: J338-J341.
    [22] Tang S, Huang M, Wang J L, et al. Hydrothermal synthesis and luminescenceproperties of GdVO4: Ln3+(Ln=Eu, Sm, Dy) phosphors [J]. J. Alloys Compd.,2012,513:474-480.
    [23]余泉茂.无机发光材料研究及应用新进展[M].合肥:中国科技大学出版社,2010.
    [24] Li Y D, Liao H W, Ding Y, et al. Solvothemal elemental direct reaction of CdE(E=S, Se, Te) semiconductor nanorod [J]. Inorg. Chem.,1999,38:1382-1387.
    [25] Xie Y, Qian Y, Wang W, et al. A benzene-thermal synthetic routenanocrystalline GaN [J]. Science,1996,272:1926-1927.
    [26] Park J Y, Jun H C, Raju G S R, et al. Solvothermal synthesis and luminescenceproperties of Tb3+-doped gadolinium aluminum garnet [J]. J. Lumin.,2010,130:478-482.
    [27] Yang P P, Li C X, Wang W X, et al. Uniform AMoO4: Ln (A=Sr2+, Ba2+;Ln=Eu3+, Tb3+) submicron particles: solvothermal synthesis and luminescentproperties [J]. J. Solid State Chem.,2009,182:2510-2520.
    [28] Yadav R S, Pamdey S K, Pandey A C. BaAl12O19: Mn2+green emittingnanophosphor for PDP application synthesized by solution combustion methodand its Vaccum Ultraviolet photoluminescence characteristics [J]. J. Lumin.,2011,131:1998-2003.
    [29] Zhai Y Q, You Z J, Liu Y H, et al. Properties of red-emitting phosphorsSr2MgSi2O7:Eu3+prepared by gel-combustion method assisted by microwave [J].Journal of Rare Earth,2012,30:114-117.
    [30] Jung K Y, Lee H W, Kang Y C, et al. Luminescent properties of (Ba,Sr)MgAl10O17: Mn, Eu green phosphor prepared by spray pyrolysis under theVUV excitation [J]. Chem. Mater.,2005,17:2729-2734.
    [31] Mancic L, Marinkovic K, Marinkovic B A, et al. YAG: Ce3+nanostructuredparticles obtained via spray pyrolysis of polymeric precursor solution [J]. J. Eur.Ceram. Soc.,2010,30:577-582.
    [32]张思远.稀土离子的光谱学:光谱性质和光谱理论[M].北京:科学出版社,2008.
    [33] Liu G K, Jacquier B. Spectroscopic properties of rare earths in opticalmaterials[M]. China: Tsinghua University Press,2005.
    [34] Su Y G, Li L P, Li G S. NaYF4:Eu2+microcrystals: synthesis and intense blueluminescence [J]. Cryst. Growth Des.,2008,8:2678-2683.
    [35] Yuan B L, Huang Y L, Yu Y M, et al. Luminescence and structure of Eu2+-dopedBa2CaMg2Si6O17[J]. Ceram. Int.,2012,38:2219-2223.
    [36] Lai H, Bao A, Yang Y, et al. UV luminescence property of YPO4: RE (RE=Ce3+,Tb3+)[J]. J. Phys. Chem. C,2008,112:282-286.
    [37] Shao Q Y, Dong Y, Jiang J Q, et al. Temperaure-dependent photoluminescenceproperties of (Y, Lu)3Al5O12: Ce3+phosphor for white LEDs applications [J]. J.Lumin.,2011,131:1013-1015.
    [38] Wang Y H, Zhang J H, Hou D J, et al. Luminescence of Ce3+activated NaCaPO4under VUV-UV and X-ray excitation [J]. Opt. Mater.,2012,34:1214-1218.
    [39] Hoshina T, Imanaga S, Yokono S. Charge transfer effects on the luminescentproperties of Eu3+in oxysulfides [J]. J. Lumin.,1977,15:455-471.
    [40] Verwey J W M, Dirksen G J, Blasse G. A study of the Eu3+charge-transfer statein lanthanide-borate glass [J]. J. Non-Cryst. Solids,1988,107:49-54.
    [41] Dorenbos P. The Eu3+charge transfer energy and the relation with the band gapof compounds [J]. J. Lumin.,2005,111:89-104.
    [42] Li L, Zhou S H, Zhang S Y. Investigation on relationship between chargetransfer position and dielectric definition of average energy gap in Eu3+-dopedcompounds [J]. J. Phys. Chem. C,2007,111:3205-3210.
    [43] Li L, Zhang S Y. Dependence of charge transfer energy on crystal structure andcomposition in Eu3+-doped compounds [J]. J. Phys. Chem. B,2006,110:21438-21443.
    [44] Dorenbos P. Systematic behaviour in trivalent lanthanide charge transfer energies[J]. J. Phys.: Condens. Matter,2003,15:8417-8434.
    [45] Su M Z, Sun X P. The charge transfer excitation of trivalent rare earth ions Sm3+,Eu3+, Gd3+, Ho3+, Er3+and Yb3+emission in BaFCl crystals [J]. Mater. Res. Bull.,1987,22:89-94.
    [46] Judd B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev.,1962,127:750-761.
    [47] Ofelt G S. Intensities of crystal spectra of rare earth ions [J]. J. Chem. Phys.,1962,37:511-520.
    [48] Binnemans K, Gorller W C. Application of the Eu3+ion for site symmetrydetermination [J]. Journal of rare earths,1996,14:173-180.
    [49] Feng L M, Jiang L Q, Zhu M, et al. Formability of ABO3cubic perovskites [J]. J.Phys. Chem. Solids,2008,69:967-974.
    [50] Hippel A V, Breckenridge R G, Chesley F G, et al. High dielectric constantceramics [J]. Ind. Eng. Chem.,1946,38:1097-1109.
    [51] Wollan E O, Koehler W C. Neutron diffraction study of the magnetic propertiesof the series of perovskite-type compounds [(1-x)La, xCa]MnO3[J]. Phys. Rev.,1955,100:545-563.
    [52] Anderson P W. New approach to the theory of superexchange interactions [J].Phys. Rev.,1959,115:2-13.
    [53] Pankajavalli R, Sreedharan O M. Thermodynamic stabilities of LaVO3andLaVO4by e.m.f. methods [J]. Mater. Lett.,1995,24:247-251.
    [54] Nguyen H C, Goodenough J B. Magnetic and transport properties of CeVO3[J].J. Solid State Chem.,1995,119:24-35.
    [55] Onoda M, Nagasawa H. Magnetic and structural aspects of semiconductingperovskites RVO3[J]. Solid State Commun.,1996,99:486-491.
    [56] Lybye D, Poulsen F W, Mogensen M. Conductivity of A-and B-site dopedLaAlO3, LaGaO3, LaScO3and LaInO3perovskites [J]. Solid State Ionics,2000,128:91-103.
    [57] Munoz A, Casais M T, Alonso J A, et al. Complex magnetism and magneticstructures of the metastable HoMnO3perovskite [J]. Inorg. Chem.,2001,40:1020-1028.
    [58] Munoz A, Alonso J A, Lope M J M, et al. Evolution of the magnetic structure ofhexagonal HoMnO3from Neutron powder diffraction Data [J]. Chem. Mater.,2001,13:1497-1505.
    [59] Lottermaser T, Fiebig M, Frohlich D, et al. Magnetic structure of hexahonalmanganites RMnO3(R=Sc, Y, Ho, Er, Tm, Yb, Lu)[J]. J. Magn. Magn. Mater.,2001,226-230:1131-1133.
    [60] Kato H, Kudo T, Naito H, et al. Electrical conductivity of Al-dopedLa1-xSrxScO3perovskite-type oxides as electrolyte materials for low-temperatureSOFC [J]. Solid State Ionics,2003,159:217-222.
    [61] Bossak A A, Graboy I E, Oleg Yu, et al. XRD and HREM studies of epitaxiallystabilized hexagonal orthoferrites RFeO3(R=Eu-Lu)[J]. Chem. Mater.,2004,16:1751-1755.
    [62] Ikeda H, Matsubara T. Heat capacity of potential regenerator ABO3materials atlow temperature [J]. Cryogenics,2009,49:291-293.
    [63] Inaguma Y, Muronoi T, Sano K, et al. An approach to control of band gap energyan photoluminescence upon band gap excitation in Pr3+-doped perovskitesLa1/3MO3(M=Nb, Ta): Pr3+[J]. Inorg. Chem.,2011,50:5389-5395.
    [64] Liu X M, Lin J. Dy3+and Eu3+-doped LaGaO3nanocrystalline phosphors forfield emission displays [J]. J. Appl. Phys.,2006,100:124306-124306-07.
    [65] Liu X M, Pang R, Quan Z W, et al. Tunable luminescence properties ofTb3+-doped LaGaO3nanocrystalline phosphors [J]. J. Electrochem. Soc.,2007,154: J185-J189.
    [66] Liu X M, Lin J. LaGaO3:A (A=Sm3+and/or Tb3+) as promising phosphors forfield emission displays [J]. J. Mater. Chem.,2008,18:221-228.
    [67] Pazik R, Seisenbaeva G A, Wiglusz R J, et al. Crystal structure and morphologyevolution in the LaXO3, X=Al, Ga, in nano-oxide series. Consequences for thesynthesis of luminescent phosphors [J]. Inorg. Chem.,2011,50:2966-2974.
    [68] Tukia M, Holsa J, Lastusaari M, et al. Eu3+doped rare earth orthoborates, RBO3(R=Y, La and Gd), obtained by combustion synthesis [J]. Opt. Mater.,2005,27:1516-1522.
    [69] Liu X M, Lin J. Synthesis and luminescent properties of LaInO3:RE3+(RE=Sm,Pr and Tb) nanocrystalline phosphors for field emission displays [J]. Solid StateScience,2009,11:2030-2036.
    [70] Keith M L, Roy R. Structural relations among double oxides of trivalentelements [J]. Journal of the Mineralogical Society of America,1954,39:1-23.
    [71]刘海涛,杨郦,林蔚.无机材料合成[M].北京:化学工业出版社,2011.
    [72] Feng L M, Jiang L Q, Zhu M, et al. Formability of ABO3cubic perovskites [J]. J.Phys. Chem. Solids,2008,69:967-974.
    [73] Teraoka Ye, Wei M D, Kagawa S. Double perovsketes containing hexavalentmolybdenum and tungsten: synthesis, structural investigation and proposal of thefitness factor to discriminate the crystal symmetry [J]. J. Mater. Chem.,1998,8:2323-2325.
    [74] Gateshki M, Igartua J M. Second-order structural phase transition in Sr2CuWO6double-perovskite oxide [J]. J. Phys.: Condens. Matter,2003,15:6749-6757.
    [75] Cheah M, Saines P J, Kennedy B J. The Jahn-Teller distortion and cationordering in the perovskite Sr2MnSbO6[J]. J. Solid State Chem.,2006,179:1775-1781.
    [76] Hong K P, Choi Y H, Kwon Y U. Atomic and magnetic long-range ordering inBaLaMRuO6(M=Mg and Zn)[J]. J. Solid State Chem.,2000,150:383-390.
    [77] Dias A. Subodh G, Sebastian M T, et al. Vibrational studies and microwavedielectric properties of A-site-substituted Tellurium-based double perovskites [J].Chem. Mater.,2008,20:4347-4355.
    [78] Dias A, Lage M M, Khalam L A, et al. Vibrational spectroscopy of Ca2LnTaO6(Ln=lanthanides, Y, and In) and Ca2InNbO6double perovskites [J]. Chem.Mater.,2011,23:14-20.
    [79] Khalam L A, Sebastian M T. Effect of cation substitution and non-stoichiometryon the microwave dielectric properties of Sr(B′0.5Ta0.5)O3[B′=lanthanides]perovskites [J]. J. Am. Ceram. Soc.,2006,89:3689-3695.
    [80] Zurmuhlen R, Petzelt J, Kamba S, et al. Dielectric spectroscopy ofBa(B′1/2B′1/2)O3complex perovskite ceramics: correlations between ionicparameters and microwave dielectric properties.. Infrared reflectivity study(1012-1014Hz)[J]. J. Appl. Phys.,1995,77:5341-5350.
    [81] Sivkumar V, Varadaraju U V. Synthesis, phase transition and photoluminescencestudies on Eu3+-substituted double perovskites-a novel orange-red phosphor forsolid-state lighting [J]. J. Solid State Chem.,2008,181:3344-3351.
    [82] Ye S, Wang C H, Jing X P. Photoluminescence and raman spectra ofdouble-perovskite Sr2Ca(Mo/W)O6with A-and B-site substitutions of Eu3+[J]. J.Electrochem. Soc.,2008,155: J148-J151.
    [83] Xia Z G, Sun J F, Du H Y, et al. Luminescence properties of double-perovskiteSr2Ca1-2xEuxNaxMoO6red-emitting phosphors prepared by the citricacid-assisted sol-gel method [J]. J. Mater. Sci.,2009,45:1553-1559.
    [84] Sivakumar V, Varadaraju U V. A promising orange-red phosphor under near UVexcitation [J]. Electrochem. Solid-State Lett.,2006,9: H35-H38.
    [85] Fuentes A F, Ibarra O H, Suarez G M, et al. Structural analysis of several W(Ⅵ)and Mo(Ⅵ) complex perovskites prepared by polymeric precursors method [J]. J.Solid State Chem.,2003,173:319-327.
    [86] Samara G A. The relaxational properties of compositionally disordered ABO3perovskites [J]. J. Phys.:Condens. Matter,2003,15: R367-R411.
    [87] Feng L, Ye Z G. Phase diagram and phase transition in the relaxor ferroelectricPb(Fe2/3W1/3)O3-PbTiO3system [J]. J. Solid State Chem.,2002,163:484-490.
    [88] Varma M R, Raghunandan R, Sebastian M T. Effect of dopants on microwavedielectric poperties of Ba(Zn1/3Ta2/3)O3[J]. Jpn. J. Appl. Phys.,2005,44:298-303.
    [89] Maczka M, Hanuza J, Fuentes A F, et al. Vibrational studies of A(B′2/3B″1/3)O3perovskites (A=Ba, Sr; B′=Y, Sm, Dy, Gd, In; B″=Mo, W)[J]. J. Phys.: Condens.Matter,2004,16:2297-2310.
    [90]张思远.复杂晶体化学键的研究[J].化学物理学报,1991,4:109.
    [91]张思远.复杂晶体化学键的介电理论及其应用[M].北京:科学出版社,2005.
    [92] Celik E, Yamada Y, Hirabayashi I, et al. Nb-doped SrTiO3buffer lays on LaAlO3substrates by metalorganic deposition for YBCO superconduction films [J].Mater. Sci. Eng. B,2004,110:94-102.
    [93] Lybye D, Poulsen F W, Mogensen M. Conductivity of A-site and B-site dopedLaAlO3, LaGaO3, LaScO3and LaInO3perovskites. Solid Stated Ionics,2000,128:91-103.
    [94] Liu X M, Zou J P, Lin J. Nanocrystalline LaAlO3:Sm3+as a promising yellowphosphor for field emission display [J]. J. Electrochem. Soc.,2009,156:P43-P47.
    [95] Liu X M, Yan L S, Lin J. Synthesis and luminescent properties of LaAlO3:RE3+(RE=Tm, Tb) nanocrystalline phosphors via a sol-gel process [J]. J. Phys. Chem.C,2009,113:8478-8483.
    [96] Lu W C, Ma X H, Zhou H, et al. White up-conversion luminescence inrare-earth-ion-doped YAlO3nanocrystals [J]. J. Phys. Chem. C,2008,112:15071-15074.
    [97] Osiac E. Green upconverted emission by infared pump in Ho3+-doped YAlO3[J].J. Alloys and Compd.,2002,341:263-266.
    [98] Raju G S R, Park J Y, Jung H C, et al. Synthesis and luminescent properties oflow concentration Dy3+:GAP nanophosphor [J]. Opt. Mater.,2009,31:1210-1214.
    [99] Raju G S R, Park J Y, Jung H C, et al. Synthesis, structural and luminescentproperties of Pr3+activated GdAlO3phosphors by solvothermal reaction method[J]. Curr. Appl. Phys.,2011,11: s292-s295.
    [100] Park J Y, Jun H C, Raju G S R, et al. Enhanced green emission from Tb3+-Bi3+co-doped GdAlO3nanophosphors [J]. Mater. Res. Bull.,2010,45:572-575.
    [101] Deren P J, Krupa J C. Spectroscopic investigations of LaAlO3:Eu3+[J]. J.Lumin.,2003,102-103:386-390.
    [102] Howard C J, Kennedy B J, Chakoumakos B C. Neutron powder diffractionstudy of rhombohedral rare-earth aluminates and the rhombohedral to cubicphase transition [J]. J. Phys.: Condens. Matter.,2000,12:349-365.
    [103] Deren P J, Mahiou R. Spectroscopic characterisation of LaAlO3crystal dopedwith Er3+ions. Opt. Mater.,2007,29:766-772.
    [104] Zeng X H, Zhang L H, Zhao G J, et al. Crystal growth and optial properties ofLaAlO3and Ce-doped LaAlO3single crystal [J]. J. Cryst. Growth,2004,271:319-324.
    [105] Boulay D D, Ishizawa N, Maslen E N. GdAlO3perovskite [J]. Acta. Cryst.,2004, C60: i120-i122.
    [106] Blasse G. On the Eu3+fluorenscence of mixed metal oxides. Ⅳ. Thephotoluminescent efficiency of Eu3+-activated oxides [J]. J. Chem. Phys.,1966,45:2356-2360.
    [107] Xu W L, Jia W Y, Revira I, et al. Optical properties of multiple sites of Eu3+inSrY2O4single-crystal fibers [J]. J. Electrochem. Soc.,2001,148: H176-H178.
    [108] Shi J S, Zhang S Y. Barycenter of energy of lanthanide4fN–15d configuration ininorganic crystals [J]. J. Phys. Chem. B,2004,108:18845-18849.
    [109] Ross N L, Zhao J, Burt J B, Chaplin T D. Equations of state of GdFeO3andGdAlO3perovskites [J]. J. Phys.: Condens. Matter,2004,16:5721-5730.
    [110] Iwahara H, Asakura Y, Katahira K, et al. Prospect of hydrogen technologyusing proton-donducting ceramic [J]. Solid State Ionics,2004,168:299-310.
    [111] Pan Y X, Su Q, Xu H F, et al. Synthesis and red luminescence of Pr3+-dopedCaTiO3nano-phosphor from polymer precursor [J]. J. Solid State Chem.2003,174:69-73.
    [112] Wu B, Zhang Q H, Wang H Z, et al. Low-temperature preparation ofmonodispersed Eu-doped CaTiO3LED phosphors with controllablemorphologies [J]. Cryst. Eng. Comm,2012,14:2094-2099.
    [113] Lemanski K, Gagor A, Kurnatowska M, et al. Spectoscopic properties of Nd3+ions in nano-perovskite CaTiO3[J]. J. Solid State Chem.,2011,184:2713-2718.
    [114] Szczerba J, Pezich Z. The effect of natural dolomite admixtures on calaiumzironate-periclase materials microstructure evolution [J]. Ceram. Int.,2010,36:535-547.
    [115] Stoch P, Szczerba J, Lis J, et al. Crystal structure and ab inito calculations ofCaZrO3[J]. J. European Ceramic Society,2012,32:665-670.
    [116] Hou Z F. Ab ignition calculations of elastic modulus and electronic structures ofcubic CaZrO3[J]. Physica B,2008,403:2624-2628.
    [117] Boudali A, Abada A, Driss K M, et al. Calculation of structural, elastic,electronic, and thermal properties of orthorhombic CaTiO3[J]. Physica B,2010,405:3879-3884.
    [118] Kennedy B J, Howard C J, Chokoumakos B C. Phase transitons in perovskite atelevated temperatures-a powder neutron diffraction study [J]. J. Phys.: Condens.Matter,1999,11:1479-1488.
    [119] Higughi T, Tsukamoto T, Tezuka Y, et al. Photoemission study on protonicconductor CaZrO3: evidence of the exchange mechanism of proton and hole [J].Jpn. J. Appl. Phys.,2000,39: L133-L136.
    [120] Pontes F M, Pinheiro C D, Longo E, et al. The role of network modifiers in thecreation of photoluminescence in CaTiO3[J]. Mater. Chem. Phys.,2002,78:227-233.
    [121] Hoefdraad H E, Blasse G. Green emitting praseodymium in calcium zirconate[J]. Phys. Stat. Sol.(a),1975,29: K95-K97.
    [122] Pinel E, Boutinaud P, Mahiou R. What makes the luminescence of Pr3+differentin CaTiO3and CaZrO3[J]. J. Alloy Compd.,2004,380:225-229.
    [123] Hao Z D, Zhang J H, Zhang X, et al. Blue-green-emitting phosphorCaSc2O4:Tb3+: tunable luminescence manipulated by cross-relaxation [J]. J.Electronchem. Soc.,2009,156: H193-H196.
    [124] Nugent L J, Baybarz R D, Burnett J L, et al. Elentron-transfer and f-dabsorption bands of some lanthanide and actinide complexes and the standard(Ⅱ-Ⅲ) oxidation potential for each member of the lanthanide and actinide series[J]. J. Phys. Chem.,1973,77:1528-1539.
    [125] Zhang H W, Fu X Y, Niu S Y, et al. Blue luminescence of nanocrystallineCaZrO3:Tm3+phosphors synthesized by a modified Pechini sol-gel method [J]. J.Lumin.,2008,128:1348-1352.
    [126] Macquart R B, Kennedy B J. Synthesis and structural studies of A-sitesubstituted bismuth double perovskites, Ba2-xSrxLuBiO6[J]. Chem. Mater.,2005,17:1905-1909.
    [127] Ivanov S A, Nordblad P, Tellgren R, et al. Temperature evolution of structureand magnetic properties in perovskite Sr2MnSbO6[J]. Mater. Res. Bull.,2009,44:822-830.
    [128] Bokov A A, Ye Z G. Recent progress in relaxor ferroelectrics with perovskitestructure [J]. J. Mater. Sci.,2006,41:31-52.
    [129] Ye S, Wang C H, Lu J, et. al. Photoluminescence and energy transfer ofphosphor series Ba2-zSrzCaMo1-yWyO6:Eu, Li for white light UVLEDapplications [J]. Appl. Phys. B,2008,91:551-557.
    [130] Sivakumar V, Varadaraju U V. An orange-red phosphor under near-UVexcitation for white light emitting diodes [J]. J. Electrochem. Soc.,2007,154:J28-J31.
    [131] Raju K V, Sailaja S, Raju C N, et al. Synthesis, the effect of rare earth ionconcentration and temperature on luminescence properties of Eu3+:Ba3Y2WO9ceramics [J] J. Lumin.,2011,131:1438-1442.
    [132] Huang Y L, Seo H J. The spectroscopy and micro-structure of Eu3+ions dopedouble perovskite Ba3Y2WO9[J]. J. Electrochem. Soc.,2011,158: J215-J220.
    [133] Wang W X, Yang P P, Cheng P P, et al. Pattenting of red, green, and blueluminescent films based on CaWO4:Eu3+, CaWO4:Tb3+, and CaWO4phosphorsvia microcontact printing route [J]. Appl. Mater. Interfaces,2011,3:3921-3928.
    [134] Li Y Y, Cheng W D, Zhang H, et al. A series of novel rare-earth bismuthtungstate compounds LnBiW2O9(Ln=Ce, Sm, Eu, Er): synthesis, crystalstructure, optical and electronic properties [J]. Dolton Trans.,2011,40:7357-7364.
    [135] Fu Z L, Zhou S H, Yu Y Y, et al. Photoluminescence properties and analysis ofspectral structure of Eu3+-doped SrY2O4[J]. J. Phys. Chem. B,2005,109:23320-23325.
    [136] Huang Y L, Jang K, Zhao W X, et al. Laser site-selective excitation andemission spectroscopy of Eu3+-doped Ba3BP3O12[J]. J. Alloys Compd.,2008,465:474-478.
    [137] Seo H J, Tsuboi T, Jang K. Eu3+luminescence in Eu-doped KMgF3crystalsinvestigated by site-selective laser-excitation spectroscopy [J]. Phys. Rev. B,2004,70:205113-1-8.
    [138] Huang Y L, Seo H J. Multisite structure of PbWO4:Eu3+crystals investigated bysite-selective laser-excitation spectroscopy [J]. J. Phys. Chem. A,2009,113:5317-5323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700