用户名: 密码: 验证码:
阿尔茨海默病磁共振诊断磁对比剂及药物、细胞治疗的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     阿尔茨海默病(Alzheimer’s disease,AD)是一种以慢性进行性痴呆为主要表现的神经退行性疾病,是老年性痴呆最常见的原因之一,其发病率随年龄的增高而不断增高,给社会家庭带来了沉重的经济负担。然而,AD在诊断、治疗等方面仍然比较滞后,本课题通过对目前比较热门的一些技术方法和治疗手段的探讨,来寻找未来可能应用于AD的方法和方向。在AD的诊断方面,磁共振成像(magnetic resonanceimaging,MRI)是一种很有前景的检测AD中β淀粉样蛋白(β-amloid,Aβ)沉积的诊断技术,使用磁共振对比剂既能够提供Aβ沉积的特异性成像以区分其他病理生理结构,又能缩短成像时间。而在AD的治疗方面,早期对血管功能的保护可能成为针对发病机理的治疗新靶点,而晚期神经元的丢失也可能通过细胞移植的方法进行功能重建。
     目的
     1.开发一种使用超小超顺磁性氧化铁(ultrasmall superparamagnetic iron oxide,USPIO)纳米颗粒连接功能性蛋白的磁共振对比剂,从而给检测Aβ沉积提供方法。
     2.用于治疗脑缺血的药物丁苯酞,具有内皮保护作用,通过观察其对Aβ损伤下脑微血管内皮细胞(cerebral microvascular endothelial cells,CMECs)的作用,寻找丁苯酞用于AD治疗的证据并进行初步的机制探讨。
     3.神经干细胞(neural stem cells,NSCs)是中枢神经系统疾病细胞移植治疗的最终应用形式,但存在定向分化问题。拟通过观察与CMECs共培养后NSCs在正常条件下和损伤条件下的分化情况,寻找一种能够促使移植治疗应用于神经退行性疾病的解决方案。
     方法
     1.磁共振对比剂由USPIO纳米颗粒连接Aβ16-20(KLVFF)和跨膜蛋白转导结构域(trans-activating transcriptor-protein transduction domain,Tat-PTD)组成,其中Aβ16-20是能特异性与Aβ沉积结合的探针,Tat-PTD能帮助对比剂穿过血脑屏障(brain bloodbarrier,BBB)。体外实验研究此对比剂的生物膜穿透性、生物毒性、与Aβ沉积的特异性结合能力以及对组织磁共振信号的影响;最终将其注射入AD转基因小鼠来进行活体磁共振成像及组织学验证。
     2.建立CMECs原代培养方法并鉴定。使用不同浓度丁苯酞预处理CMECs后予以Aβ损伤,观察其活性和凋亡率的变化,并进一步观察其分泌NO及诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)和内皮型一氧化氮合酶(endothelial nitricoxide synthase,eNOS)水平的变化。
     3.共培养原代CMECs和NSCs,观察NSCs的生长状况,移除CMECs后将NSCs分别置于正常培养环境和缺糖缺氧(Oxygen-glucose deprivation,OGD)环境中分化以观察分化比例。鼠胚成纤维细胞(mouse embryo fibroblast,MEF)与NSCs共培养作为对照组。
     结果
     1.Tat-PTD-USPIO-Aβ16-20的蛋白连接效率达97.75%,体内、体外实验均显示其能穿过生物膜,与Aβ沉积特异性结合,并能降低组织的磁共振信号,与未连接的Aβ16-20及Aβ1-40相比没有发现明显的毒性作用。
     2.成功建立了乳小鼠CMECs的原代培养方法,最终阳性率可达95.5%。丁苯酞预处理后的Aβ损伤CMECs,细胞活性升高,凋亡率降低,NO分泌增高,iNOS分泌及胞浆表达均增高,而eNOS分泌及胞浆含量未发现有显著变化。
     3.与CMECs共培养的NSCs数量更多,直径更大,不论是在正常培养环境下还是在OGD环境下,神经元分化比例均高于对照。
     结论
     1.本研究设计的磁共振对比剂能够穿过BBB,并能通过磁共振检测到AD动物模型体内的Aβ沉积,是一种很有潜力的AD诊断技术。此外,还有助于开发和评估新的以减少Aβ沉积为目标的AD药物。
     2.丁苯酞可能通过提高iNOS的表达和分泌,从而提高NO水平来对Aβ损伤的CMECs产生保护作用,且大剂量下保护作用更明显和稳定,故而有可能通过保护内皮功能而对AD产生治疗作用。
     3. CMECs能够促进NSCs的存活和增殖,不仅能促进其在正常培养条件下,也能促进其在损伤条件下更多的向神经元分化。这为研究NSCs在中枢神经系统疾病的细胞治疗中的定向分化问题提供了新证据。
     创新点
     1.创造性开发出新型纳米磁共振对比剂,既为AD临床体内诊断应用打下基础,也为新药开发研究提供了评估手段。
     2.建立了一种经济、简易、重复性好、纯度高的CMECs原代培养方法。
     3.通过AD发病机理的新观点,探讨在临床上应用于脑缺血的药物丁苯酞用于AD治疗的可能,为增加新的适应症提供一定的依据。
     4.在细胞移植治疗中的神经干细胞定向分化问题上,着重探讨了在损伤环境中的分化状况,更接近真实的移植状况。
Backgrounds
     Alzheimer’s disease (AD) is a neurodegenerative disease with the feature of chronicprogressive dementia and is one of the most common causes for senile dementia. Themorbidity increases with age and great financial load is brought to society and families.However, the diagnosis and therapy of AD remain limited. This study is to find the possiblemethod and direction through discussing the intense research in AD. In terms of diagnosis,magnetic resonance imaging (MRI) is a promising technique in detection of Aβ deposits inAD. It has been proved that using the MRI contrast agent can shorten the scanning time andprovide a specific image to identify various structures. In terms of therapy, the protection ofvascular function may be the new target in the early stage of AD and the celltransplantation may be the development direction to repair the neuron loss in the late stageof AD in the future.
     Objectives
     1. To develop an ultrasmall superparamagnetic iron oxide (USPIO) nanoparticlescoupled with functional protein as a novel MRI contrast agent to detect the Aβ deposits.
     2. To find whether s-(-)-3-n-butylphthalide, which can protect the vascule and is usedfor ischemia clinically, could be applied for AD through the observation of the effects onthe Aβ-damaged cerebral microvascular endothelial cells (CMECs).
     3. Neural stem cells (NSCs) are the applied form in cell transplantation for diseases ofcentral nervous system. The increase of neuronal differentiation rate of NSCs remains ablock, particular in a damage environment. The study is to see the effects of CMECs on theneurogenesis of NSCs with or without Oxygen-glucose deprivation (OGD).
     Methods
     1. We developed a novel MRI contrast agent USPIO nanoparticles coupledAβ(16-20)(KLVFF) as a probe for connecting to Aβ deposits and HIV-1trans-activatingtranscriptor-protein transduction domain (Tat-PTD) for the penetration of blood-brainbarrier (BBB). The penetration, toxicity and binding affinity of the contrast agent in vitrohave been studied. The contrast agents were injected into the transgenic mice for livingbrain MRI imaging and histological studies.
     2. Establish the method for primary culture of CMECs. After detecting the specificityof CMECs, they were pre-treated with s-(-)-3-n-butylphthalide on different concentrationsand then were damaged by Aβ. The cell viability and apoptosis rates were observed and theconcentrations of NO, inducible nitric oxide synthase (iNOS) and endothelial nitric oxidesynthase (eNOS) were detected.
     3. Survival and proliferation of NSCs were studied after CMECs and NSCs wereco-cultured. Removing the CMECs, NSCs were maintained in differentiation culture withor without treatment of OGD to observe the differentiation rates. Mouse embryo fibroblast(MEF) cells co-cultured with NSCs were used as the control groups.
     Results
     1. The coupling efficiency of protein can reach97.75%for Tat-PTD-USPIO-Aβ(16-20).The developed MRI contrast agents can pass through biological membranes, bind to the Aβdeposits and decrease the MRI signal of the tissue in vitro and in vivo. Compare toAβ(16-20) or Aβ(1-40) alone, no significant toxicity of Tat-PTD and Aβ(16-20) was foundwhen they coupled with USPIO nanoparticles.
     2. Successfully establish the method of primary culture of CMECs from newborn mice and the positive rate was95.5%. In the intervention research of s-(-)-3-n-butylphthalide, thecell viability increased and the apoptosis rates decreased. The secretion of NO and iNOSwere increased. There were no significantly changes of the secretion of eNOS in all groups.
     3. NSCs co-cultured with CMECs have an increase in size and number compared tothose co-cultured with MEF cells. They also have an increase in neuronal differentiationrates with or without OGD.
     Conclusions
     1. The novel developed MRI contrast agent by USPIO nanoparticles coupled withfunctional protein can pass through BBB and detect Aβ deposits in AD animal models byMRI in vivo. This novel MRI contrast agent may help in the evaluation and development ofpotential novel therapeutic interventions to reduce amyloid deposits in AD experimentalanimals.
     2. The s-(-)-3-n-butylphthalide could protect CMECs from the damage of Aβ throughincreasing the expression and secretion of iNOS, in turn the NO. The effect was morestabilized under the large concentration. Hence, the s-(-)-3-n-butylphthalide may be acandidate for the therapy of AD through the effect on the protection of vascule.
     3. This study provides the evidence that OGD cannot alter the effects of CMECs inpromoting the neuronal differentiation potential of NSCs. These findings may haveimportant implications for the development of new cell therapies for the diseases of centralnervous system.
     Innovation points
     1. A novel MRI nano-contrast agent was developed and may contribute to the diagnosisof AD and also help in the evaluation and development of potential novel therapeuticinterventions.
     2. Established an economical, simple and repetitive primary culture with high positiverate for CMECs.
     3. According to the recent opinion of AD, the drug used for ischemia clinically was discussed for the application of AD and that may shorten the development time for new ADdrugs.
     3. In the cell transplantation, the study of the neuronal differentiation rate of NSCs in adamage environment is more significant to the transplantation therapy.
引文
[1] Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med.2010;77:32-42.
    [2] Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’sdisease: an appraisal for the development of therapeutics. Nat Rev Drug Discov.2011;10:698-712.
    [3] Mahmoudi M, Serpooshan V, Laurent S. Engineered nanoparticles for biomolecularimaging. Nanoscale.2011;3:3007-26.
    [4] Ming Ma, Yanqiang Zhan, Yaqi Shen, et al. Synthesis of amino-group functionalizeduperparamagnetic iron oxide nanoparticles and applications as biomedical labeling probes.J Nanopart Res.2011;13:3249–3257.
    [5]湛彦强,吴军,许杰,等。靶向纳米铁磁共振造影剂特异性标记阿尔茨海默病鼠脑内老年斑。中华神经科杂志,2011;44:500-503。
    [6] Tjernberg LO, N slund J, Lindqvist F, et al. Arrest of beta-amyloid fibril formation by apentapeptide ligand. J Biol Chem.1996;271:8545-8.
    [7] Carvalho KM, Franca MS, Camarao GC, et al. A new brain metalloendopeptidasewhich degrades the Alzheimer’s beta-amyloid1-40peptide producing soluble fragmentswithout neurotoxic effects. Braz J Med Biol Res.1997;30:1153-6.
    [8] Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers.Adv Drug Deliv Rev.2008;60:548-58.
    [9] Rao KS, Labhasetwar V. Trans-activating transcriptional activator (TAT) peptide-mediated brain drug delivery. J Biomed Nanotech.2006;2:173-85.
    [10] Sadowski M, Pankiewicz J, Scholtzova H, et al. A synthetic peptide blocking theapolipoprotein E/beta-amyloid binding mitigates beta-amyloid toxicity and fibril formationin vitro and reduces beta-amyloid plaques in transgenic mice. Am J Pathol.2004;165:937-48.
    [11] Hebert LE, Scherr PA, Bienias JL, et al. Alzheimer’s Disease in the U.S. Population:Prevalence Estimates Using the2000Census. Arch Neurol.2003;60:1119-1122.
    [12] Ferri CP, Prince M, Brayne C, et al. Alzheimer’s Disease International. Globalprevalence of dementia: a Delphi consensus study. Lancet.2005;366:2112-7.
    [13] Tartaglia MC, Rosen HJ, Miller BL. Neuroimaging in dementia. Neurotherapeutics.2011;8:82-92.
    [14] Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s diseasewith Pittsburgh Compound-B. Ann Neurol.2004;55:306-19.
    [15] Petiet A, Delatour B, Dhenain M. Models of neurodegenerative disease–Alzheimer’sanatomical and amyloid plaque imaging. Methods Mol Biol.2011;771:293-308.
    [16] Chamberlain R, Wengenack TM, Poduslo JF, et al. Magnetic resonance imaging ofamyloid plaques in transgenic mouse models of Alzheimer’s disease. Curr Med ImagingRev.2011;7:3-7.
    [17] Rao KS, Reddy MK, Horning JL, et al. TAT-conjugated nanoparticles for the CNSdelivery of anti-HIV drugs. Biomaterials.2008;29:4429-38
    [1] Herrmann N, Chau SA, Kircanski I, et al. Current and emerging drug treatment optionsfor Alzheimer's disease: a systematic review. Drugs.2011;71(15):2031-65.
    [2] Popp J, Arlt S. Pharmacological treatment of dementia and mild cognitive impairmentdue to Alzheimer's disease. Curr Opin Psychiatry.2011;24(6):556-61.
    [3] Massoud F, Léger GC. Pharmacological treatment of Alzheimer disease. Can JPsychiatry.2011;56(10):579-88.
    [4] Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitors andmemantine for treating dementia: evidence review for a clinical practice guideline. AnnIntern Med.2008;148(5):379-97.
    [5] Birks J, Grimley Evans J, Iakovidou V, et al. Rivastigmine for Alzheimer's disease.Cochrane Database Syst Rev.2009;(2):CD001191.
    [6] Hansen RA, Gartlehner G, Lohr KN, et al. Functional outcomes of drug treatment inAlzheimer’s disease: A systematic review and meta-analysis. Drugs Aging.2007;24(2):155-67.
    [7] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress andproblems on the road to therapeutics. Science.2002;297(5580):353-6.
    [8] Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease.Nat Rev Neurosci.2004;5(5):347-60.
    [9] Austin SA, Santhanam AV, KatusicZS. Endothelial nitric oxide modulates expressionand processing of amyloid precursor protein. Circ Res.2010;107(12):1498-502.
    [10] Buerk DG, Barbee KA, Jaron D. Nitric oxide signaling in the microcirculation. CritRev Biomed Eng.2011;39(5):397-433.
    [11] Lugowski M, Saczko J, Kulbacka J,et al. Reactive oxygen and nitrogen species.2011;31(185):313-7.
    [12] Chu Y, Heistad D. No answer to Alzheimer’s disease? Circ Res.2010;107(12):1400-2.
    [13] Brown GC. Nitric oxide and neuronal death. Nitric Oxide.2010;23(3):153-65.
    [14] Zhu XZ, Li XY, Liu J. Recent pharmacological studies on natural products in China.Eur J Pharmacol.2004;500(1-3):221-30.
    [15] Gao Y, Zhang HW, Qiao HL, et al. Protective effect of3-butyl-6-bromo-1(3H)-iso-benzofuranone on hydrogen peroxide-induced damage in PC12cells. Brain Res.2010;1358:239-47.
    [16] Choi YK, Kim KW. Blood-neural barrier: its diversity and coordinated cell-to-cellcommunication. BMB Rep.2008;41(5):345-52.
    [17] Zhenhua Wu,Florence Hofman, Berislav Zlokovic. A simple method for isolation andcharacterization of mouse brain microvascular endothelial cells. J Neurosci Methods.2003;130:53-63.
    [18] Abbott NJ, R nnb ck L, Hansson E. Astrocyte-endothelial interactions at theblood-brain barrier. Nat Rev Neurosci.2006;7(1):41-53.
    [19] de Boer AG, Gaillard PJ. Blood-brain barrier dysfunction and recovery. J NeuralTransm.2006;113(4):455-62.
    [20] Persidsky Y, Ramirez SH, Haorah J, et al. Blood-brain barrier: structural componentsand function under physiologic and pathologic conditions[J]. J Neuroimmune Pharmacol.2006;1(3):223-36.
    [21] Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecularanatomy and possible investigation approaches. Brain Res Rev.2010;64(2):328-63.
    [22] Mkrtchyan H, Scheler S, Klein I, et al. Molecular cytogenetic characterization of thehuman cerebral microvessel endothelial cell line hCMEC/D3. Cytogenet Genome Res.2009;126(4):313-7.
    [23] Calabria AR, Weidenfeller C, Jones AR, et al. Puromycin-purified rat brainmicrovascular endothelial cell cultures exhibit improved barrier properties in response toglucocorticoid induction. J Neurochem.2006;97(4):922-33.
    [24]王义宝,刘云会,刘丽波,等。大鼠脑微血管内皮细胞的原代培养及其生物学行为初步探讨。神经解剖学杂志,2006;22(2):224-228。
    [25]刘恺鸣,迟路湘,鲁向辉,等。大鼠脑微血管内皮细胞的原代培养。第三军医大学学报,2007;29(20):2011-2013。
    [26]梁朝峰,郭英,石德金,等。大鼠脑皮质微血管内皮细胞的分离和培养。中国病理生理杂志,2008;24(5):1038-1040。
    [27] Hall CN, Garthwaite J. What is the real physiological NO concentration in vivo? NitricOxide.2009;21(2):92-103.
    [28] Thomas DD, Ridnour LA, Isenberg JS, et al. The chemical biology of nitric oxide:implications in cellular signaling. Free Radic Biol Med.2008;45(1):18-31.
    [29] Galkin A, Higgs A, Moncada S. Nitric oxide and hypoxia. Essays Biochem.2007;43:29-42.
    [30] Brune B. The intimate relation between nitric oxide and superoxide in apoptosis andcell survival. Antioxid Redox Signal.2005;7:497–507.
    [31] Ciani E, Guidi S, Bartesaghi R, et al. Nitric oxide regulates cGMP-dependent cAMPresponsive element binding protein phosphorylation and Bcl-2expression in cerebellarneurons:implication for a survival role of nitric oxide. J Neurochem.2002;82:1282–1289.
    [32] Mancardi D, Ridnour LA, Thomas DD, et al. The chemical dynamics of NO andreactive nitrogen oxides: a practical guide. Curr Mol Med.2004;4:723–740.
    [33] Bellamy TC, Griffiths C, Garthwaite J. Differential sensitivity of guanylyl cyclase andmitochondrial respiration to nitric oxide measured using clamped concentrations. J BiolChem.2002;277(35):31801-7.
    [34] Santi-Rocca J, Smith S, Weber C, et al. Endoplasmic reticulum stress-sensingmechanism is activated in Entamoeba histolytica upon treatment with nitric oxide. PLoSOne.2012;7(2):e31777.
    [35] Malinski T. Nitric oxide and nitroxidative stress in Alzheimer’s disease. J AlzheimersDis.2007;11(2):207-18.
    [36] Lüth HJ, Holzer M, G rtner U, et al.Expression of endothelial and inducibleNOS-isoforms is increased in Alzheimer’s disease, in APP23transgenic mice and afterexperimental brain lesion in rat: evidence for an induction by amyloid pathology. BrainRes.2001;913(1):57-67.
    [37] Ali AK, Banks WA, Kumar VB, et al. Nitric oxide activity and isoenzymeexpression in the senescence-accelerated mouse p8model of Alzheimer’s disease: effects ofanti-amyloid antibody and antisense treatments. J Gerontol A Biol Sci Med Sci.2009;64(10):1025-30.
    [38] Heneka MT, Wiesinger H, Dumitrescu OL, et al. Neuronal and glial coexpression ofargininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer’s disease. JNeuropathol Exp Neurol.2001;60(9):906-16.
    [39] Kwak YD, Wang R, Li JJ, et al. Differential regulation of BACE1expression byoxidative and nitrosative signals. Mol Neurodegener.2011;6:17.
    [40] Austin SA, Santhanam AV, Katusic ZS. Endothelial nitric oxide modulates expressionand processing of amyloid precursor protein. Circ Res.2010;107(12):1498-502.
    [41] Colton CA, Wilcock DM, Wink DA, et al. The effects of NOS2gene deletion on miceexpressing mutated human AbetaPP. J Alzheimers Dis.2008;15(4):571-87.
    [42] Cuadrado-Tejedor M, Hervias I, Ricobaraza A, et al. Sildenafil restores cognitivefunction without affecting β-amyloid burden in a mouse model of Alzheimer’s disease. Br JPharmacol.2011;164(8):2029-41.
    [43] Sabayan B, Zamiri N, Farshchizarabi S, et al. Phosphodiesterase-5inhibitors: novelweapons against Alzheimer’s disease? Int J Neurosci.2010;120(12):746-51.
    [44] Puzzo D, Staniszewski A, Shi XD, et al. Phosphodiesterase5inhibition improvessynaptic function, memory, and Aβ load in an Alzheimer’s disease mouse model. JNeurosci.2009;29:8075–8086.
    [45] Grammas P. Neurovascular dysfunction, inflammation and endothelial activation:implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammation.2011;8:26.
    [46] Ma S, Xu S, Liu B, et al. Long-term treatment of l-3-n-butylphthalide attenuatedneurodegenerative changes in aged rats. Naunyn Schmiedebergs Arch Pharmacol.2009;379(6):565-74.
    [47] Peng Y, Sun J, Hon S, et al. L-3-n-butylphthalide improves cognitive impairment andreduces amyloid-beta in a transgenic model of Alzheimer’s disease. J Neurosci.2010;30(24):8180-9.
    [48] Peng Y, Hu Y, Xu S, et al. L-3-n-butylphthalide reduces tau phosphorylation andimproves cognitive deficits in AβPP/PS1-Alzheimer’s transgenic mice. J AlzheimersDis.2012;29(2):379-91.
    [1] Chiu AY, Rao MS. Cell-based therapy for neural disorders-anticipating challenges.Neurotherapeutics.2011;8(4):744-52.
    [2] Schwarz SC, Schwarz J. Translation of stem cell therapy for neurological diseases.Transl Res.2010;156:155-60.
    [3] Liu YP, Lang BT, Baskaya MK, et al. The potential of neural stem cells to repairstroke-induced brain damage. Acta Neuropathol.2009;117:469-80.
    [4] Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of theadult mammalian central nervous system. Science.1992;255:1707-10.
    [5] Richards LJ, Kilpatrick TJ, Bartlett PF. De novo generation of neuronal cells from theadult mouse brain, Proc Natl Acad Sci USA.1992;89:8591-5.
    [6] Philipp Koch, Zaal Kokaia, Olle Lindvall, et al. Emerging concepts in neural stem cellresearch: autologous repair and cell-based disease modeling. Lancet Neurol.2009;8:819-29.
    [7] Morgan PJ, Liedmann A, Hübner R, et al. Human neural progenitor cells showfunctional neuronal differentiation and regional preference after engraftment ontohippocampal slice cultures. Stem Cells Dev.2011;12:23.
    [8] Zhang L, Jiang H, Hu Z. Concentration-Dependent Effect of Nerve Growth Factor onCell Fate Determination of Neural Progenitors. Stem Cells Dev.2011;2:17.
    [9] Mitreci D, Nicaise C, Gajovi S, et al. Distribution, differentiation, and survival ofintravenously administered neural stem cells in a rat model of amyotrophic lateral sclerosis.Cell Transplant.2010;19:537-48.
    [10] Wurmser AE, Palmer TD, Gage FH. Cellular interactions in the stem cell niche.Neurosci2004;304:1253.
    [11] Benjamin Ohlstein, Toshie Kai, Eva Decotto, et al. The stem cell niche: theme andvariations. Current Opinion in Cell Biology.2004;16:693.
    [12] Butcher J. Adult neural stem cells local ised in SVZ, The Lancet Neurology.2004;3:198.
    [13] Qin Shen, Susan Goderie, Li Jin, et al. Endothelial cells stimulate self-renewal andexpand neurogenesis of neural stem cells. Science.2004;304:1338-40.
    [14] Cimarosti H, Henley JM. Investigating the mechanisms underlying neuronal death inischemia using in vitro oxygen-glucose deprivation: potential involvement of proteinSUMOylation, Neuroscientist.2008;14:626-36.
    [15] Jennifer Plane, Anuska Andjelkovic, Richard Keep, et al. Intact and injured endothelialcells differentially modulate postnatal murine forebrain neural stem cells. Neurobiol Dis.2010;37(1):218-27.
    [16] Junying Yu, Maxim Vodyanik, Kim Smuga-Otto, et al. Induced pluripotent stemcell lines derived from human somatic cells. Science.2007;318:1917-20.
    [17] Nils Schmidta, Dennis Koedera, Markus Messinga, et al. Vascular endothelial growthfactor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neuralstem cells to the neurovascular niche. Brain Res.2009;1268:24-37.
    [18] Pouneh Kermani, Barbara Hempstead. Brain-derived neurotrophic factor: a newlydescribed mediator of angiogenesis. Trends Cardiovasc Med.2007;17:140-3.
    [19] Victoria Christiea, Daniel Maltmana, Andrew Hendersona, et al. Retinoidsupplementation of differentiating human neural progenitors and embryonic stem cellsleads to enhanced neurogenesis in vitro. J Neurosci Methods.2010;193:239-45.
    [20] Wang G, Ao Q, Gong K, et al. Synergistic effect of neural stem cells and olfactoryensheathing cells on repair of adult rat spinal cord injury. Cell Transplant.2010;19:1325-37.
    [21] Hans-J rg Habisch, Stefan Liebau, Thomas Lenk, et al. Neuroectodermally convertedhuman mesenchymal stromal cells provide cytoprotective effects on neural stem cells andinhibit their glial differentiation. Cytotherapy.2010;12:491-504.
    [22] Bürgers HF, Schelshorn DW, Wagner W, et al. Acute anoxia stimulates proliferation inadult neural stem cells from the rat brain. Exp Brain Res.2008;188:33-43.
    [1] Small DH, Cappai R. Alois A lzheimer andAlzheimer’s disease: a centennialperspective. J Neurochem.2006;99(3):708-10.
    [2] Herrmann N, Chau SA, Kircanski I, et al. Current and Emerging Drug TreatmentOptions for Alzheimer’s Disease: A Systematic Review. Drugs.2011;71(15):2031-65.
    [3] Suzuki T, Araki Y, Yamamoto T, et al. Trafficking of Alzheimer’s disease-relatedmembrane proteins and its participation in disease pathogenesis. J Biochem.2006;139(6):949-55.
    [4] Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease:an emperor in need of clothes. Nat Neurosci.2012;15(3):349-57.
    [5] Shahani N, Subramaniam S, Wolf T, et al. Tau aggregation and progressive neuronaldegeneration in the absence of changes in spine density and morphology after targetedexpression of Alzheimer’s disease-relevant tau constructs in organotypic hippocampalslices. J Neurosci.2006;26(22):6103-14.
    [6] Altman R, Rutledge JC. The vascularcontribution to Alzheimer’s disease. Clin Sci(Lond).2010;119(10):407-21.
    [7] Iadecola C. Neurovascularregulation in the normal brain and in Alzheimer’s disease.Nat Rev Neurosci.2004;5(5):347-60.
    [8] Austin SA, Santhanam AV, KatusicZS. Endothelial nitric oxide modulates expressionand processing of amyloid precursor protein. Circ Res.2010;107(12):1498-502.
    [9] Paul V, Ekambaram P. Involvement of nitric oxide in learning&memoryprocesses.Indian J Med Res.2011;133:471-8.
    [10] Buerk DG, Barbee KA, Jaron D. Nitric oxide signaling in the microcirculation. CritRev Biomed Eng.2011;39(5):397-433.
    [11] Thomas DD, Ridnour LA, Isenberg JS, et al. The chemical biology of nitric oxide:implications in cellular signaling. Free Radic Biol Med.2008;45(1):18-31.
    [12] Hall CN, Garthwaite J. What is the real physiological NO concentrationin vivo? NitricOxide.2009;21(2):92-103.
    [13] Stefano GB, Kream RM. Reciprocal regulation of cellular nitric oxide formation bynitric oxide synthase and nitrite reductases. Med Sci Monit.2011;17(10):RA221-6.
    [14] Tennyson AG, Lippard SJ. Generation, translocation, and action of nitric oxide inliving systems. Chem Biol.2011;18(10):1211-20.
    [15] Oess S, Icking A, Fulton D, et al. Subcellulartargeting and trafficking of nitric oxidesynthases. Biochem J.2006;396:401.
    [16] Li Zhou, Dong Ya Zhu. Neuronal nitric oxide synthase: structure, subcellularlocalization, regulation and clinical implications. Nitric Oxide.2009;20:223-230.
    [17] Andrea Pautz, Julia Art, Susanne Hahn, et al. Regulation of the expression of induciblenitric oxide synthase. Nitric Oxide.2010;23:75-93.
    [18] Piet Eikelenbooma, Erik Exel, Jeroen Hoozemans, et al. Neuroinflammation–An EarlyEvent in Both the History and Pathogenesis of Alzheimer’s Disease. Neurodegenerative Dis.2010;7:38-41
    [19] Ana Navarro, Manuel J. Bández, Carmen Gómez, et al. Effects of rotenone andpyridaben on complex I electron transfer and on mitochondrial nitric oxide synthasefunctional activity. J Bioenerg Biomembr.2010;42:405-412.
    [20] Bustamante J, Czerniczyniec A, Lores-Arnaiz S. Brain nitric oxide synthasesand mitochondrial function. Front Biosci.2007;12:1034-40.
    [21] Farinati F, Piciocchi M, Lavezzo E, et al. Oxidative stress and inducible nitric oxidesynthase induction in carcinogenesis. Dig Dis.2010;28(4-5):579-84.
    [22] Bogdan C, R llinghoff M, Diefenbach A. Reactive oxygen and reactive nitrogenintermediates in innate and specificimmunity. Curr Opin Immunol.2000;12(1):64-76.
    [23] Mori M. Regulation of nitric oxide synthesis and apoptosis by arginase and argininerecycling. J Nutr.2007;137(6Suppl2):1616S-1620S.
    [24] Taylor BS, Geller DA. Molecular regulationof the human inducible nitric oxidesynthase (iNOS) gene. Shock.2000;13(6):413-24.
    [25] Schmidt N, Pautz A, Art J, et al. Transcriptional and post-transcriptional regulation ofiNOS expressionin human chondrocytes. Biochem Pharmacol.2010;79(5):722-32.
    [26] Franko A, Dodi-Fikfak M, Arneri N, et al. Inducible nitric oxide synthase geneticpolymorphism and risk of asbestosis. J Biomed Biotechnol.2011;2011:685870.
    [27] Jones EL, Ballard CG, Prasher VP, et al. An Intron7Polymorphism in APP Affectsthe Age of Onset of Dementia in Down Syndrome. Int J Alzheimers Dis.2010;2011:929102.
    [28] Qidwai T, Jamal F. Inducible nitric oxide synthase (iNOS) gene polymorphism anddisease prevalence. Scand J Immunol.2010;72(5):375-87.
    [29] Okada S, Obata S, Hatano M, et al. Dominant-negative effect of the c-fos family geneproducts on inducible NO synthase expression in macrophages. Int Immunol.2003;15(11):1275-82.
    [30] Fritsche G, Dlaska M, Barton H, et al. Nramp1functionality increases inducible nitricoxide synthase transcription via stimulation of IFN regulatory factor1expression. JImmunol.2003;171(4):1994-8.
    [31] Kim AR, Lee MS, Shin TS, et al. Phlorofucofuroeckol A inhibits the LPS-stimulatediNOS and COX-2expressions in macrophages via inhibition of NF-κB, Akt, and p38MAPK. Toxicol In Vitro.2011;25(8):1789-95.
    [32] Takahashi K, Sugiyama T, Tokoro S, et al. Inhibition of interferon-γ-induced nitricoxide production by10-hydroxy-trans-2-decenoic acid through inhibition of interferonregulatory factor-8induction. Cell Immunol.2012;273(1):73-8.
    [33] De Stefano D, Maiuri MC, Iovine B, et al. The role of NF-kappaB, IRF-1, andSTAT-1alpha transcription factors in the iNOS gene induction by gliadin and IFN-gammain RAW264.7macrophages. J Mol Med (Berl).2006;84(1):65-74.
    [34] Park KS, Guo Z, Shao L, et al. A far-upstream Oct-1motif regulates cytokine-inducedtranscription of the human inducible nitric oxide synthase gene. J Mol Biol.2009;390(4):595-603.
    [35] Wang K, Brems JJ, Gamelli RL, et al. C/EBPα and C/EBPβ binding proteins modulatehepatocyte apoptosis through iNOS signaling pathway. Biochim Biophys Acta.2011;1813(8):1395-403.
    [36] Du Q, Park KS, Guo Z, et al. Regulation of human nitric oxide synthase2expressionby Wnt beta-catenin signaling. Cancer Res.2006;66(14):7024-31.
    [37] Blanchette J, Pouliot P, Olivier M. Role of protein tyrosine phosphatases in theregulation of interferon-{gamma}-induced macrophage nitricoxide generation: implicationof ERK pathway and AP-1activation. J Leukoc Biol.2007;81(3):835-44.
    [38] Godfrey V, Martin AL, Struthers AD, et al. Effects of aldosterone and related steroidson LPS-induced increased expression of inducible NOS in rat aortic smooth muscle cells.Br J Pharmacol.2011;164(8):2003-14.
    [39] Takahashi S, Nakashima Y. Repeated and long-term treatment with physiologicalconcentrations of resveratrol promotes NO production in vascular endothelial cells. Br JNutr.2012;107(6):774-80.
    [40] Seguin-Devaux C, Devaux Y, Latger-Cannard V, et al. Enhancement of the inducibleNO synthase activation by retinoic acid is mimicked by RARalpha agonist in vivo. Am JPhysiol Endocrinol Metab.2002;283(3):E525-35.
    [41] Cattano D, Valleggi S, Abramo A, et al. Nitrous oxide discretely up-regulates nNOSand p53in neonatal rat brain. Minerva Anestesiol.2010;76(6):420-4.
    [42] Cignarella A, Bolego C, Pelosi V, et al. Distinct roles of estrogen receptor-alpha andbeta in the modulation of vascularinducible nitric-oxide synthase in diabetes. J PharmacolExp Ther.2009;328(1):174-82.
    [43] Toell A, Kr ncke KD, Kleinert H, et al. Orphan nuclear receptor binding site in thehuman inducible nitric oxide synthase promoter mediates responsiveness to steroid andxenobiotic ligands. J Cell Biochem.2002;85(1):72-82.
    [44] Linscheid P, Schaffner A, Schoedon G. Modulation of inducible nitric oxidesynthase mRNA stability by tetrahydrobiopterin in vascular smooth muscle cells. BiochemBiophys Res Commun.1998;243(1):137-41.
    [45] Schindler JF, Monahan JB, Smith WG. p38pathway kinases as anti-inflammatory drugtargets. J Dent Res.2007;86(9):800-11.
    [46] Vodovotz Y, Lucia MS, Flanders KC, et al. Inducible nitric oxide synthase intangle-bearing neurons of patients with Alzheimer’s disease. J Exp Med.1996;184(4):1425-33.
    [47] Malinski T. Nitric oxide and nitroxidative stress in Alzheimer’s disease. J AlzheimersDis.2007;11(2):207-18.
    [48] Taniguchi N, Takahashi M, Sakiyama H, et al. A common pathway for intracellularreactive oxygen species production by glycoxidative andnitroxidative stress in vascularendothelial cells and smooth muscle cells. Ann N Y Acad Sci.2005;1043:521-8.
    [49] Kwak YD, Wang R, Li JJ, et al. Differential regulation of BACE1expression byoxidative and nitrosative signals. Mol Neurodegener.2011;6:17.
    [50] Austin SA, Santhanam AV, Katusic ZS. Endothelial nitric oxide modulates expressionand processing of amyloid precursor protein. Circ Res.2010;107(12):1498-502.
    [51] Schmidt J, Barthel K, Zschüntzsch J, et al. Nitric oxide stress in sporadic inclusionbody myositis muscle fibres: inhibition of induciblenitric oxide synthase preventsinterleukin-1β-induced accumulation of β-amyloid and cell death. Brain.2012;135(Pt4):1102-14.
    [52] Colton CA, Wilcock DM, Wink DA, et al. The effects of NOS2gene deletion on miceexpressing mutated human AbetaPP. J Alzheimers Dis.2008;15(4):571-87.
    [53] Little JW, Doyle T, Salvemini D. Reactive nitroxidative species and nociceptiveprocessing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain.Amino Acids.2012;42(1):75-94.
    [54] Grammas P. Neurovascular dysfunction, inflammation and endothelial activation:implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammation.2011;8:26.
    [55] Herrmann N, Chau SA, Kircanski I, et al. Current and emerging drug treatmentoptions for Alzheimer’s disease: a systematic review. Drugs.2011;71(15):2031-65.
    [56] Popp J, Arlt S. Pharmacological treatment of dementia and mild cognitive impairmentdue to Alzheimer’s disease. Curr Opin Psychiatry.2011;24(6):556-61.
    [57] Massoud F, Léger GC. Pharmacological treatment of Alzheimer’s disease. Can JPsychiatry.2011;56(10):579-88.
    [58] Fisher A. Cholinergic modulation of amyloid precursor protein processing withemphasis on M1muscarinic receptor: perspectives and challenges in treatmentof Alzheimer’s disease. J Neurochem.2012;120Suppl1:22-33.
    [59] Thatcher GR, Bennett BM, Reynolds JN. NO chimeras as therapeutic agents inAlzheimer’s disease. Curr Alzheimer Res.2006;3(3):237-45.
    [60] Pizza V, Agresta A, D'Acunto CW, et al. Neuroinflamm-aging and neurodegenerativediseases: an overview. CNS Neurol Disord Drug Targets.2011;10(5):621-34.
    [61] Kawamata J, Shimohama S. Stimulating nicotinic receptors trigger multiple pathwaysattenuating cytotoxicity in models ofAlzheimer’s and Parkinson’s diseases. J AlzheimersDis.2011;24Suppl2:95-109.
    [62] Doherty GH. Nitric oxide in neurodegeneration: potential benefits of non-steroidalanti-inflammatories. Neurosci Bull.2011;27(6):366-82.
    [63] Venturini G, Colasanti M, Persichini T, et al. Beta-amyloid inhibits NOS activity bysubtracting NADPH availability. FASEB J.2002;16(14):1970-2.
    [64] Cuadrado-Tejedor M, Hervias I, Ricobaraza A, et al. Sildenafil restores cognitivefunction without affecting β-amyloid burden in a mouse model of Alzheimer’s disease. Br JPharmacol.2011;164(8):2029-41.
    [65] Sabayan B, Zamiri N, Farshchizarabi S, et al. Phosphodiesterase-5inhibitors: novelweapons against Alzheimer’s disease? Int J Neurosci.2010;120(12):746-51.
    [66] Puzzo D, Staniszewski A, Shi XD, et al. Phosphodiesterase5inhibition improvessynaptic function, memory, and Aβ load in an Alzheimer’s disease mouse model. JNeurosci.2009;29:8075–8086.
    [67] Puzzo D, Staniszewski A, Deng SX, et al. Phosphodiesterase5inhibition improves
    synaptic function, memory, and amyloid-beta load in an Alzheimer’s disease mouse model.
    J Neurosci.2009;29(25):8075-86.
    [68] Arendash GW, Schleif W, Rezai-Zadeh K, et al. Caffeine protects Alzheimer’s mice
    against cognitive impairment and reduces brain beta-amyloid production. Neuroscience.
    2006;142(4):941-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700