用户名: 密码: 验证码:
基于RSD的重复频率脉冲功率电路研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲功率技术广泛应用于环境保护、食品工业、军事、工业加工等多种领域,这些应用领域要求脉冲功率电源具有较高的重复频率。脉冲功率开关是重复频率脉冲功率电源的关键器件。气体开关的寿命较短、重复频率较低,而半导体功率开关具有寿命长、重复特性好、损耗较低等优点,在重复频率脉冲功率电源中呈现出逐步取代气体开关的趋势。新型半导体功率开关-反向开关晶体管(Reversely Switched Dynistor,RSD)基于反向触发原理,是脉冲功率装置的理想开关元件。本论文紧密围绕RSD重复频率脉冲功率电路建模及仿真、高压电容充电电路设计、磁开关技术以及RSD脉冲功率电路结构等问题进行了系统深入的研究。
     介绍了RSD的基本结构,描述了RSD脉冲功率电路的工作过程。现有的RSD极限电流计算公式只适用于波形为方波和标准正弦波的脉冲电流。基于I2t概念,推导了适用于各类脉冲放电电流波形的RSD极限电流计算公式。
     完成了RC线性充电、LRC谐振充电、IGBT串联谐振充电等高压电容充电电路的分析、设计及试验,并应用于RSD重复频率脉冲功率电路。LRC谐振充电电路可以获得较高的频率,但是大电流充电脉冲可能影响元件的寿命。提出了应用于RSD脉冲功率电路的LRC谐振升压充电电路,放电电压小于5kV时,可以替代升压变压器。推导了放电电容C的稳态电压U的计算公式。理论计算结果表明,U随C的电容值的增加而减小,当充电回路电感L从5μH增加至100μH时,U增加约12%;当充电回路电阻R从0.01增加至0.1时,U下降约10%;放电回路电感L0从0.06μH增加至2.4μH时,U增加约40%;当放电回路电阻R0从0.01增加至0.1时,U从4kV下降至1.1kV。U下降约73%。C=9.4μF时,理论计算得到U为1.3kV,实验得到U为900V,为直流电源E0的3倍。实验波形分析结果表明,晶闸管和整流二极管的关断时间太长是造成实验电压低于仿真值的关键因素。IGBT高频恒流逆变充电方式的充电速度快,电流稳定,但是系统复杂,成本较高。
     分析了RSD的直接预充、谐振预充和变压器升压预充等三种预充电路。直接式预充电路结构简单,预充电压、电流调节非常方便,但一般只适合应用在RSD的单次开通;谐振触发方式适用于RSD重复频率脉冲功率电路;变压器触发方式更适用于电压高于10KV的RSD开关的触发。
     介绍了磁开关的基本原理。计算了磁开关的动态电感与电流的量化曲线,建立了磁开关动态电感模型。设计了磁开关的消磁电路。
     在SABER-MATLAB协同仿真平台建立了RSD脉冲功率电路模型。计算结果表明,主回路电阻负载在0.01-1变化时,RSD预充时间tR变化很小,主回路电感和1以上的主回路电阻对RSD预充时间影响较明显,计算结果与实验结果最大误差为5%,表明低压实验结果通过仿真计算,可预测较准确的高压实验的tR。
     RSD的单次10KV脉冲放电测试的电流峰值为114.5kA,RSD最大功率为52MW,总损耗为4.5kJ,占释放能量80kJ的5.6%。3.1kV单次试验的电流峰值为6.5kA,di/dt约为1.3kA/μs。
     设计了RSD高重复频率脉冲功率电路。连续重复频率模式的工作电压为2.4KV,当重复频率为10Hz时,连续放电5000次;当重复频率为20-60Hz时,分别连续放电1000次。RSD输出电流峰值为2.44kA,脉宽为9μs,工作频率从10Hz增加至60Hz时,输出电流从2.44kA下降至2.21kA,变化率为4.5%。测试了RSD的长期工作特性,分别进行了放电频率为10-50Hz的长时间放电实验,放电电压为460V。10Hz的RSD电流峰值为1.4kA,脉宽为18μs。测试时间总长度为497分钟,累计放电次数为71万次。理论分析及实验结果表明,基于RSD的高重复频率脉冲功率电路的优势是较好的稳定性,可同时满足高频率、高功率、窄脉宽等要求。
In civilian as well as nvironmental protection, food industry, war industry, andmanufacture industry, there is a growing demand for Repetition Frequency pulse powercircuit that can produce high power pulse at relatively high repetition rate. Pulse powerswitch is the key to the Repetition Frequency pulse power circuit. The disadvantages of gasswitch are short life and low repetition rate. The advantages of semiconductor pulse powerswitch are long life, high repetition rate and low dissipation. In high Repetition Frequencypulse power supply, the gas switch may be replaced gradually by semiconductor pulsepower switch. Reversely Switched Dynistor(RSD), a new kind of high-powersemiconductor device based on principle of reverse recharged, is a preferred candidate forthe switch applied in the pulse power circuit. In this dissertation, pulse power circuit basedon RSD modeling, design and experiment of recharge circuit of high voltage cap, magneticswitch technology, and topology of pulse power circuit base on RSD are researchedthoroughly.
     In this dissertation,the structure of RSD and elementary pulse power circuit based onRSD is introduced. The shortage of current compute formula of RSD terminal current isthat only square wave and standard sine wave can be computed in this formula. Based onconception of I2t, a new kind of compute formula of RSD terminal current which can beused in most RSD pulse discharge circuit was derivated.
     The analysis, design, and experiment of RC linear charging circuit, LRC resonantcharging circuit, and IGBT series resonance charge circuit were processed, and the threekind of charging circuit were applied in the RSD Repetition Frequency pulse power circuit.Charge frequency of LRC charge circuit is high, but the charging current is large whichmay affect the life of the devices. The LRC resonance step-up charge circuit which appliedin RSD pulse power circuit was bring forward, and the step-up transformer can replaced byLRC under discharge voltage of5kV. The formula of steady voltage U of dischargecapacitance C was derivated. Simulation Results show that, U decrease with increase of C;the increase percent of U changes is12%with charge circuit inductor L in5μH-100μH; thedecrease percent of U changes is10%with charge circuit resistor R in0.01-0.1; the increasepercent of U changes is40%with discharge circuit inductor L0in0.06μH-2.4μH; the decreasepercent of U changes is73%with discharge circuit resistor R0in0.01-0.1. The theoreticalcalculation result of U is1.3kV; while the experiment result is900V under C of9.4μF, thevoltage of direct current supply of327V. The study of experiment curve shows that the longturn-off time of turn-on switch SCR and turn-off switch diode results decrease of experiment voltage of U. IGBT serial resonant constant current charger has the advantages of stable andfast charging current, but the charging module is complexity and high cost.
     Direct triggering circuit, resonant triggering circuit and transformer triggering circuitof RSD are analyzed. Direct triggering circuit is relatively simple, design of the pre-chargevoltage and current regulation are convenient, but it generally suitable for high power singlepulse circuit. Resonant trigger circuit is suitable for Repetition Frequency pulse power circuitbased on RSD. Voltage higher than10KV is preferred to be triggered by the transformer.
     Principle of magnetic switch is introduced. Data curve of dynamic inductance andcurrent of magnetic switch is computed, and dynamic magnetic switch inductance modelbased on data table was built in M file. The magnetic reversed circuit was designed.
     Pulse power circuit model which include RSD physical model was built inSABER-MATLAB Co-Simulation Environment. Simulation Result shows that Triggeringtime tRchanges little with Resistance load in0.01-1, but influence obviously withinductance load and resistance load above1. The result of calculation and experimentalresult accord with very well. tRin high voltage experiment can be estimated fromexperiment results of triggering time of low voltage experiment.
     Voltage of single pulse discharge test of RSD is10KV, current peak of RSD is114.5KA, and power peak is52MW.4.5kJ of total losses of RSD is5.6%of80kJ of releaseenergy. The current peak of3.1kV experiment is6.5kA, and the di/dt is about1.3kA/μs.
     Repetition Frequency pulse power circuit based on RSD is designed. The parameter ofcircuit and magnetic switch were designed with2.4kV of the operation voltage. Continuouspulse discharge frequency of experiment is10-60Hz, respectively, the experimental peakcurrent was2.44kA with9μs pulse width, the number of continuous discharge pulse is5000with10Hz of pulse discharge frequency. The number of continuous discharge pulse is1000with20-60Hz of pulse discharge frequency. When the pulse discharge frequency changedfrom10Hz to60Hz, the peak current decreased from2.44KA to2.21kA, the decreasepercent is4.5%. The long-time discharge character of RSD was tested with460V of theoperation voltage. The frequency of experiment is10-50Hz, respectively. The experimentalpeak current was1.4kA with18μs pulse width, the time of continuous discharge test is497minute and total number of discharge was710000.Frequency of RSD Burst RepetitionFrequency pulse discharge experiment is500Hz, the number of continuous discharge pulseis10, and the discharge voltage is1.2kV.
     The theoretical analysis and experiment results show that the advantage of RepetitionFrequency pulse power circuit based on RSD is well stabilization, high frequency, highpower, and narrow pulse width.
引文
[1]米夏兹.大功率毫微秒脉冲的产生.北京:原子能出版社,1982.
    [2]王莹.高功率脉冲电源.北京:原子能出版社,1991.
    [3]李正瀛.脉冲功率技术.北京:水利电力出版社,1992.
    [4]陈首燊,范方吼,吴弘等.脉冲功率技术及其应用.电工电能新技术,1982,(2):41-48.
    [5] Kingdon K H H E. Experiments with a condenser discharge X-ray tube. PhysicalReview,1938,53(1):129-134.
    [6] Builta L A, Carlson R L, Kauppila T J, et al. Pulse-power-induced oscillations of theREX electron beam. In Particle Accelerator Conference,1989,3:1559-1561.
    [7] Spahn E, Hatterer F, Ramezani E. A pulse forming unit for railguns, switched by newlydeveloped high voltage semiconducting devices. Pulsed Power Conference,1995:1296-1302.
    [8] Katulka G L, DelGuercio M, Pastore R, et al. A4-MJ mobile pulse power facility forelectrothermal-chemical gun research. Pulsed Power Conference,1995:267-272.
    [9] Jung M, Mayerhofer W, Edele M, et al. Test of fast SCRs as spark gap replacement. InTenth IEEE International Pulsed Power Conference,1995,1:729-732.
    [10] Ramezani E, Spahn E, Bruderer G. A novel high current rate SCR for pulse powerapplications. Twenty-Second International Power Modulator Symposium,1996:71-74.
    [11] Okamura K, Watanabe Y, Yokokura K, et al. High repetition rated semiconductorswitch for excimer laser. Nineteenth IEEE Conference of Power ModulatorSymposium,1990:407-410.
    [12] Bowles E E, Homeyer W G, Rawls J M, et al.25kA,5000V solid state openingswitch for inductive energy stores. IEEE Transactions on Magnetics,1993,29(1):911-914.
    [13] Okamura K, Shimamura H, Kobayashi N, et al. Development of a semiconductorswitch for high power copper vapor lasers.11th IEEE International Pulsed PowerConference. Digest of Technical Papers.1997:975-980.
    [14] Gaudreau M P, Casey J A, Hawkey T P, et al. Solid state modulator applications inlinear accelerators. Particle Accelerator Conference,1999:1491-1493.
    [15] Bluhm H.,脉冲功率系统的原理与应用.北京:清华大学出版社,2008.
    [16]陈首燊,李丁九.重复频率脉冲功率技术.电工电能新技术,1988,8(03):14-19.
    [17]电气学会大电流能量应用技术调查专门委员会编.大电流能量技术与应用.北京:科学出版社,2004.
    [18] Gorbatyuk A V G I. Theory of quasi-diode operation of reversely switched dinistors.Solide-state Electronics,1988,31(10):1483-1491.
    [19] Grekhov I V. New principles of high power switching with semiconductor devices.Solid-state Electronics,1989,50(2):923-930.
    [20]王莹.脉冲功率技术综述(续).电气技术,2009,19(05):5-8.
    [21]米彦,孙才新,姚陈果等.陡脉冲电场对肝癌细胞线粒体跨膜电位的影响.高电压技术,2007,33(2):79-81.
    [22] Akiyama H, Kawamura K, Takeshita T, et al. Removal of NOxusing discharges bypulsed power. Tenth IEEE International Pulsed Power Conference,1995:133-137.
    [23]赵会良,解子凤,覃穆等.一种新型直接耦合式静电除尘脉冲电源.高电压技术,1998,24(02):3-6.
    [24]朝泽云,徐至新,钟和清等.静电除尘用高压供电电源特性浅析.高电压技术,2006,32(2):81-83.
    [25]赵济强.高压脉冲电凝系统治理电镀涂装废水.材料保护,2003,36(3):51-52.
    [26]张延宗,郑经堂,陈宏刚.高压脉冲放电水处理技术的理论研究.高电压技术,2007,33(2):136-140.
    [27]谢瑞,刘军,何湘宁.脉冲功率技术在环境保护中的应用.电力电子技术,2010,44(04):59-60.
    [28]张纪昌,谢敏.10kW脉冲电晕烟气脱硫电源.爆轰波与冲击波,1999,17(3):117-121.
    [29]宋保明,吴为麟.基于磁脉冲压缩技术的电除尘器供电电源.高电压技术,2006,32(2):60-62.
    [30] Sakugawa T, Yamaguchi T, Yamamoto K, et al. All Solid State Pulsed Power Systemfor Water Discharge. Pulsed Power Conference,2005:1057-1060.
    [31]王黎明,程伦,关志成等. PEF对乳杆菌和青霉菌的灭活效果研究.高电压技术,2007,33(2):112-115.
    [32] Ihara S, Kamatani M, Satoh S, et al. Characteristics of a TEA-CO2laser oscillation byan inductive energy storage pulsed power system. Tenth IEEE International PulsedPower Conference,1995:951-956.
    [33] Wofford M, Baker M C, Day M. Design, Simulation, And Testing Of A Pulse FormingNetwork-Transformer Power Supply For The Texas Tech Railgun. Eighth IEEEInternational Pulsed Power Conference,1991:138-140.
    [34] Lehmann P. Overview of the electric launch activities at the French-German ResearchInstitute of Saint-Louis (ISL). IEEE Transactions on Magnetics,2003,39(1):24-28.
    [35]陈建业.电力电子电路的计算机仿真.北京:清华大学出版社,2003.
    [36] Milias-Argitis J, Zacharias T, Hatziadoniu C, et al. Transient simulation of integratedAC/DC systems. I. Converter modeling and simulation. Power Systems,1988,3(1):166-172.
    [37] Lauritzen P O, Lauritzen P O. Simulation and modeling for power electronics.Computers in Power Electronics,1988:37-42.
    [38] Suthar J L, Laghari J R. Simulation of air core pulse transformer. Eighth IEEEInternational Pulsed Power Conference,1991:237-240.
    [39] Johansson K, Lilja K, Zuckerberger A, et al. System simulation and realization of aresonant inverter with a field-controlled thyristor. Power Electronics,1991,6(2):220-227.
    [40] Sujod M Z.6Pulse GTO Thyristor Converter Simulation.5th Student Conference onResearch and Development,2007:1-5.
    [41] Tseng K J, Tseng K J, Palmer P R. Mathematical model of gate-turn-off thyristor foruse in circuit simulationsMathematical model of gate-turn-off thyristor for use incircuit simulations. IEEE Transactions on Electric Power Applications,1994,141(6):284-292.
    [42] Lisik Z, Turowski M. Two-dimensional simulation of thyristor transient states fromconduction to forward blocking. Circuits, Devices and Systems, IEE Proceedings G,1991,138(5):575-581.
    [43] Brand H, Selberherr S. Two Dimensional Simulation of Thermal Runaway in aNonplanar GTO-Thyristor. Workshop on Numerical Modeling of Processes andDevices for Integrated Circuits,1992:129-134.
    [44] Kragh H, Blaabjerg F, Pedersen J K. An advanced tool for optimised design of powerelectronic circuits. Thirty-Third IEEE Industry Applications Conference,1998:991-998.
    [45] Lee B K, Lee B K, Ehsani M. A simplified functional model for3-phase voltagesource inverter using switching function concept.25th Industrial Electronics Society,1999:462-467.
    [46] Farrington R, Farrington R, Jovanovic M M, et al. Modeling losses and stresses ofhigh frequency power converters using SABER. Sixth Applied Power ElectronicsConference and Exposition,1991:285-292.
    [47] Gao D W, Mi C, Emadi A. Modeling and Simulation of Electric and HybridVehiclesModeling and Simulation of Electric and Hybrid Vehicles. Proceedings of theIEEE,2007,95(4):729-745.
    [48] Lauritzen P O, Ma C L. A simple diode model with reverse recovery. IEEETransactions on Power Electronics,1991,6(2):188-191.
    [49] Hossain Z, Olejniczak K J, Mantooth H A, et al. Physics-based MCT circuit modelusing the lumped-charge modeling approach. IEEE Transactions on Power Electronics,2001,16(2):264-272.
    [50] Kim S C, Nam S H, Kim S H, et al. High power density, high frequency, and highvoltage pulse transformer. Pulsed Power Plasma Science,2001:808-811.
    [51] Zhang B, Wang R, Zhuang F, et al. Study of improving low frequency torque ripple inlow speed and high torque PMSM. International Electrical Machines and Systems,2007:847-852.
    [52]何孟兵,李劲.高功率脉冲放电间隙开关综述.高电压技术,2000,26(4):33-35.
    [53]李漫华,邵可然.电感储能型高功率脉冲电源断路开关的最新发展.电机电器技术,2000,43(4):13-16.
    [54]陈维青,曾正中,邹丽丽等.100kA微秒级气体火花开关电极材料熔蚀研究.强激光与粒子束,2004,16(2):239-242.
    [55]李洪涛,丁伯南,谢卫平等.200kV/100kA低抖动环轨式场畸变开关.高电压技术,2003,29(9):33-35.
    [56]梁天学,孙才新,邱爱慈等.200kV多级多通道火花开关.高电压技术,2006,32(10):56-58.
    [57]刘刚,余岳辉,史济群.半导体器件.北京:电子工业出版社,2000.
    [58] Baliga B J. Power semiconductor devices. PWS Publishing Company,1994.
    [59] Schlegel E S, Page D J. A high-power light-activated thyristor. International ElectronDevices Meeting,1976:483-486.
    [60] Taylor P D. Solid state switching devices. IEE Colloquium on Pulsed PowerTechnology,1988:11.
    [61] Mueller C W, Hilibrand J. The "Thyristor"-A new high-speed switching transistor.IEEE Transactions on Electron Devices,1958,5(1):2-5.
    [62] Tully L K, Fulkerson E S, Goerz D A, et al. Evaluation of Light-Triggered Thyristorsfor Pulsed Power Applications. IEEE International Power Modulators and HighVoltage Conference,2008:1-4.
    [63] Hummer C R, Singh H, Piccone D. Thyristors for pulsed power applications. PowerModulator Symposium,2000. Conference Record of the2000Twenty-FourthInternational,2000:78-80.
    [64] Schneider S, Podlesak T F. Multichip thyristor performance. Twenty-FourthInternationa Conference of Power Modulator Symposium,2000:58-61.
    [65] Craig A H, Hopkins D C, Driscoll J C. A high speed pulser thyristor. ThirteenthAnnual Applied Conference Proceedings of Power Electronics Conference andExposition,1998:737-742.
    [66] Kishiro J, Ebihara K, Hiramatsu S, et al. An induction linac and pulse power system atKEK. Proceedings of Particle Accelerator Conference,1993:673-675.
    [67] Nesterov V, Cassel R. High current transistor pulse generator. IEEE Nuclear ScienceSymposium and Medical Imaging Conference,1991:1009-1011.
    [68] Podlesak T F, Simon F M. Preliminary evaluation of super gtos in pulse application.Conference Record of the Twenty-Sixth International Power Modulator Symposiumand High-Voltage Workshop,2004:314-317.
    [69] Gauen K. The effects of MOSFET output capacitance in high frequency applications.IEEE Industry Applications Society Annual Meeting,1989:1227-1234.
    [70]段军,梁双建,起侠等. MOSFET式高频激励(连续/脉冲)CO2激光电源.应用激光,1995,16(01):30-33.
    [71] Jiang W, Wang X, Yuan J, et al. Compact pulsed power and its industrial applications.IEEE Pulsed Power Conference,2009:1-10.
    [72]李劲,李欣,刘小平等. MHz重复频率脉冲功率技术.强激光与粒子束,2010,22(04):725-729.
    [73] Welleman A, Leutwyler R. Solutions with Solid State Switches for Pulse Modulators.IEEE International Power Modulators and High Voltage Conference,2008:29-32.
    [74] Ryoo H J, Kim J S, Rim G H, et al. Development of60kV Pulse Power GeneratorBased on IGBT Stacks for Wide Application. Twenty-Seventh InternationalConference of Power Modulator Symposium,2006:511-514.
    [75] Lyubutin S K, Rukin S N, Slovikovsky B G, et al. Experimental study of SOS-basedgenerator for low impedance load.12th IEEE International Pulsed Power Conference,1999:1230-1233.
    [76] Rukin S N, Mesyats G A, Ponomarev A V, et al. Megavolt repetitive SOS-basedgenerator. Pulsed Power Plasma Science,2001:1272-1275.
    [77]苏建仓,刘国治,丁臻捷等.基于SOS的脉冲功率源技术新进展.强激光与粒子束,2005,17(8):1195-1200.
    [78] Ogunniyi A, O'Brien H, Lelis A, et al. The benefits and current progress of SiCSGTOs for pulse power applications. International Semiconductor Device ResearchSymposium,2009:1-2.
    [79] Dmitriev V A, Levinshtein M E, Vainshtein S N, et al. First SiC dynistor. ElectronicsLetters,1988,24(16):1031-1033.
    [80] Elasser A, Losee P, Arthur S, et al.3000V,25A pulse power asymmetrical highlyinterdigitated SiC Thyristors. Twenty-Fifth Annual Conference of IEEE AppliedPower Electronics and Exposition (APEC),2010:1598-1602.
    [81] O Brien H., Shaheen W., Bayne S. B. Pulsed Power Switching of a4MM x4MMSIC Thyristor. IEEE Pulsed Power Conference,2005:896-899.
    [82] Galakhov I V, Galakhov I V, Gudov S N, et al. Switching of high-power current pulsesup to250kA and submillisecond duration using new silicon devices-reverse switcheddinistors. Tenth IEEE International Pulsed Power Conference,1995:1103-1108.
    [83] Grekhov I. Mega and gigawatts-ranges, repetitive mode semiconductor closing andopening switches.11th IEEE International Pulsed Power Conference,1997:425-429.
    [84] Podlesak T F, Podlesak T F, Simon F, et al. Experimental investigation of dynistorsand dynistor based pulsers Experimental investigation of dynistors and dynistor basedpulsers. Power Modulator Symposium,1998. Conference Record of the1998Twenty-Third International,1998:169-172.
    [85] Schneider S, Schneider S, Podlesak T F. Reverse switching dynistor pulsers.12thIEEE International Pulsed Power Conference,1999:214-218.
    [86] Korotkov S V. Switching Possibilities of Reverse Switched-on Dynistors andPrinciples of RSD Circuitry (Review). Instruments and Experimental Techniques,2002,45(4):437-470.
    [87] Belyaev S A, Belyaev S A, Bezuglov V G, et al. New Generation of High-PowerSemiconductor Closing Switches for Pulsed Power Applications. IEEE Transactionson Pulsed Power Plasma Science,2007:190.
    [88] Grekhov I V, Korotkov S V, Andreev A G. High-power reverse switch-ondynistor-based generators for electric-discharge water purification. Instruments andExperimental Techniques,1997,40(5):705-707.
    [89] Bezuglov V G, Galakhov I V, Gudov S N, et al. On the possible use of semiconductorRSD-based switch for flashlamps drive circuits in a Nd-glass laser amplifier of LMJfacility.12th IEEE International Pulsed Power Conference,1999:914-918.
    [90]余岳辉,梁琳,李谋涛等.超高速半导体开关RSD的开通机理与大电流特性研究.电工技术学报,2005,20(2):36-40.
    [91]邓林峰,余岳辉,彭亚斌等.反向开关复合管的物理模型与数值方法实现.半导体学报,2007,28(6):931-937.
    [92]余岳辉,梁琳,颜家圣等.大功率超高速半导体开关的换流特性研究.中国电机工程学报,2007,27(30):38-42.
    [93]杜如峰,余岳辉,彭昭廉等.半导体脉冲功率开关RSD的开通电压特性研究.微电子学,2004,34(2):195-197.
    [94]杜如峰,余岳辉,胡乾等.预充电荷对RSD开通特性的影响.电力电子技术,2003,37(5):84-86.
    [95]李谋涛,余岳辉,胡乾等.基于RSD开关的脉冲放电主回路.电力电子技术,2005,39(2):111-114.
    [96]胡乾,余岳辉,李焕炀等.基于RSD的可重复脉冲电源.通信电源技术,2003,20(5):1-4.
    [97]李焕炀,余岳辉,胡乾等. RSD开关在脉冲电源中的应用研究.中国电机工程学报,2003,23(11):23-28.
    [98]李震彪,张逸成,程礼椿.电器热稳定性的理论分析.中国电机工程学报,1998,18(01):26-28.
    [99]宋峰青.高压变频器中晶闸管串联的均压问题.电气时代,2004,(12):138.
    [100]陆广香,沈国荣,陈泉等.大功率IGBT过压与过热的分析计算及其对策.电力电子技术,2006,40(2):119-121.
    [101]倪红军,李明,赵绍刚.三电平逆变器IGBT驱动和保护电路的实现.电子设计应用,2004,(04):75-77.
    [102]杨小卫,严萍,孙鹞鸿等.35kV/0.7A高压变频恒流充电电源.高电压技术,2006,32(5):54-56.
    [103]沈宏,陈烨.30KW/50KHZ IGBT并联谐振感应加热电源.电力电子技术,1995,29(2):3-5.
    [104]王卫,张雷.半桥式串并联谐振电源的研究.哈尔滨工业大学学报,1996,28(1):69-75.
    [105] Smilanski I. Advances in magnetic pulse compression for copper vapor lasers.Eighteenth IEEE Conference Power Modulator Symposium,1988,1988:84-85.
    [106]叶才勇,文远芳,刘克富等.基于磁开关的脉冲陡化电路的设计与仿真.高电压技术,2006,32(3):68-71.
    [107]苏建仓,丁臻捷,丁永忠等. S-5N全固态重复频率脉冲发生器.强激光与粒子束,2004,16(10):1337-1340.
    [108]陈科文,丘军林.磁脉冲压缩器的优化设计.激光技术,1996,20(2):116-121.
    [109]苏建仓,刘纯亮,刘国治等.环形磁芯磁开关设计.西安交通大学学报,2003,37(2):139-142.
    [110] Cushman N. Characterization of Magnetic Switch Cores. Component Parts, IRETransactions on,1961,8(2):45-50.
    [111] Georgescu N, Larour J, Zoita V. A PSPICE simulation of a plasma-focus devicedriven by a magnetic pulse compression circuit. IEE Colloquium Pulsed Power,1996,1996:1-4.
    [112]戴育航,钱照明.磁脉冲压缩技术及其在脉冲电源领域中的应用.电力电子技术,1999,(2):54-57.
    [113]陈传军.一维半导体器件的特征有限体积元方法及分析.高等学校计算数学学报,2005,27(3):279-288.
    [114]郑阳明,褚庆昕.一种新型全域时域有限差分法.微波学报,2005,21(3):19-22.
    [115] Wei, Liu, Yirang, et al. A Finite Difference Scheme for a Semiconductor DeviceProblem on Grids with Local Refinement in Time and Space.高等学校计算数学学报:英文版,2006,15(3):278-288.
    [116] Nandakumar M, Baliga B J, Shekar M S, et al. Theoretical and experimentalcharacteristics of the base resistance controlled thyristor (BRT). IEEE Transactions onElectron Devices,1992,39(8):1938-1945.
    [117]付强,钟玲,吴春瑜等.非对称型集成门极换流晶闸管(IGCT)在PISCES-2ET软件平台上器件模拟.辽宁大学学报:自然科学版,2006,33(2):177-179.
    [118]李乔,吴捷.自适应谐波电流检测方法用于有源电力滤波器的仿真研究.电工技术学报,2004,19(12):86-90.
    [119]盛义发,洪镇南. MATLAB在电力系统仿真中的应用.计算机仿真,2004,21(11):197-199.
    [120]廖晓玲,曹江陵.用MATLAB进行计算机辅助电路分析.西南师范大学学报:自然科学版,2002,27(3):427-429.
    [121]丁强,何湘宁.采用Saber模型研究IGBT工作极限特性.电工技术学报,2001,16(2):65-69.
    [122]丁强,何湘宁.功率逆变桥闭环控制系统的Saber仿真与分析.电力电子技术,2000,34(1):46~48
    [123]张厚升.电力电子电路仿真软件综述.电源世界,2006,(9):48-50.
    [124]叶莺,肖立业.超导故障限流器的应用研究新进展.电力系统自动化,2005,29(13):92-96.
    [125]周雪松,向龙瑞,马幼捷等.故障限流装置的发展和应用.电工技术学报,2004,19(11):1-7.
    [126]曾琦,李兴源,蔡鑫贵等.带串联补偿故障限流器的仿真和实验.电力系统自动化,2003,27(14):54-56.
    [127] Varma R. Mohan, And Mathur,基于晶闸管的柔性交流输电控制装置.北京:机械工业出版2005.
    [128]易卜吉.三峡电站主要电气设备.长江水利教育,11(4):55-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700