用户名: 密码: 验证码:
基于因子分析法的超声肝灌注定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌是一种影响我国人民身体健康的重大疾病,其早期发现和治疗是提高治愈率和降低死亡率的关键。超声造影成像是一种通过注入微泡造影剂来动态、清晰显示微细血管,特别是肿瘤血管的新型成像技术。利用该技术可以获得组织丰富的供血及血流灌注信息,这对临床组织病变的检查具有重要的诊断意义。与增强CT和增强MRI相比,它实时性强、安全性好和价格低。目前,该项技术已被广泛应用于局灶性肝结节(Focal Liver Lesions, FLLs)的鉴别诊断。普通超声造影诊断FLLs主要依靠诊断者对肝不同血管相的增强水平及其变化的观察和判断,这种方式容易受诊断者主观性的影响,存在观察者间差别。为了克服观察者之间的差异性,可通过采用对不同类型FLLs的超声造影数据进行定量分析方法来提高FLLs的诊断率。
     本论文以为超声医生提供一种实用且准确性高的超声造影定量分析方法为目标,针对目前动态结构的因子分析法(Factor Analysis of Dynamic Structures, FADS)方法存在的问题,研究一种新型且有效的FADS方法,可从不同类型FLLs的自由呼吸的超声造影数据中自动地提取到时间一强度曲线(Time-Intensity Curves, TICs),然后利用提取到的TICs的特征参数进行参数成像,从而反映出不同类型FLLs的灌注特点,有助于超声医生鉴别FLLs。
     考虑到目前所研究的临床病例数据均在病人自由呼吸运动下采集,因此,首先提出了一种基于图像的运动校正策略来快速校正图像序列中的呼吸运动。通常,商业超声机能同时显示造影和组织图像。由于组织图像中的灰度变化较低,采用绝对差值和(Sum of Absolute Differences, SAD)测度对组织图像进行模板匹配。然后,通过一种双选择法挑选相似的图像,该方法需要进行全局和局部的阈值设定。最后,通过利用组织与造影窗口之间的位置映射关系来确定造影图像。该策略只需要简单的人工操作,例如模板图像和搜索范围的选择。它不依赖肿瘤的大小,具有用户友好性,且适合于大多数被不利采样因素所影响的病例。由于省时的优点,该策略能被广泛应用于临床实践中,而且FLLs的诊断效率也会被提高。
     针对目前FADS方法的不足,本论文提出一种新型的替代-近似(Replace-Approximation, RA)算法。该方法主要思想是在这些未重叠的生理结构区域中找到最佳的一个像素的TIC取代真实的因子曲线。这样RA法提取的TIC不会丢大部分的初始信息。该算法不像大多数顶点搜寻法从q-1维空间开始搜寻顶点而是将从一维空间且开始搜寻顶点。它不需要估计任何特定的参数,先验知识和传统的因子旋转。该算法首先在体模实验中进行了测试,同时与其他两种FADS方法进行了比较。
     随后,在自由呼吸的FLLs病例中进一步验证RA算法。由于FADS分析中因子个数的不确定性,对临床病例分别进行了二个和三个因子的分析。实验结果发现RA法能有效提取到具有生理意义的因子曲线和因子图。然而,并不是所有的临床病例都适用于三个因子分析。相比之下,两个因子的分析结果更加稳定。
     根据对临床病例进行两个因子分析中提取到的因子曲线特征参数可计算出注入时间比(Wash-In Time Ratio, WITR)值并合成相应的彩色参数图。这些参数图不仅能准确地直观反映出不同类型FLLs的灌注特点,还能提供灌注区域的血流相对速度的信息。这表明两个因子分析法在肝灌注量化分析具有一定潜力,从而有助于超声医生对肝肿瘤进行鉴别诊断。
Liver cancer is a major disease that affects the physical health of Chinese people, andits early detection and treatment is the key to improve the cure rate and to reduce themortality. Contrast-enhanced ultrasound (CEUS) imaging is a novel imaging techniquethat dynamically and clearly depicts the micro-vasculature, especially the vasculature ofthe tumor by injecting microbubble contrast agents. The rich blood supply and perfusioninformation of the tissue can be acquired by using this technique, which is importantsignificant to the clinical diagnosis of the tissue diseases. Compared withcontrast-enhanced CT and MRT, it is real-time, safety and low-cost. Now the technique iswidely applied to the differential diagnosis of focal liver lesions (FLLs). Generally, thediagnosis by using CEUS imaging mainly relies on the ultrasonographists’observationsand judgments of the enhancement level and change in different vascular phases. This wayis vulnerable to the impact of the ultrasonographists’subjectivity, and there is differencebetween the observers. To overcome it, the diagnostic rate of FLLs could be improved byusing the quantitative analysis methods for the CEUS data from different types of FLLs.
     This article aims to provide a practical quantitative analysis method in CEUS imagingwith high accuracy for ultrasonographists. To solve the problems in the factor analysis ofdynamic structures (FADS)methods, a novel and effective FADS method is investigatedto automatically extract time-intensity curve(sTICs)from the CEUS data of different typesof FLLs. Then, the parametric imaging is performed by utilizing the characteristicparameters of the extracted TICs. These maps reflect the perfusion characteristics ofdifferent types of FLLs, which is helpful for ultrasonographists to differentiate FLLs.
     The investigated clinical case data was collected during patients breathed freely.Therefore, an image-based motion correction strategy is proposed to quickly correct therespiratory motion in the image sequence. Usually, the commercial ultrasound machine can display contrast and tissue images simultaneously. Because of the low gray-levelvariation in the tissue images, the tissue images are registered by using template matchingwith sum of absolute differences metric. Then, the similar images are selected by adouble-selection method which requires global and local threshold setting. Finally, thecontrast images are determined by utilizing the relationship of position mapping betweenthe tissue and contrast windows. Simple manual operation is only needed, such as theselection of the template image and search space. It is independent of the tumor size anduser-friendly. Moreover, this strategy is suitable for most clinical cases affected by adversefactors of sampling. Due to the merit of the saving time, this strategy can be widelyapplied to clinical practice, and the diagnostic efficiency of FLLs will be improved.
     To solve the problems in the current FADS methods, a novel replace-approximation(RA) is proposed. The main idea of the algorithm is that the true factor curve can beapproximately replaced by the optimal TIC of the pixel that is found in the un-overlappedphysiological regions. In this way, the TIC extracted by the RA method will not lose mostof the original information. This method always starts to seek the apexes fromone-dimensional space first, instead of doing it usually from q-1dimensional space. Itdoes not need the estimate of any specific parameter, a priori knowledge or factor rotation.The algorithm is tested on the phantoms, and compared with the two other FADS methods.
     RA algorithm is further validated on the free-breathing clinical cases. Because thenumber of factors in the FADS is ambiguous, two-and three-factor analyses are performedon the clinical cases respectively. Experimental results show that the RA method couldextract physiological factor curves and factor images efficiently. However, all the clinicalcases are not suitable for the three-factor analysis. In contrast, the two-factor analysisperforms more stably.
     The wash-in time ratio indexes are calculated from the characteristic parameters ofthe two factor curves extracted by the two-factor analysis performed on the clinical cases.Then, these values generate the corresponding parametric images. These parametric maps not only represent the perfusion characteristics of different types of FLLs, but also providethe relative speed information of blood flow in the perfusion region. It indicates thattwo-factor analysis has potential to the quantitative analysis of hepatic perfusion, whichwould be helpful to the differential diagnosis of FLLs.
引文
[1]吴孟超,陈汉,姚晓平.原发性肝癌的外科治疗.中华外科杂志,1996,34(12):707-710
    [2]吴孟超.肝癌外科治疗的近期进展.中国普外基础与临床杂志,2006,13(2):125-128.
    [3]芮静安.肝癌治疗进展和展望.临床肝胆病杂志,2004,20(3):131-133
    [4] Correas J M, Bridal L, Lesavre A, et a1.Ultrasound contrast agents:properties,principles of action, tolerance and arifacts. European Radiology,2001,11:1316-1328
    [5] Chami L, Lassau N, Bidault S, et al. Contrast enhanced ultrasound for the detectionof malignant liver lesions. Feuillets De Radiologie,2009,49(5):331-339
    [6] Leen E, Ceccotti P, Kalogeropoulou C, et al. Prospective multicenter trial evaluatinga novel method of characterizing focal liver lesions using contrast-enhancedsonography. AJR American Journal of Roentgenology,2006,186:1551–1559
    [7] Strobel D, Seitz K, Blank W, et al. Contrast-enhanced ultrasound for thecharacterization of focal liver lesions—diagnostic accuracy in clinicalpractice(DEGUM multicenter trial). Ultraschall in der Medizin,2008,29:499–505
    [8] Bryant TH, Blomley MJ, Albrecht T, et al. Improved characterization of liverlesions with liver-phase uptake of liver-specific microbubbles: prospectivemulticenter study. Radiology,2004,232:799-809
    [9] Kim T K, Choi B I, Han J K, et al. Hepatic tumors: contrast agent-enhancementpatterns with pulseinversion harmonic US. Radiology, August1,2000;216(2):411–417
    [10] Harvey C J, Albrecht T. Ultrasound of focal liver lesions. European Radiology,2001,11:1578–93
    [11] Strobel D, Raeker S, Martus P, et al. Phase inversion harmonic imaging versuscontrast-enhanced power Doppler sonography for the characterization of focalliver lesions. International Journal of Colorectal Disease,2003,18:63–72.
    [12] Burns P N, Wilson S R. Focal liver masses: Enhancement patterns oncontrast-enhanced images-concordance of US scans with CT scans and MR images.Radiology,2007,242(1):162-174
    [13] Claudon M,Cosgrove D,Albrecht T,et al,Guidelines and goodclinical practice recommendations for contrast enhanced ultrasound(CEUS)-update.Ultraschall in der Medizin,2008,29:28-44
    [14] Xu H, Liu G, Lu M, et al. Characterization of focal liver lesions usingcontrast-enhanced sonography with a low mechanical index mode and a sulfurhexafluoride-filled microbubble contrast agent. Journal of Ultrasound in Medicine,2006,34(6):261–272
    [15] Lueck G J, Kim T K, Burns P N, et al. Hepatic Perfusion Imaging Using FactorAnalysis of Contrast Enhanced Ultrasound. IEEE Transactions on Medical Imaging,2008,27(10):1449-1457
    [16] Bartolotta T V, Taibbi A, Midiri M, et al. Focal liver lesions: contrast-enhancedultrasound. Abdominal Imaging,2009,34:193–209
    [17] Hussain S M, Zondervan P E, IJzermans J N, et al. Benign versus malignant hepaticnodules: MR imaging findings with pathologic correlation. Radiographics,2002,22:1023–1036
    [18] Choi B I, Takayasu K, Han M C. Small hepatocellular carcinomas and associatednodular lesions of the liver: pathology, pathogenesis, and imaging findings.American Journal of Roentgenology,1993,160:1177-1187
    [19] Matsui O, Kadoya M, Kameyama T, et al. Benign and malignant nodules incirrhotic livers: distinction based on blood supply. Radiology,1991,178:493-497
    [20] Nakashima Y, Nakashima O, Hsia C C, et al. Vascularization of smallhepatocellular carcinomas: correlation with differentiation. Liver,1999,19:12-18
    [21] Catalano O, Lobianco R, Cusati B, et al. Hepatocellular carcinoma: spectrum ofcontrast-enhanced gray-scale harmonic sonography findings. Abdominal Imaging,2004,29:341-347
    [22] Rettenbacher T. Focal liver lesions: Role of contrast-enhanced ultrasound. EuropeanJournal of Radiology,2007,64,173–182
    [23] Lemke A J, Chopra S S, Hengst S A, et al. Characterization of hepatic tumors withcontrast-enhanced ultrasound and digital grey-scale analysis. Rofo,2004,176:1607–1616
    [24] Klein D, Jenett M, Gassel HJ, et al. Quantitative dynamic contrast-enhancedsonography of hepatic tumors. European Radiology,2004,14:1082–1091
    [25] Lassau N, Lamuraglia M, Chami L, et al. Gastrointestinal stromal tumors treatedwith imatinib: monitoring response with contrast-enhanced sonography. AJRAmerican Journal of Roentgenology,2006,187:1267–1273
    [26] Huang-Wei C, Bleuzen A, Olar M, et al. Role of parametric imaging in contrastenhanced sonography of hepatic focal nodular hyperplasia. Journal of ClinicalUltrasound,2006,34:367–373
    [27] Huang-Wei C, Bleuzen A, Bourlier P, et al. Differential diagnosis of focal nodularhyperplasia with quantitative parametric analysis in contrast-enhanced sonography.Investigative Radiology,2006,41,363–368
    [28] Sugimoto K, Moriyasu F, Kamiyama N, et al. Parametric imaging of contrastultrasound for the evaluation of neovascularization in liver tumors. HepatologyResearch,2007,37:464–472
    [29] Goertz R S, Bernatik T, Strobel D, et al. Software-based quantification ofcontrast-enhanced ultrasound in focal liver lesions—A feasibility study. EuropeanJournal of Radiology,2010,75, e22-e26
    [30] Miles K A, Hayball M, Dixon A K.Colour perfusion imaging: a new application ofcomputed tomography. Lancet,1991,337(3):643-645
    [31] Shiraishi J, Sugimoto K, Fuminori M, et al. Computer-aided diagnosis for theclassification of focal liver lesions by use of contrast-enhanced ultrasonography.Medical Physics,2008,35(5):1734–46
    [32] Gu X, Zhong H, Wan M, et al. Parametric perfusion imaging based on low-costultrasound platform. Ultrasound in Medicine and Biology,2010,36(1):130-144
    [33]知力,唐杰,鲁通,等.肝局灶性病变的超声造影定量分析及其在定性诊断中的意义.中华超声影像学杂志,2006,15:576—579
    [34] Averkiou M, Lampaskis M, Kyriakopoulou K, et al. Quatification of tumormicrovascularity with respiratory gated contrast enhanced ultrasound for monitoringtherapy. Ultrasound in Medicine and Biology,2010,36(1):68-77
    [35] Li J, Dong B W, Yu X L, et al. Time-intensity-based quantification of vascularitywith single-level dynamic contrast-enhanced ultra-sonography: a pilot animal study.Journal of Ultrasound in Medicine,2005,24,975–983
    [36] Ignee A, Jedrejczyk M, Schuessler G, et al. Quantitative contrast enhancedultrasound of the liver for time intensity curves—Reliability and potential sources oferrors. European Journal of Radiology,2010,73(1):153-158
    [37]李杰,董宝玮,于晓玲等.肝不同部位灰阶超声造影定量分析的实验研究.中华超声影像学杂志,2004,13(6):460-462
    [38] Di Paola R, Bazin J P, Aubry F, et al. Handling of dynamic sequences in nuclearmedicine. IEEE Transactions of Nuclear Science,1982, NS-29(A):1310-1321
    [39] Barber D C. The Use of principle components in the quantitative analysis of gammacamera dynamic studies. Physics in Medicine and Biology,1980,25(2):283-292
    [40] Azevedo M., Duarte R., Cardador R., et al. Application of dynamic factor analysisin the assessment of Iberian anglerfish stocks. ICES Journal of Marine Science,2008,65(7):1362-1369.
    [41] Martel A L, Moody A R, Allder S J, et al. Extracting parametric images fromdynamic contrast-enhanced MRI studies of the brain using factor analysis. MedicalImage Analysis,2001,5(1):29–39
    [42] Eida S, Ohki M, Sumi M, et al. MR factor analysis: improved technology for theassessment of2D dynamic structures of benign and malignant salivary gland tumors.Journal of Magnetic Resonance Imaging,2008,27(6):1256-1262
    [43] Dowson N, Bourgeat P, Rose S, et al. Joint Factor and Kinetic Analysis of dynamicFDOPA PET scans of brain cancer patients. International Conference on MedicalImage Computing and Computer Assisted Intervention-MICCAI,2010,13(Pt2):185-192
    [44] Jolliffe I T. Principal component analysis/-2nd ed. New York: Springer,2002
    [45] Houston, A S, and Nijran, K S. Constraint problems in factor analysis of dynamicstructures in nuclear medicine. Proc. IEE3rd Int. Conf. on Image Processing and itsApplications (London: IEE)1989333–337
    [46] Nijran K S, Barber D C. Faclor analysis of dynamic function studies using a prioriphysiological information. Physics in Medicine and Biology,1986,31:1107-1117
    [47] Samal M, Kamy M, Surova H, et al. Rotation to simple structure in factor analysisof dynamic radionuclide studies. Physics in Medicine and Biology,1987,32:371-382
    [48] Benali H, Buvat I, Frouin F, et al. A statistical model for the determination of theoptimal metric in factor analysis of medical image sequences. Physics in Medicineand Biology,1993,38:1065-1080
    [49] Nijran K S, Barber D C. Towards automatic analysis of dynamic radionuclidestudies using principal-components factor analysis. Physics in Medicine andBiology,1985,30:1315-1325
    [50] Samal M, Karny M, Suma H, et al. On the existence of an unambiguous solution infactor analysis of dynamic studies. Physics in Medicine and Biology,1989,34:223-228
    [51] Van Daele H F Joosten J, Devm R, et al. Background mrrection in factor analysis ofdynamic scintigraphic studies: necessity and implementation. Physics in Medicineand Biology,1990,35:1477-1485
    [52] Van Daele H F Joosten J, Devm R, et al. A new vertex-finding algorithm for theoblique rotation step in factor analysis. Physics in Medicine and Biology,1991,36:77-85
    [53] Buvat, I, Benali, H, Rouin, F, et al. Target apex-seeking in factor analysis of medicalimage sequences. Physics in Medicine and Biology,1993,38,123–138
    [54] Bazin J P, Di Paola R. Advances in factor analysis applications in dynamic functionstudies3rd World Congress of the Federation of Nuclear Medicine and BiologyParis,1982
    [55] Sitek, A, Di Bella, E V R, Gullberg, G T. Factor analysis with a prioriknowlege—application in dynamic cardiac SPECT. Physics in Medicine andBiology,2000,45,2619–2638
    [56] Sitek, A, Gullberg, G. T, Huesman, R H. Correction for ambiguous solutions infactor analysis using a penalized least squares objective. IEEE Transactions onMedical Imaging,2002,21(3):216–225
    [57] Williams Q, Noble J A, Ehlgen A, et al. Tissue perfusiondiagnostic classificationusing a spatio-temporal analysis of contrastultrasound image sequences. inInformation Processing in Medical Imaging. New York: Springer,2005,3565,Lecture Notes inComputer,222–233
    [58] Renault G, Tranquart, F, Perlbarg, V, et al. A posteriori respiratory gating incontrast ultrasound for assessment of hepatic perfusion. Physics in Medicine andBiology,2005,50(19),4465–4480
    [59] Sugimoto K, Shiraishi J, Moriyasu F, et al. Computer-aided diagnosis of focal liverlesions by use of physicians’ subjective classification of echogenic patterns inbaseline and contrast-enhanced ultrasonography. Academic Radiology,2009,16,401–411
    [60] Rognin N, Campos R, Thiran J-P, et al. A new approach for automatic motioncompensation for improved estimation of perfusion quantification parameters inultrasound imaging the8th French Conference on Acoustics France,2006,61-5
    [61] AapoHyvarinen.独立成分分析.电子工业出版社,2007
    [62] Rognin N, Arditi M, Mercier P L, et al. Parametric imaging for characterizing focalliver lesions in contrast-enhanced ultrasound. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2010,57(11),2503–11.
    [63] Bauer A, Hauff P, Lazenby J, et al. Wideband harmonic imaging: A novelcontrast ultrasound imaging technique. European Radiology,1999,9(suppl3):364-367
    [64] Burns P N, Wilson S R, Simpson D H, et al. Pulse inversion imaging of liver bloodflow: improved method for characterizing focal masses with microbubble contrast.Investigative Radiology,2000,35:58-71
    [65] Burns P N, Wilson S R, Simpsion D H, et al. Harmonic interval delay imaging:a new ultrasound contrast method for imaging the blood pool volume in the liver.Radiology,1998,209:189
    [66] Goldberg B B. Liua Ji-Bin, Forsberga F. Ultrasound contrast agents: A review.Ultrasound in Medicine and Biology,1994,20(4):19-333
    [67] Szabo T L. Diagnostic ultrasound imaging. Elsevier Academic Press,2004
    [68] Frinking P J A, Bouakaz A, Kirkhorn J, et al. Ultrasound contrast imaging: Currentand new potential methods. Ultrasound in Medicine and Biology,2000,26:965–975
    [69] Goldberg B B, Raichlen J S, Forsberg F. Ultrasound contrast agents: basicprinciples and clinical applications.2nd ed., Martin Dunitz Ltd., London,Information about the clinical application of contrast agents,2001
    [70] Schrope, B A, Newhouse, V L. Second harmonic ultrasound blood perfusionmeasurement. Ultrasound in Medicine and Biology,1993,19:567–579
    [71] Schrope B, Newhouse V L, Uhlendorf V. Simulated capillary blood flowmeasurement using a non-linear ultrasonic contrast agent. Ultrasonic Imaging,1992,14:134–158
    [72] Gupta S N, Solaiyappan M, Beache G M, et al. Fast method for correcting imagemisregistration due to organ motion in time-series MRI data. Magnetic Resonancein Medicine,2003,49,506–514
    [73] Leung C, Hashtrudi-zaad K, Foroughi P, et al. A real-time intrasubject elasticregistration algorithm for dynamic2-D ultrasound images. Ultrasound in Medicineand Biology,2009,35(1),68-77
    [74] Shekhar R, Zagrodsky V. Mutual information-based rigid and nonrigid registrationof ultrasound volumes. IEEE Transactions on Medical Imaging,2002,21(1),9-22
    [75] Kellman P, Larson A C, Hsu L Y, et al. Motion-Corrected Free-Breathing DelayedEnhancement Imaging of Myocardial Infarction. Magnetic Resonance in Medicine,2005,53(1):194–200.
    [76] Ledesma-Carbayo M J, Kellman P, Hsu L Y, et al. Motion corrected free-breathingdelayed-enhancement imaging of myocardial infarction using nonrigid registration.Journal of Magnetic Resonance Imaging,2007,26(1):184-190
    [77] Noseworthy M D, Haider M A, Sussman M S, et al. Free-breathing motioncompensation using template matching: a technique allowing for tracer kineticmodeling of liver metastases. Journal of Computer Assisted Tomography,2007,31(2):193-197
    [78] Pedersen H, Kelle S, Ringgaard S, et al. Quantification of myocardial perfusionusing free-breathing MRI and prospective slice tracking. Magnetic Resonance inMedicine,2009,61,734–738
    [79] Wu J A, Murphy M J. Assessing the intrinsic precision of3D/3D rigid imageregistration results for patient setup in the absence of a ground truth. MedicalPhysics,2010,37(6):2501-2508
    [80] Zhang Q H, Hu Y C, Liu F H, et al. Correction of motion artifacts in cone-beam CTusing a patient-specific respiratory motion model. Medical Physics,2010,37(6):2901-2909
    [81] Collignon A, Maes F, Delaere D, et al. Automated multi-modality imageregistration based on information theory Information Processing in Medical ImagingedYBizais, CBarillot and R Di Paola (Dordrecht: Kluwer Academic),1995,263–274
    [82] Maes F, Collignon A, Vandermeulen D, et al. Multimodality image registration bymaximization of mutual information. IEEE Transactions on Medical Imaging,1997,16,187–198
    [83] Hill D L G, Batchelor P G, Holden M, et al. Medical image registration. Physics inMedicine and Biology,2001,46, R1-R45
    [84] Bluzen A, Tranquart F. Incidental liver lesions: diagnostic value of cadence contrastpulse sequencing (CPS) and SonoVue. European Radiology,2004,14(suppl.8),53-62
    [85] Rognin N, Frinking P, Messager T, et al. A new method for enhancing dynamicvascular patterns of focal liver lesions in contrast ultrasound. IEEE InternationalUltrasonics Symposium,2007,546-549
    [86] Yip M C, Adebar T K, Rohling R N, et al.3D ultrasound to stereoscopic cameraregistration through an air-tissue boundary. International Conference on MedicalImage Computing and Computer Assisted Intervention-MICCAI,2010,6362,626-634
    [87] Nakamura M, Suzuki Y, Kobayashi S. A method for recovering physiologicalcomponents from dynamic radionuclide images using the maximum entropyprinciple: a numerical investigation. IEEE Transactions on Biomedical Engineering,1989,36,906-916
    [88] Van Daelm M, Joosten J, Devos P, et al. Background correction in factor analysis ofdynamic scintigraphic studies: necessity and implementation. Physics in Medicineand Biology,5(11):1477–1485,1990
    [89] Schenk W G Jr., McDonald D J, McDonald D K, et al. Direct measurement ofhepatic blood flow in surgical patients: with related observations on hepatic flowdynamics in experimental animals. Annals of Surgery,1962,156,463–471
    [90] Bazin J P, Di Paola R, Gibaud B, et al. Factor analysis of dynamic scintigraphic dataas a modelling method. An application for the detection of the metastasesInformation Processing in Medical Imaging ed R Di Paola and E Kahn (pari.:INSERM),1980,35-66
    [91] Aurengo A. Analyse faclorielle des séquences d'images en Médecine Nucléaire.Thèse d'Etat Université de Paris-Sud,1989
    [92] Berninger W H, Axel L, Norman D, et al. Functional imaging of the brain usingcomputed tomography. Radiology,1981,138:711-716.
    [93] Orton M R, Miyazaki K, Koh D M, et al. Optimizing functional parameter accuracyfor breath-hold DCE-MRI of liver tumours. Physics in Medicine and Biology,54,2009,2197–2215
    [94] Arditi M, Frinking P, Zhou X, et al. A new formalism for the quantification of tissueperfusion by the destruction-replenishment method in contrast ultrasound imaging.IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2006,53(6):1118-1129
    [95] Blomley M J K, Dawson P. Bolus dynamics: theoretical and experimental aspects.British Journal of Radiology,1997,70,351-359
    [96] Zapletal C, Jahnke C, Meharabi A, et al. Quantification of Liver Perfusion byDynamic Magnetic Resonance Imaging: Experimental Evaluation and Clinical PilotStudy. Liver Transplation,2009,15:693-700
    [97] Phillips P,Gardner E.Contrast—agent detection and quantification.European Radiology,2004,14(Suppl8):4-10
    [98] Miles K A, Leggett D A, Kelley B B, et al. In vivo assessment of neovascularizationof liver metastases using perfusion CT. British Journal of Radiology,1998,71,276-281
    [99] Peters A, Gunasekera R, Henderson B, et al. Noninvasive measurement of bloodflow and extraction fraction. Nuclear Medicine Communications,1987,8(10):823–837
    [100] White M J, O’Gorman R L, Charles-Edwards E M, et al. Parametric mapping of thehepatic perfusion index with gadolinium-enhanced volumetric mri. British Journalof Radiology,2007,80(950):113–120
    [101] Rognin N, Frinking P, Messager T, et al. Parametric imaging of dynamic vascularpatterns of focal liver lesions in contrast-enhanced ultrasound. IEEE InternationalUltrasonics Symposium,2009,1282-1285
    [102]林满霞,徐辉雄,谢晓燕,等。肝细胞性肝癌超声造影参数成像临床应用研究。中华超声影像学杂志,19(5):393-396

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700