用户名: 密码: 验证码:
基于协同策略的工业无线网络分布式估计问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术和网络技术的发展,具有灵活、高效、低成本、易维护等特点的工业无线网络技术作为工业信息化的关键,可以实现对工业全流程的“泛在感知”,保障现场设备正常运行,保证产品质量,提高产能。但由于工业现场环境复杂,大量无线业务共存,使用频段相互重叠,工业设备间电磁干扰问题突出,使得在网络中流通的信息准确性和通信可靠性无法得到保证。
     本文以工业无线网络的信息可靠性为研究对象。工业无线网络的信息可靠性主要由节点感知的信息准确性、数据传输的可靠性以及网络部署的合理性三个方面决定。本文从节点层面和网路层面两个方面深入系统地研究了旨在提高感知准确性和传输可靠性的分布式协同估计问题以及面向估计准确性的网络部署问题。
     在节点层面,针对工业现场多类传感器节点并存、节点感知数据存在误差以及不同位置的节点间数据不一致等问题,论文研究了两类传感器节点的分布式参数估计问题,提出了基于中继的工业无线网络分布式估计算法。利用Markov链及代数图论等知识,从理论上分析了算法的基本性质,得到了中继节点估计值与主节点估计值之间的关系,同时基于随机分析的框架,研究了算法的均方稳定性,建立了算法稳定的充分条件,探讨了网络拓扑对估计性能的影响。数值仿真结果很好地验证了理论分析的结论,并表明网络拓扑及相关估计参数对估计算法性能有着重要影响。
     针对具有动态特性的状态的分布式估计问题,论文提出了存在两类传感器节点的工业无线网络分布式一致性Kalman滤波算法。该算法融合了Kalman滤波算法对数据的去噪功能以及分布式一致性算法对数据差异的一致化处理特性。为保证估计误差的最小化,本文采用了分离序贯设计的思想,从无偏性和最优性两个角度出发,给出了最优估计的参数设计方法,为多类传感器节点并存时的分布式估计参数设计难题提供了一种可行方案。此外,利用It随机分析理论,论文还研究了算法的均方稳定性,并得到了算法稳定的充分条件。
     在网络层面,论文研究了确保分布式估计性能的的工业无线网络节点部署问题。首先,探究了分布式估计算法对网络拓扑的要求。然后,基于网络覆盖度、网络连通性以及估计性能要求,提出了考虑两类传感器节点并存情形的工业无线网络部署算法。考虑到网络部署算法生成的网络拓扑可能存在结构不合理和链接冗余等问题,论文进一步提出了网络拓扑优化算法以及估计参数调整策略。大量的数值仿真结果表明,本文提出的网络部署算法、拓扑优化算法以及估计参数调整策略能够达到对分布式估计的性能要求。
With the development of wireless technology and wireless network technology,the industrial wireless network (IWN) technology becomes the key in industrial infor-mationalization, which could ofer competitive advantages, such as greater fexibility,improved scalability, lower cost and ease of maintenance. The IWNs could enablethe industrial end-users to achieve “ubiquitous sensing” of the whole assembly line,guarantee the normal operation of the feld devices, improve the product quality andincrease the productivity and energy efciency. However, the harsh industrial environ-ments, coexistence of several wireless services, overlapping of their frequency bandsand strong electromagnetic interference severely infuence the quality of wireless com-munication such that the information accuracy and wireless reliability can not be guar-anteed.
     In this dissertation, we focus on the information reliability issues of IWNs. Thenotion of reliability mainly has three facets: information accuracy of the sensor nodes,reliable data transmission, coverage and deployment of the network. In this disserta-tion, we pay our attention to the information accuracy at the sensor node level, andcoverage and deployment problem at the network level. Specifcally, we investigatethe distributed estimation problem to improve the information accuracy via sensor co-operation at the sensor nodes, and deployment problem to guarantee the estimationperformance at the network level.
     At the sensor node level, since there are usually many kinds of sensor nodes co-existing in the industrial felds, moreover, the measurements of sensor nodes are cor-rupted by environment noise and there are disagreements of data among sensor nodesat diferent places, we study the problem of distributed estimation of deterministic pa-rameters in IWNs with two types of sensor nodes, namely, the primary nodes and the relay ones. A novel consensus-based distributed estimation algorithm for two types ofsensor nodes is proposed. Then we analyze its properties by using results borrowedfrom Markov chain and algebraic graph theory. The results show that the estimatesof the relay nodes are determined by those of the primary sensor nodes. Moreover,its mean-square stability is established by casting it into a stochastic framework. Thesimulation results show that the performance of the proposed algorithm is highly re-lated with the network topology, which means that we should pay much attention tothe network topology design.
     Wealsostudytheproblemsofdistributedstateestimationatthesensornodelevel.Combined with the classical Kalman flter and distributed consensus algorithm, wepropose a novel distributed optimal consensus Kalman flter for IWNs with two typesof sensor nodes. This flter inherits the merits of Kalman flter, which can attenuateprocess and measurement noise, and those of consensus algorithms, which can enableall the sensor nodes to achieve agreement on their estimates. In order to minimize theestimate errors, we adopt the sequential scheme to analyze its unbiasedness and opti-mality, and presentthe designguideline ofthe optimalflters, whichprovidesafeasibleapproach to the flter design in the present of two types of sensor nodes. Moreover, itsmean-square stability is established by using It stochastic diferential theory.
     Atthenetworklevel,weinvestigatethesensordeploymentproblemfordistributedestimation in IWNs. Firstly, we discuss the relation of distributed estimation and net-work topology. And we then propose a sensor deployment scheme with coverage,connectivity and estimation requirement guarantees. In order to decrease the structureirrationality and link redundance, we further present a topology optimization schemecoupled with the tuning of estimation parameters. Simulation results show that theproposed deployment algorithm and topology optimization scheme can guarantee theperformance of the corresponding distributed estimation algorithms.
引文
[1]AKYILDIZ IF, Su W, SANKARASUBRAMANIAM Y, et al. Wireless sensor networks: a survey[J]. Comput. Netw.,2002,38:393-422.
    [2]孙利民,李建中,陈渝,等.无线传感器网络[M].北京:清华大学出版社,2005.
    [3]YICK J, MUKHERJEE B, GHOSAL D. Wireless sensor network survey[J]. Comput. Netw.,2008,52:2292-2330.
    [4]U.S. Department of Energy. Industrial Wireless Technology for the21st Cen-tury [R]. December2002.
    [5]WILLIG A, MATHEUS K, WOLISZ A. Wireless technology in industrial net-works[J]. Proc. IEEE,2005,93(6):1130-1151.
    [6]曾鹏.工业无线技术的标准化与应用[J].中国仪器仪表,2008(3):40-44.
    [7]WILLIG A. Recent and emerging topics in wireless industrial communications: A selection[J]. IEEE Trans. Ind. Informat.,2008,4(2):102-124.
    [8]GUNGOR V C, HANCKE G P. Industrial wireless sensor networks:Challenges, de-sign principles, and technical approaches[J]. IEEE Trans. Ind. Electron.,2009,56(10):4258-4265.
    [9]Emerson Process Management. Think Beyond the Wire[EB/OL].[2012-02-18]. http://www2.emersonprocess.com/siteadmincenter/PM%20Central%20Web%20Documents/CT0806_WirelessNow_FINAL.pdf.
    [10]Wireless Benefits Calculator[EB/OL].[2012-02-18]. http://rosemount. d1asia.ph/SmartWirelessV2/WirelessCalculator.aspx.
    [11]U.S. Department of Energy. Sensors for Manufacturing Efficiency, DOE Sen-sors&Automation2005Annual Portfolio Review[R/OL]. June,2005. http: //www1.eere.energy.gov/manufacturing/industries_technologies/sensors_automation/pdfs/meetings/0605/booklet_05.pdf.
    [12]SENO L, VITTURI S, ZUNINO C. Analysis of Ethernet powerlink wireless exten-sions based on the IEEE802.11WLAN[J]. IEEE Trans. Ind. Informal;.,2009,5(2):86-98.
    [13]CENA G, SENO L, VALENZANO A, et al. On the performance of IEEE802.11e wireless infrastructures for soft-real-time industrial applications[J]. IEEE Trans. Ind. Informat.,2010,6(3):425-437.
    [14]AGHA K A, BERTIN M H, DANG T, et al. Which wireless technology for industrial wireless sensor networks? The development of OCARI technology [J]. IEEE Trans. Ind. Electron.,2009,56(10):4266-4278.
    [15]HANZALEK Z, JURCIK P. Energy efficient scheduling for cluster-tree wireless sen-sor networks with time-bounded data flows:Application to IEEE802.15.4/Zig-Bee[J]. IEEE Trans. Ind. Informat.,2010,6(3):438-450.
    [16]Yoo S E, CHONG P K, KIM D, et al. Guaranteeing real-time services for industrial wireless sensor networks with IEEE802.15.4[J]. IEEE Trans. Ind. Electron.,2010,57(11):3868-3876.
    [17]NACHMAN L, KLING R, ADLER R, et al. The Intel Mote platform:a Bluetooth-based sensor network for industrial monitoring[C]//4th Int'l Symp. Inform. Pro-cess. Sensor Networks (IPSN). Los Angeles, USA:IEEE,2005:437-442.
    [18]BELLO L L, MIRABELLA O. Communication techniques and architectures for Bluetooth networks in industrial scenarios[C]//10th IEEE Conf. Emerg. Tech-nol. Factory Autom.(ETFA). Catania, Italy:IEEE,2005:53-61.
    [19]KRISHNAMURTHY L, ADLER R, BUONADONNA P, et al. Design and deployment of industrial sensor networks:Experiences from a semiconductor plant and the north sea[C]//Proc.3rd In'1Conf. Embedded Networked Sensor Systems (Sen-Sys). San Diego, USA:ACM,2005:64-75.
    [20]PARK P, FISCHIONE C, BONIVENTO A, et al. Breath:An adaptive protocol for industrial control applications using wireless sensor networks[J]. IEEE Trans. Mobile Comput,2011,10(6):821-838.
    [21]JONSSON M, KUNERT K. Towards reliable wireless industrial communication with real-time guarantees[J]. IEEE Trans. Ind. Informat.,2009,5(4):429-442.
    [22]HAN S, ZHU X, MOK A K, et al. Reliable and real-time communication in industrial wireless mesh networks[C]//17th IEEE Real-Time Embed. Technol. Appl. Symp. Chicago, USA:IEEE,2011:3-12.
    [23]PALOPOLI L, PASSERONE R, RIZANO T. Scalable offline optimization of industrial wireless sensor networks[J]. IEEE Trans. Ind. Informat.,2011,7(2):328-339.
    [24]彭瑜.无线HART协议-一种真正意义上的工业无线短程网协议的概述和比较[J].仪器仪表标准化与计量,2007(5):31-37.
    [25]IEC62591:Industrial Communication Networks-Wireless Communication Network and Communication Profiles-WirelessHART[S].2010.
    [26]王平,王泉,王恒,等.工业无线技术ISA100.11a的现状与发展[J].中国仪器仪表,2009(10):59-63.
    [27]ISA100.11a:2008, Draft Standard[S].2008-09-12.
    [28]梁炜,张晓玲.WIA-PA:用于过程自动化的工业无线网络系统[J].仪器仪表标准化与计量,2009(2):30-36.
    [29]彭瑜.工业无线标准WIA-PA的特点分析和应用展望[J].自动化仪表,2010,31(1):1-4,9.
    [30]STEIGMANN R, ENDRESEN J. Introduction to WISA[R]. V2.0. July2006.
    [31]SCHEIBLE G, DZUNG D, ENDRESEN J, et al. Unplugged but connected—Design and implementation of a truly wireless real-time sensor/actuator interface[J]. IEEE Ind. Electron. Mag.,2007,1(2):25-34.
    [32]赵欣.西门子工业网络交换机应用指南[M].北京:机械工业出版社,2008.
    [33]Industrial Wireless Communication[EB/OL].[2012-02-18].https://www.automation.siemens.com/mcms/automation/en/industrial-communications/iwlan-industrial-wireless-communication.
    [34]Industrial Wireless[EB/OL].[2012-02-18].http://www.phoenixcontact. com/wireless.
    [35]Emerson Smart Wireless[EB/OL].[2012-02-18].http://www2. emersonprocess.com/en-US/plantweb/wireless.
    [36]艾默生过程管理公司.艾默生智能无线解决方案[J].中国仪器仪表,2008(z1):161-163.
    [37]Industrial Wireless Mesh Network Solutions[EB/OL].[2012-02-18]. http://hpsweb.honeywell.com/Cultures/en-US/Products/Wireless/default.htm.
    [38]冀翔宇,冯冬芹.低功耗工业无线传感器网络的设计与实现[J].化工自动化及仪表,2008,35(4):47-50.
    [39]CHEN J,CAo X,CHENG P,et al.Distributed collaborative control for industrial automation with wireless sensor and actuator networks[J]. IEEE Trans.Ind. Electron.,2010,57(5):1835-1844.
    [40]李云欢.轧钢温度监控系统中无线传感器网络的设计[D].上海:上海交通大学,2012.
    [41]许洪华,刘科.基于Modbus协议的ZigBee/工业以太网网关设计[J].微计算机信息,2009,25(6-2):281-283.
    [42]张华良,曾鹏.工业无线网络测试平台研究[J].仪器仪表标准化与计量,2008(5):25-27.
    [43]张琼,王红艳,白冰颖.工业无线WIA-PA网络在化工领域的应用实例[J].仪器仪表标准化与计量,2011(2):24-29.
    [44]魏旻,王平,王泉.工业无线控制网络安全方法的研究与实现[J].仪器仪表学报,2009,30(4):679-684.
    [45]黄丹青,费敏锐.IEEE802.15.4a工业无线标准的研究与应用[J].自动化仪表,2010,31(1):5-9.
    [46]ON World. Industrial Wireless Sensor Networks:A Market Dynamics Re-port[R].[S.L.]:[s.n.], March2010.
    [47]KARL H, WILLIG A. Protocols and Architectures for Wireless Sensor Net-works[M]. Chichester:John Wiley&Sons,2005.
    [48]GOLDSMITH A. Wireless Communications[M]. Cambridge:Cambridge Univer-sity Press,2005.
    [49]YOUNIS M, AKKAYA K. Strategies and techniques for node placement in wireless sensor networks:A survey[J]. Ad Hoc Netw.,2008,6:621-655.
    [50]XIAO J J, Luo Z Q. Decentralized estimation in an inhomogeneous sensing environment[J]. IEEE Trans. Inf. Theory,2005,51(10):3564-3575.
    [51]LI J, ALREGIB G. Rate-constrained distributed estimation in wireless sensor networks[J]. IEEE Trans. Signal Process.,2007,55(5):1634-1643.
    [52]WU J Y, HUANG Q Z, LEE T S. Energy-constrained decentralized best-linear-unbiased estimation via partial sensor noise variance knowledge[J]. IEEE Signal Process. Lett.,2008,15:33-36.
    [53]Li J, ALREGIB G. Distributed estimation in energy-constrained wireless sensor networks[J]. IEEE Trans. Signal Process.,2009,57(10):3476-3758.
    [54]XIAO J J, Cui S, Luo Z Q, et al. Power scheduling of universal decentral-ized estimation in sensor networks[J]. IEEE Trans. Signal Process.,2006,54(2):413-422.
    [55]FANG J, Li H. Power constrianed distributed estimation with correlated sensor data[J]. IEEE Trans. Signal Process.,2009,57(8):3292-3297.
    [56]Mo Y, AMBROSINO R, SINOPOLI B. Sensor selection strategies for state esti-mation in energy constrained wireless sensor networks[J]. Automatica,2011,47:1330-1338.
    [57]SHAMAIAH M, VIKALO H. Estimating time-varying sparse signals under commu-nication constraints [J]. IEEE Trans. Signal Process.,2011,59(6):2961-2964.
    [58]SPANOS D P, OLFATI-SABER R, MURRAY R M. Distributed sensor fusion using dynamic consensus[C]//Pro.16th IFAC World Congress. Prague, Czech:IFAC,2005.
    [59]OLFATI-SABER R, FAX J A, MURRAY R M. Consensus and cooperation in net-worked multi-agent systems [J]. Proc. IEEE,2007,95(1):215-233.
    [60]JI M, EGERSTEDT M. Distributed coordination control of multiagent systems while preserving connectedness [J]. IEEE Trans. Robotics,2007,23:693-703.
    [61]YANG P, FREEMAN R A, LYNCH K M. Multi-agent coordination by de-centralized estimation and control[J]. IEEE Trans. Autom. Control,2008,53(11):2480-2496.
    [62]REN W, SORENSEN N. Distributed coordination architecture for multi-robot for-mation control[J]. Robot. Auton. Syst,2008,56:324-333.
    [63]JADBABAIE A, LIN J, MORSE A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Trans. Autom. Control,2003,48(6):988-1001.
    [64]GAZI V, PASSINO K M. Stability analysis of swarms [J]. IEEE Trans. Automat. Control,2003,48:692-697.
    [65]OLFATI-SABER R. Flocking for multi-agent dynamic systems:Algorithms and theory [J]. IEEE Trans. Autom. Control,2006,51(3):401-420.
    [66]CUCKER F, SMALE S. Emergent behavior in flocks [J]. IEEE Trans. Automat. Control,2007,52:852-862.
    [67]CORTES J, MARTINEZ S, KARATAS T, et al. Coverage control for mobile sensing networks[J]. IEEE Trans. Robot. Autom.,2004,20:243-255.
    [68]OLFATI-SABER R, SHAMMA J S. Consensus filters for sensor networks and dis-tributed sensor fusion[C]//Proc.44th IEEE Conf. Decision Control, Eur. Control Conf. Seville, Spain:[s.n.],2005:6698-6703.
    [69]XIAO L, BOYD S, LALL S. A scheme for robust distributed sensor fusion based on average consensus[C]//Proc.4th Int'l Conf. Inf. Process. Sensor Networks (IPSN). Los Angeles, USA:ACM/IEEE,2005:63-70.
    [70]BARBAROSSA S, SCUTARI G. Decentralized maximum-likelihood estimation for sensor networks composed of nonlinearly coupled dynamical systems[J]. IEEE Trans. Signal Process.,2007,55(7):3456-3470.
    [71]SCUTARI G, BARBAROSSA S, PESCOSOLIDO L. Distributed decision through self-synchronizing sensor networks in the presence of propagation delays and asym-metric channels[J]. IEEE Trans. Signal Process.,2008,56(4):1667-1684.
    [72]LYNCH K M, SCHWARTZ I B, YANG P, et al. Decentralized environmental mod-eling by mobile sensor networks [J]. IEEE Trans. Robot.,2008,24(3):710-724.
    [73]STANKOVIC S S, STANKOVIC M S, STIPANOVIC D M. Decentralized parameter estimation by consensus based stochastic approximation[J]. IEEE Trans. Autom. Control,2011,56(31):531-543.
    [74]SCHIZAS I D, RIBEIRO A, GIANNAKIS G B. Consensus in Ad Hoc WSNs with noisy links-Part I:Distributed estimation of deterministic signals [J]. IEEE Trans. Signal Process.,2008,56(1):342-356.
    [75]SPERANZON A, FISCHIONE C, JOHANSSON K H, et al. A distributed minimum variance estimator for sensor networks[J]. IEEE J. Sel. Areas Commun.,2008,26(4):609-621.
    [76]OLFATI-SABER R. Distributed Kalman filtering for sensor networks[C]//Proc.46th IEEE Conf. Decision Control (CDC). New Orleans, USA:IEEE,2007:5492-5498.
    [77]OLFATI-SABER R. Kalman-Consensus filter:Optimality, stability, and perfor-mance[C]//Proc.48th IEEE Conf. Decision Control (CDC)&28th Chinese Con-trol Conf.(CCC). Shanghai, China:IEEE,2009:7036-7042.
    [78]CATTIVELLI F S, SAYED A H. Diffusion strategies for distributed Kalman filtering and smoothing[J]. IEEE Trans. Autom. Control,2010,55(9):2069-2084.
    [79]CARLI R, CHIUSO A, SCHENATO L, et al. Distributed Kalman filtering based on consensus strategies[J]. IEEE J. Sel. Areas Commun.,2008,26(4):622-633.
    [80]SCHIZAS I D, GIANNAKIS G B, ROUMELIOTIS S I, et al. Consensus in Ad Hoc WSNs with noisy links-Part Ⅱ:Distributed estimation and smoothing of random signals[J]. IEEE Trans. Signal Process.,2008,56(4):1650-1666.
    [81]BALISTER P, KUMAR S. Random vs. deterministic deployment of sensors in the presence of failures and placement errors[C]//Proc. IEEE Conf. Computer Commun.(INFOCOM). Rio de Janeiro, Brazil:IEEE,2009:2896-2900.
    [82]MALEKI M, PEDRAM M. QoM and lifetime-constrained random deployment of sensor networks for minimum energy consumption[C]//Proc.4th Int'l Symp. Inf. Process. Sensor Netw.(IPSN). Los Angeles, USA:ACM/IEEE,2005:293-300.
    [83]OLARIU S, STOJMENOVIC I. Design guidelines for maximizing lifetime and avoid-ing energy holes in sensor networks with uniform distribution and uniform re-porting[C]//Proc. IEEE Conf. Computer Commun.(INFOCOM). Barcelona, Spain:IEEE,2006:1-12.
    [84]XU K, HASSANEIN H, TAKAHARA G, et al. Relay node deployment strategies in heterogeneous wireless sensor networks [J]. IEEE Trans. Mobile Comput.,2010,9(2):145-159.
    [85]HE S, ANF Y. SUN J C. Coverage and connectivity in duty-cycled wireless sensor networks for event monitoring [J]. IEEE Trans. Parallel Distrib. Syst.,2012,23(3):475-482.
    [86]XING G, WANG X, ZHANG Y, et al. Integrated coverage and connectivity con-figuration for energy conservation in sensor networks[J]. ACM Trans. Sensor Netw.,2005,1(1):36-72.
    [87]BAI X, KUMAR S, XUAN D, et al. Deploying wireless sensors to achieve both coverage and connectivity[C]//Proc. Int'l Symp. Mobile Ad Hoc Netw. Comput.(MobiHoc). Florence, Italy:ACM,2006:131-142.
    [88]WANG Y C, TSENG Y C. Distributed deployment schemes for mobile wireless sensor networks to ensure multilevel coverage[J]. IEEE Trans. Parallel Distrib. Syst,2008,19(9):1280-1294.
    [89]LIN G, XUE G. Steiner tree problem with minimum number of Steiner points and bounded edge-length[J]. Inform. Process. Lett.,1999,69:53-57.
    [90]LLOYD E L, XUE G. Relay node placement in wireless sensor networks[J]. IEEE Trans. Comput.,2007,56(1):134-138.
    [91]MISRA S, HONG S D, XUE G, et al. Constrained relay node placement in wireless sensor networks to meet connectivity and survivability require-ments[C]//Proc. IEEE Conf. Computer Commun.(INFOCOM). Phoenix, USA: IEEE,2008:879-887.
    [92]BREDIN J L, DEMAINE E D, HAJIAGHAYI M T, et al. Deploying sensor net-works with guaranteed fault tolerance[J]. IEEE/ACM Trans. Network.,2010,18(1):216-228.
    [93]HAN X, CAO X, LLOYD E L, et al. Fault-tolerant relay node placement in het-erogeneous wireless sensor networks[J]. IEEE Trans. Mobile Comput.,2010,9(5):643-656.
    [94]JOURDAN D B, ROY N. Optimal sensor placement for agent localization[J]. ACM Trans. Sensor Netw.,2008,4(3):13:1-13:40.
    [95]WETTERGREN T A, COSTA R. Optimal placement of distributed sensors against moving targets[J]. ACM Trans. Sensor Netw.,2009,5(3):26:1-26:25.
    [96]ABABNAH A, NATARAJA B. Optimal control based sensor deployment incor-porating centralized data fusion[J]. IEEE Trans. Aerosp. Electron. Syst.,2011,47(3):2086-2097.
    [97]BIAN F, KEMPE D, GOVINDAN R. Utility-based sensor selection[C]//Proc.5th Int'l Conf. Inf. Process. Sensor Netw.(IPSN). Nashville, USA:ACM/IEEE,2006:11-18.
    [98]Ko C W, LEE J, QUEYANNE M. An exact algorithm for maximum entropy sampling[J]. Operations Res.,1995,43(4):684-691.
    [99]KRAUSE A, SINGH A, GUESTRINe C. Near-optimal sensor placements in Gaussian processes:Theory, effcient algorithms and empirical studies[J]. J. Mach. Learn. Res.,2008,9:235-284.
    [100]WU X, LIU M, Wu Y. In-situ soil moisture sensing:Optimal sensor placement and field estimation[J]. ACM Trans. Sensor Netw.,2012. to appear.
    [101]GIRIDHAR A, KUMAR P R. Toward a theory of in-network computation in wire-less sensor networks[J]. IEEE Commun. Mag.,2006,44(4):98-107.
    [102]CENA G, VALENZANO A, VITTURI S. Hybrid wired/wireless networks for real-time communications [J]. IEEE Ind. Electron. Mag.,2008,2(1):8-20.
    [103]FLAMMINI A, FERRARI P, MARIOLI D, et al. Wired and wireless sensor networks for industrial applications [J]. Microelectr. J.,2009,40(9):1322-1336.
    [104]日本钢铁协会.板带轧制理论与实践[M].王国栋,陈国良,译.北京:中国铁道出版社,1990.
    [105]MENDEZ G M, CAVAZOS A, SOTO R, et al. Entry temperature prediction of a hot strip mill by a hybrid learning type-2FLS[J]. J. Intell. Fuzzy. Syst.,2006,17(6):583-596.
    [106]MENDEZ G M, LEDUC-LEZAMA L, COLAS R, et al. Modelling and control of coiling entry temperature using interval type-2fuzzy logic systems [J]. Ironmak. Steelmak.,2010,37(2):126-134.
    [107]孙一康.冷热轧板带轧机的模型与控制[M].北京:冶金工业出版社,2010.
    [108]陈建磊,江冰.棒材轧后控冷温度预测模型的研究及应用[J].冶金自动化,2011,35(5):22-26.
    [109]Barrios J A, Torres-Alvarado M, CAVAZOS A. Neural, fuzzy and Grey-Box modelling for entry temperature prediction in a hot strip mill[J]. Expert Syst. Appl.,2012,39(3):3374-3384.
    [110]LIU D, NING P, Du W. Group-based key predistribution for wireless sensor networks[J]. ACM Trans. Sensor Netw.,2008,4(2):11:1-11:30.
    [111]LEE J, KWON T, SONG J. Group connectivity model for industrial wireless sensor networks[J]. IEEE Trans. Ind. Electron.,2010,57(12):4219-4230.
    [112]FIEDLER M. Algebraic connectivity of graphs[J]. Czech. Math. J.,1973,23(98):298-305.
    [113]WU C W. Algebraic connectivity of directed graphs [J]. Linear and Multilinear Algebra,2005,53(3):203-223.
    [114]MOHAR B. The Laplacian spectrum of graphs [G]//. ALAVI Y, CHARTRAND G, OELLERMANN O R, et al. Graph Theory, Combinatorics, and Applications. New York:Wiley,1991,2:871-898.
    [115]DE ABRREU N M M. Old and new results on algebraic connectivity of graphs[J]. Linear Algebra Appl.,2007,423:53-73.
    [116]KUNKEL P, MEHRMANN V. Differential-Algebraic Equations:Analysis and Nu-merical Solution[M]. Zurich:European Mathematical Society,2006.
    [117]HEINZELMAN W B, CHANDRAKASAN A P, BALAKRISHNAN H. An application-specific protocol architecture for wireless microsensor networks[J]. IEEE Trans. Wireless Commun.,2002,1(4):660-670.
    [118]XU Z, LONG C, CHEN C, et al. Hybrid clustering and routing strategy with low overhead for wireless sensor networks[C]//Proc. IEEE Int'l Conf. Commun. Cape Town, South Africa:IEEE,2010:11-15.
    [119]WU C W. On bounds of extremal eigenvalues of irreducible and m-reducible matricies[J]. Linear Algebra Appl.,2005,402:29-45.
    [120]REN W, BEARD R W. Consensus seeking in multiagent systems under dynam-ically changing interaction topologies[J]. IEEE Trans. Autom. Control,2005,50(5):655-661.
    [121]HORN R A, JOHNSON C R. Matrix analysis[M]. Cambridge:Cambridge Univer-sity Press,1985.
    [122]OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with swiching topology and time-delays [J]. IEEE Trans. Autom. Control,2004,49(9):1520-1533.
    [123]Ross S M. Introduction to Probability Models[M].9th ed. Boston:Academic Press,2007.
    [124]MAO X. Stochastic Differential Equations and Applications[M].2nd ed. Chich-ester:Horwood,2007.
    [125]IKEDA N, WATANABE S. Stochastic Differential Equations and Diffusion Pro-cesses[M].2nd ed. Amsterdam:North-Holland,1989.
    [126]BOYD S, GHAOUI L E, FERON E, et al. Linear Matrix Inequalities in System and Control Theory[M]. Philadelphia:SIAM,1994.
    [127]KAY S M. Fundamentals of Statistical Processing:Estimation Theory[M]. Up-per Saddle River, NJ:Prentice Hall,1993.
    [128]BAR-SHALOM Y, LI X R, KIRUBARAJAN T. Estimation with Applications to Tracking and Navigation:Theory, Algorithms and Software[M]. New York: John Wiley&Sons,2001.
    [129]FAVERO S D, ZAMPIERI S. A majorization inequality and its application to dis-tributed Kalman filtering [J]. Automatica,2011,47:2438-2443.
    [130]Li X R, JILKOV V P. A survey of maneuvering target tracking-Part Ⅲ:Mea-surement models[C]//Proc. SPIE Conf. Signal Data Process. Small Targets. San Diego, USA:SPIE,2001:423-446.
    [131]GUPTA V, HASSIBI B, MURRAY R M. Optimal LQG control across packet-dropping links[J]. Syst. Control Lett.,2007,56(6):439-446.
    [132]SHI L, JOHANSSON K H, MURRAY R M. Estimation over wireless sensor net-works:Tradeoff between communication, computation and estimation quali-ties[C]//Proc.17th IFAC World Congress. Seoul, Korea:IFAC,2008:605-611.
    [133]KIRK D E. Optimal Control Theory:An Introduction[M]. Mineola, NY:Dover Publications,2004.
    [134]DIECI L, EIROLA T. Positive definiteness in the numerical solution of Riccati differential equtions[J]. Numer. Math.,1994,67(3):303-313.
    [135]BJORCK A. Numerical Methods for Least Squares Problems[M]. Philadelphia: SIAM,1996.
    [136]REIF K, GUNTHER S, YAZ E, et al. Stochastic stability of the continuous-time ex-tended Kalman filter[J]. IEE Proc.-Control Theory Appl.,2000,147(1):45-52.
    [137]TARN T J, RASIS Y. Observers for nonlinear stochastic systems[J]. IEEE Trans. Autom. Control,1976, AC-21(4):441-448.
    [138]王松桂,吴密霞,贾忠贞.矩阵不等式[M].第二版.北京:科学出版社,2006.
    [139]杨世铭,陶文铨.传热学[M].第四版.北京:高等教育出版社,2006.
    [140]ZHANG H, Hou J C. Maintaining sensing coverage and connectivity in large sensor networks[J]. Ad Hoc Sens. Wirel. Netw.,2005,1(1-2):89-124.
    [141]Li X, FREY H, SANTORO N, et al. Strictly localized sensor self-deployment for optimal focused coverage[J]. IEEE Trans. Mobile Comput.,2011,10(11):1520-1533.
    [142]BETTSTETTER C. On the minimum node degree and connectivity of a wireless multihop network[C]//Proc. Int'l Symp. Mobile Ad Hoc Netw. Comput.(Mobi-Hoc). Lausanne, Switzerland:ACM,2002:80-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700