用户名: 密码: 验证码:
鱼腥草单萜次生代谢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鱼腥草是一种传统中药,为三白草科(Saururaceae)蕺菜属(Houttuynia)植物蕺菜(Houttuynia cordata Thunb.)。单萜类化合物是鱼腥草挥发油的主要成分之一,具有抗菌、抗病毒和抗氧化等多种生物活性。根据单萜的生态学意义,本试验首先用UV-B胁迫诱导了鱼腥草单萜次生代谢防御反应,然后以单萜合酶基因为研究对象进一步挖掘了其涉及的信号传导途径,进而采用信号分子诱导策略调控鱼腥草单萜含量,辅以优化的钾肥供应水平,以期实现鱼腥草药用品质和生物产量的双重提升。其主要研究结果如下:
     1.首先评估了UV-B辐射对鱼腥草的损伤以及抗氧化酶和单萜次生代谢物质的防御响应。结果表明鱼腥草H202含量和脂质过氧化水平会迅速上升,即UV-B诱导产生了氧化胁迫。不过,遭受氧化损伤的植株在2d后能逐渐恢复。其中,抗氧化酶和单萜类化合物对UV-B诱导的氧化胁迫可能提供了快速的防御响应,而且都表现为多段式防御策略。过氧化氢酶、超氧化物歧化酶和过氧化物酶分别在第1d、2d和3d达到最大活性。单萜在短时间内得到大量地积累。其中,4-萜品醇含量在第1d达到最大值,β-罗勒烯、γ-萜品烯和D-柠檬烯在第2d达到最大值,而其余4种单萜成分在72h一直持续增加。单萜富含不饱和双键,作为抗氧化因子参与防御UV-B诱导的氧化胁迫。这种多段式防御策略可能是由于多重信号传导途径调控的。这为后续挖掘调控鱼腥草单萜合酶基因的信号传导途径奠定了基础。
     2.采用cDNA末端快速扩增(RACE)从鱼腥草中分离到两个单萜合酶基因HcTPS1和HcTPS2的全长cDNA。HcTPSl和HcTPS2分别长1886bp和1962bp,最大开放阅读框分别编码558AA和584AA,分别属于萜类合酶亚家族TPS-g和TPS-b。氨基酸序列均以疏水区域为主,包含一段信号肽、DDxxD和RR保守区。HcTPS1和HcTPS2被发现存在单核苷酸多态性(SNP)、插入或缺失突变、内含子滞留和外显子丢失四种形式的变异。HcTPS1和HcTPS2分别发现44个和33个SNP位点。HcTPS1和HcTPS2均存在单碱基插入或缺失的现象,翻译提前终止。HcTPS2内含子ⅢI和Ⅷ的部分序列滞留在cDNA序列上。HcTPS2基因第4和第6个外显子出现丢失。这是首次发现单萜合酶如此奇特而频繁地变异,也暗示了突变在鱼腥草单萜合酶基因中的普遍性。
     3.探讨了两种化学型鱼腥草单萜含量与HcTPSl和HcTPS2表达量的关系。首先通过避光和损伤组合处理,解决了鱼腥草叶片离体繁殖过程中易褐化和难分化的两大技术性难题,建立了鱼腥草叶高频离体快繁体系。其再生频率达每外植体20.64±5.94个不定芽。以此技术培养了生长状态基本一致的月桂烯型鱼腥草w01-99、w01-46和w01-71和癸醛型鱼腥草w01-4、w01-86和x10-1组培苗。qPCR分析表明癸醛型鱼腥草HcTPSl和HcTPS2表达水平显著高于月桂烯型鱼腥草。然而,SPME-GC/MS分析表明月桂烯型鱼腥草总单萜含量较癸醛型鱼腥草高,其中x10-1不含单萜。因此,月桂烯型鱼腥草HcTPSl和HcTPS2的表达与单萜含量呈一定的正相关性,而癸醛型鱼腥草的单萜含量和HcTPSl和HcTPS2表达量呈现严重不对称关系。上述单萜合酶基因突变可能是导致癸醛型鱼腥草的单萜含量低的重要原因。
     4.采用信号分子抑制剂处理的方式挖掘了涉及UV-B诱导的单萜合酶基因响应的信号传导途径。将乙烯、水杨酸、茉莉酸、NO、H2O2和Ca2+信号抑制剂预处理的植株经UV-B辐射。形态学观察和丙二醛含量的变化表明UV-B剂量在鱼腥草可接受范围之内。除乙烯抑制剂AgNO_3外,其它信号分子的抑制剂预处理未对植株构成胁迫。qPCR分析表明水杨酸、茉莉酸、NO、H2O2和Ca2+抑制剂处理降低或推迟了UV-B诱导的HcTPSl和HcTPS2表达。同时,单萜含量也有所降低,特别是在72h以内。这表明上述5种信号分子可能参与介导了UV-B诱导的单萜合酶基因表达。这为外源施用信号分子促进鱼腥草单萜生物合成提供了理论依据。由于AgNO_3胁迫诱导了单萜次生代谢防御反应,因此本试验未能确定其是否涉及乙烯信号传导途径。
     5.评价了信号物质外源施用对鱼腥草单萜含量和脂质过氧化水平的影响。将水杨酸、茉莉酸甲酯、乙烯利(乙烯供体)、硝普钠(NO供体)和CaC1_2叶面喷施于鱼腥草,测定其单萜含量和脂质过氧化水平。结果表明,0.01mmol/L水杨酸不对植株造成氧化胁迫,能提高单萜含量,8d时达到峰值;0.1mmol/L茉莉酸甲酯不对植株造成胁迫,能提高单萜含量,4d时达到峰值;0.1mmol/L乙烯利能显著提高鱼腥草单萜含量,不构成酸胁迫。0.1mmol/L硝普钠可以提高鱼腥草抗性,使脂质过氧化维持在更低的水平,能提高单萜含量,有2d和8d两个单萜积累高峰。1mmol/L CaC1_2不对鱼腥草造成胁迫,总单萜含量在8d时达到最大值。该信号分子诱导策略为鱼腥草药用品质的提升提供了有益的指导。
     6.优化了鱼腥草钾供应水平,以为信号分子诱导策略提供茁壮的植株。结果表明1.28mmol/L钾供应水平获得干重、株高、根长和根数最高值,是鱼腥草最适生长浓度。在该浓度下,鱼腥草具有最大净光合速率,最高CO2利用率,这与叶绿素含量直接相关。钾过量供应虽可以提高鱼腥草含钾量,却会降低生物产量。钾饥饿和高钾水平会提高蒸腾速率,降低水分吸收能力,导致植物过度失水。同时会过量积累H2O2,对植株造成氧化胁迫。而最优的钾离子浓度可以提高抗氧化酶活性,维持最低的H2O2水平。过量的钾可以提高单萜含量,然而伴随而来的胁迫效应严重影响植物正常生长。虽然最优的钾浓度未能促进单萜生物合成,但可以使鱼腥草维持在最佳的生长状态。因此,在大田生产中,信号分子诱导策略辅以最优的钾供应浓度也许可以实现单萜含量和生物产量的双重提升。
     7.从抗菌和抗氧化活性两方面评估了单萜含量变化对鱼腥草挥发油药用品质的影响。平板扩散法分析表明单萜成分如β-蒎烯、萜品油烯、γ-萜品烯、D-柠檬烯和4-萜品醇都具较强的抗细菌活性,对鱼腥草挥发油的抑菌能力有重要贡献。ABTS~((?)+)法和β-胡萝卜素漂白法分析表明鱼腥草单萜成分具有较强的自由基清除能力和抗脂质过氧化能力。总单萜含量越高,鱼腥草挥发油抗氧化活性越强,其相关性达到显著水平。受测试的单萜个体抗氧化能力均较强。当然,不同单萜个体之间抗氧化活性有一定的差异。因此,本试验结果初步表明诱导单萜生物合成对鱼腥草挥发油药用品质的提升有重要意义。
Honttuynia cordata Thunb. is a species of the genus Houttuynia in ancient Saururaceae family. The plants used as traditional Chinese medicine, are rich in monoterpenes which possess a variety of pharmacological activities, such as antioxidant, anti-bacteria, and anti-viruses. Based on the ecological role, a defense response of monoterpenes were induced by UV-B radiation, and related signaling pathways, which regulating the gene of monoterpene synthases, were investigated. Then, signal compounds were applied to accumulate monoterpenes in H. cordata. In addition, optimization of potassium for proper growth was also tested. Therefore, this study was conducted to promote monoterpene production and biomass together. The main results of this study are as following:
     Oxidative damage, antioxidant enzymes and monoterpenes were evaluated in H. cordata after exposure with elevated UV-B radiation. Results showed that the shock of UV-B induced oxidative damage according to the increase of H_2O_2and malondialdehyde. However, a recovery could be found after two days. Catalase, superoxide dismutase, and peroxidase were stimulated to their maximum activities on the first, second, and third day, respectively. Monoterpenes showed rapid accumulation and might play a considerable role as antioxidant agents. Nevertheless, only four individuals mainly contributed to the substantial increase of total monoterpene contents,4-terpineol was quickly induced to the peak on the first day, and β-ocimene, y-terpinene and D-limonene reached the maximum on the second day. This clearly suggests that not only antioxidant enzymes but also monoterpenes play their role in rapid and multiple-phase defense strategy against UV-B-induced oxidative stress in H. cordata. Therefore, multiple signalling pathways may be involved in the regulation of monoterpene biosynthesis under stresses.
     Mono-TPS, HcTPSl and HcTPS2were isolated from H. cordata by using rapid amplification of cDNA ends (RACE). Full length cDNA of HcTPSl and HcTPS2are1886bp and1962bp, and encode558AA and584AA, respectively. Both amino-acid sequences are dominated by hydrophobic regions, and contain the transit peptide, the highly conserved DDxxD motif and RR (degenerated RRx_8W) motif. HcTPS1and (?)TPS2belong to TPS-g andTPS-b subfamilies, respectively. Multiple clones of HcTPS1and HcTPS2were isolated from H. cordata accessions w01-99, w01-86, and x10-1. Various mutations, including single nucleotide polymorphisms (SNP), insertion/deletion, intron detention, and exon loss are observed in HcTPS1and HcTPS2.44and33SNP sites are noted in HcTPS1and HcTPS2, respectively. HcTPS1and HcTPS2have insertion and deletion insertion and deletion mutations, respectively, and premature stop codon block the protein translation. Because the change of cleavage site, partial intron sequences are observed in the cDNA of HcTPS2. Two exons are lost in different clones of HcTPS2. Therefore, the mutations of10-TPS might be extensive in H. cordata.
     Monoterpene contents and the expression levels of HcTPSl and HcTPS2in two chemotypes of H. cordata were investigated. The Through4week pre-culture in darkness and wounding after1week pre-culture, the browning rate of leaf explants decreased significantly and resulted in efficient regeneration (20.64±5.94adventitious buds per explant) on the induction medium. In vitro plantlets of chemotype myrcene accessions w01-99, w01-46, w01-71, and chemotype decanal accessions w01-4, w01-86, and x10-1were obtained by using the high-frequency induction technique. GC-MS analysis indicates that total monoterpene contents of w01-99, w01-46and w01-71are higher than that of w01-86, and x10-1. Interestingly, no terpenoids were detected. However, the relative transcript levels of HcTPSl and HcTPS2in w01-86and x10-1were significantly higher than that of w01-99, w01-46, w01-71. This suggests that some other targets, such as gene mutation, carbon flux and posttranscriptional processes might play an important role in regulation of monoterpene biosynthesis in H. cordata.
     Multiple signalling pathways mediating UV-B-induced monoterpene biosynthesis in H. cordata were investigated by employing the inhibitors of signal transduction pathways. Before exposure with elevated UV-B radiation, the plants were sprayed with the inhibitors of ethylene, salicylic acid, jasmonate, nitric oxide, hydrogen peroxide and calcium ion. Results showed that the dosage of UV-B radiation was within the capacity of H. cordata according to the changes of morphology and malondialdehyde content. foliar application of the inhibitors of salicylic acid, jasmonate, nitric oxide, hydrogen peroxide and calcium ion choud reduce the induction of UV-B-induced HcTPSl expression. Therefore these signalling pathways might be involved in regulation of monoterpene biosynthesis in H. cordata. But ethylene inhibitor, AgNO3resulted in oxidative damage to the plants, and induced the defense response of monoterpenes. Thus it is not well known whether ethylene pathway is involved in regulation of UV-B-induced monoterpene biosynthesis in H. cordata.
     Effects of the foliar application of signal molecules or donors, salicylic acid, methyl jasmonate, ethephon (an ethylene-releasing compound), sodium nitroprusside (a nitric oxide-releasing compound) and CaC1_2on monoterpene biosynthesis and lipid peroxidation in H. cordata were evaluated. Results showed that the optimizing concentrations of salicylic acid, methyl jasmonate, ethephon, sodium nitroprusside, and CaC1_2for monoterpene production are0.01,0.1,0.1,0.1, and1mM because of the maximum yield of monoterpenes and the little adverse effect on H. cordata plants, even some treatments could increase the resistance against oxidative stress. The maximum yield of monoterpenes were generally observed on4d or8d after foliar application.
     Optimization of potassium for proper growth and physiological response of H. cordata were investigated. Sterile plantlets were cultured in media with different potassium levels, and parameters related to growth, foliar potassium, water and chlorophyll contents, photosynthesis, transpiration, H_2O_2contents and antioxidative enzyme activities were determined after a month. Results showed that1.28mM potassium was the optimum for H. cordata as highest values of dry weight, shoot height, root length and number were obtained at this concentration. The optimum potassium concentration resulted in the maximum net photosynthetic rate which could be associated with the highest chlorophyll content rather than limited stomatal conductance. The supply of surplus potassium resulted in higher content of foliar potassium, but negatively correlated with the biomass. Both potassium starvation (0mM) and high potassium (>1.28mM) could lead to water loss through high transpiration rate and low water absorption, respectively, and resulted in H_2O_2accumulation and increased activities of catalase and peroxidase, which suggested induction of oxidative stress. Moreover, H. cordata showed the minimum of H_2O_2content and the maximum of superoxide dismutase activitiy on1.28mM potassium, implying its role in inducing tolerance against oxidative stress. Total monoterpene content only had a minor share (9.85%) of essential oil in the control treatment (0mM), while it showed a remarkable increase in the treatments supplemented with potassium and10.26mM K resulted in the maximum total monoterpenes. The optimum potassium concentration resulted in lower total monoterpene conent. However, the optimum potassium could make sure the optimal growth of plants for signal strategies in the commercial production of H. cordata
     The role of monoterpenes in the essential oils of H. cordata was assessed by antimicrobial activitiy and antioxidant activity assays. Disc diffusion method was employed for the determination of antimicrobial activities. Results indicated that monoterpene components, such as β-pinene, terpinolene, y-terpinene, D-limonene, and4-terpinenol had great potential against bacteria tested, and partly contributed to the antimicrobial capability of essential oils. ABTS~+and β-Carotene bleaching assays indicate that the essential oils have hydrogen-donating capacities and acceptable activities against lipid peroxidation, respectively, which may be significantly associated with total monoterpenes according to correlation analysis. Although differential antioxidant capacities are noted, monoterpene individuals observed in the essential oils generally show great antioxidant activities. This suggests that the induction of monoterpene biosynthesis in H. cordata may be very important for medicinal uses.
引文
[1]Buckingham J. Dictionary of natural products on DVD.19.1 ed., London, Chapman & Hall/CRC,2010.
    [2]Bach T. Some new aspects of isoprenoid biosynthesis in plants—A review. Lipids, 1995,30(3):191-202.
    [3]Holopainen JK. Multiple functions of inducible plant volatiles. Trends Plant Sci., 2004,9(11):529-533.
    [4]Dhingra V, Rao KV, Narasu ML. Current status of artemisinin and its derivatives as antimalarial drugs. Life Sci.,1999,66(4):279-300.
    [5]Kingston DGI. Taxol:The chemistry and structure-activity relationships of a novel anticancer agent. Trends Biotechnol.,1994,12(6):222-227.
    [6]Verlet N, The commercial aspects of volatile oil production, in:Hay, R.K.M., Waterman, P.G. (Eds.) Volatile oil crops:their biology, biochemistry and production, Longman Scientific & Technical, Essex,1993, pp.137-174.
    [7]Dembitsky V. Astonishing diversity of natural surfactants:7. Biologically active hemi-and monoterpenoid glycosides. Lipids,2006,41(1):1-27.
    [8]Zulak KG, Bohlmann J. Terpenoid biosynthesis and specialized vascular cells of conifer defense. J. Integr. Plant Biol.,2010,52(1):86-97.
    [9]Keeling CI, Bohlmann J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol.,2006,170:657-675.
    [10]Loreto F. Distribution of isoprenoid emitters in the Quercus genus around the world:chemo-taxonomical implications and evolutionary considerations based on the ecological function of the trait. Perspect. Plant Ecol.,2002,5(3): 185-192.
    [11]Loreto F, Schnitzler JP. Abiotic stresses and induced BVOCs. Trends Plant Sci., 2010,15(3):154-166.
    [12]Singsaas EL. Terpenes and the thermotolerance of photosynthesis. New Phytol., 2000,146(1):1-2.
    [13]Pichersky E, Gershenzon J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol,2002, 5(3):237-243.
    [14]McKay SAB, Hunter WL, Godard K-A, Wang SX, Martin DM, Bohlmann J, Plant AL. Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in Sitka spruce. Plant Physiol., 2003,133(1):368-378.
    [15]Abrahim D, Braguini WL, Kelmer-Bracht AM, Ishii-Iwamoto EL. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J. Chem. Ecol.,2000,26(3):611-624.
    [16]Angelini LG, Carpanese G, Cioni PL, Morelli I, Macchia M, Flamini G. Essential oils from Mediterranean Lamiaceae as weed germination inhibitors. J. Agr. Food Chem.,2003,51(21):6158-6164.
    [17]De Feo V, De Simone F, Senatore F. Potential allelochemicals from the essential oil of Ruta graveolens. Phytochemistry,2002,61(5):573-578.
    [18]Lorber P, Muller WH. Volatile growth inhibitors produced by Salvia leucophylla: effects on seedling root tip ultrastructure. Am. J. Bot.,1976,63(2):196-200.
    [19]Muller WH, Lorber P, Haley B. Volatile growth inhibitors produced by Salvia leucophylla:effect on seedling growth and respiration. Bull. Torrey Bot. Club, 1968,95(5):415-422.
    [20]Chan NL, Wang H, Wang Y, Leung HY, Leung LK. Polycyclic aromatic hydrocarbon-induced CYP1B1 activity is suppressed by perillyl alcohol in MCF-7 cells. Toxicol. Appl. Pharm.,2006,213(2):98-104.
    [21]Crowell PL. Prevention and therapy of cancer by dietary monoterpenes. J. Nutr., 1999,129(3):775S-778S.
    [22]Gould MN. Prevention and therapy of mammary cancer by monoterpenes. J. Cell Biochem.,1995,59(S22):139-144.
    [23]Elegbede JA, Elson CE, Qureshi A, Tanner MA, Gould MN. Inhibition of DMBA-induced mammary cancer by the monoterpene d-limonene. Carcinogenesis,1984,5(5):661-664.
    [24]Stark MJ, Burke YD, McKinzie JH, Ayoubi AS, Crowell PL. Chemotherapy of pancreatic cancer with the monoterpene perillyl alcohol. Cancer Lett.,1995, 96(1):15-21.
    [25]Crowell PL. Monoterpenes in breast cancer chemoprevention. Breast Cancer Res. Tr.,1997,46(2):191-197.
    [26]Lebedeva IV, Su Z-z, Vozhilla N, Chatman L, Sarkar D, Dent P, Athar M, Fisher PB. Chemoprevention by perillyl alcohol coupled with viral gene therapy reduces pancreatic cancer pathogenesis. Mol. Cancer Ther.,2008,7(7): 2042-2050.
    [27]Ono M, Oishi K, Abe H, Masuoka C, Okawa M, Ikeda T, Nohara T. New iridoid glucosides from the aerial parts of Verbena brasiliensis. Chem. Pharm. Bull., 2006,54(10):1421-1424.
    [28]Kim IH, Uchiyama N, Kawahara N, Goda Y. Iridoid glycosides and cucurbitacin glycoside from Neopicrorhiza scrophulariiflora. Phytochemistry,2006,67(24): 2691-2696.
    [29]Fragoso V, Nascimento NCd, Moura DJ, Silva ACRe, Richter MF, Saffi J, Fett-Neto AG. Antioxidant and antimutagenic properties of the monoterpene indole alkaloid psychollatine and the crude foliar extract of Psychotria umbellata Vell. Toxicol. In. Vitro.,2008,22(3):559-566.
    [30]Bernhardt P, McCoy E, O'Connor SE. Rapid Identification of enzyme variants for reengineered alkaloid biosynthesis in periwinkle. Chem. Biol.,2007,14(8): 888-897.
    [31]McCaskill D, Croteau R. Some caveats for bioengineering terpenoid metabolism in plants. Trends Biotechnol.,1998,16(8):349-355.
    [32]Martin DM, Bohlmann J. Identification of Vitis vinifera (-)-a-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Phytochemistry,2004,65(9): 1223-1229.
    [33]Ahn YJ, Lee SB, Lee HS, Kim GH. Insecticidal and acaricidal activity of carvacrol and (3-thujaplicine derived from Thujopsis dolabrata var. hondai Sawdust. J. Chem. Ecol.,1998,24(1):81-90.
    [34]Choi WS, Park BS, Lee YH, Jang DY, Yoon HY, Lee SE. Fumigant toxicities of essential oils and monoterpenes against Lycoriella mali adults. Crop Prot., 2006,25(4):398-401.
    [35]Prates HT, Santos JP, Waquil JM, Fabris JD, Oliveira AB, Foster JE. Insecticidal activity of monoterpenes against Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst). J. Stored. Prod. Res.,1998,34(4):243-249.
    [36]Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem. Biol.,1998,5(9):R221-R233.
    [37]Lichtenthaler HK. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Phys..1999,50(1):47-65.
    [38]Wright LD, Cresson EL, Skeggs HR, MacRae GDE, Hoffman CH, Wolf DE, Folkers K. Isolation of a new acetate-replacing factor. J. Am. Chem. Soc., 1956,78(20):5273-5275.
    [39]Tavormina PA, Gibbs MH, Huff JW. The utilization of P-hydroxyl-β-methyl-δ-valerolactone in cholesterol biosynthesis. J. Am. Chem. Soc.,1956,78(17):4498-4499.
    [40]Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. P. Natl. Acad. Sci. USA,2005, 102(3):933-938.
    [41]Hampel D, Mosandl A, Wiist M. Biosynthesis of mono-and sesquiterpenes in carrot roots and leaves (Daucus carota L.):metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochemistry,2005,66(3):305-311.
    [42]Bick JA, Lange BM. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis:unidirectional transport of intermediates across the chloroplast envelope membrane. Arch. Biochem. Biophys.,2003, 415(2):146-154.
    [43]Laule O, Furholz A, Chang H-S, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. P. Natl. Acad. Sci. USA,2003,100(11): 6866-6871.
    [44]Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J. Biol. Chem.,2003,278(29):26666-26676.
    [45]Aubourg, Aubourg S, Lecharny, Lecharny A, Bohlmann, Bohlmann J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol. Genet. Genomics.,2002,267(6):730-745.
    [46]Bohlmann J, Meyer-Gauen G, Croteau R. Plant terpenoid synthases:Molecular biology and phylogenetic analysis. P. Natl. Acad. Sci. USA,1998,95(8): 4126-4133.
    [47]McConkey ME, Gershenzon J, Croteau RB. Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol.,2000,122(1):215-224.
    [48]Peters RJ, Croteau RB. Alternative termination chemistries utilized by monoterpene cyclases:chimeric analysis of bornyl diphosphate,1,8-cineole, and sabinene synthases. Arch. Biochem. Biophys.,2003,417(2):203-211.
    [49]Schwab W, Williams DC, Croteau R. Mechanism of monoterpene cyclization: stereochemistry of the transformation of noncyclizable substrate analogs by recombinant (-)-limonene synthase, (+)-bornyl diphosphate synthase, and (-)-pinene synthase. J. Mol. Catal. B-enzym.,2002,19-20(0):415-421.
    [50]Croteau R, Satterwhite DM, Wheeler CJ, Felton NM. Biosynthesis of monoterpenes. Stereochemistry of the enzymatic cyclizations of geranyl pyrophosphate to (+)-alpha-pinene and (-)-beta-pinene. J. Biol. Chem.,1989, 264(4):2075-2080.
    [51]Croteau R, Satterwhite DM, Cane DE, Chang CC. Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of (+)-and (-)-linalyl pyrophosphate to (+)-and (-)-pinene and (+)-and (-)-camphene. J. Biol. Chem.,1988,263(21):10063-10071.
    [52]Whittington DA, Wise ML, Urbansky M, Coates RM, Croteau RB, Christianson DW. Bornyl diphosphate synthase:structure and strategy for carbocation manipulation by a terpenoid cyclase. P. Natl. Acad. Sci. USA,2002,99(24): 15375-15380.
    [53]Hyatt DC, Youn B, Zhao Y, Santhamma B, Coates RM, Croteau RB, Kang C. Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. P. Natl. Acad. Sci. USA,2007,104(13):5360-5365.
    [54]Williams DC, McGarvey DJ, Katahira EJ, Croteau R. Truncation of limonene synthase preprotein provides a fully active 'pseudomature'form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry-us.,1998,37(35):12213-12220.
    [55]Dudareva N, Cseke L, Blanc VM, Pichersky E. Evolution of floral scent in Clarkia:Novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell,1996,8(7):1137-1148.
    [56]Chen F, Tholl D, D'Auria JC, Farooq A, Pichersky E, Gershenzon J. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell,2003, 15(2):481-494.
    [57]Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Faldt J, Miller B, Bohlmann J. (E)-β-Ocimene and mrycene synthase genes of floral scent biosynthesis in snapdragon:function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell,2003,15(5): 1227-1241.
    [58]Hosoi M, Ito M, Yagura T, Adams RP, Honda G. cDNA isolation and functional expression of myrcene synthase from Perilla frutescens. Biol. Pharm. Bull., 2004,27(12):1979-1985.
    [59]Landmann C, Fink B, Festner M, Dregus M, Engel K-H, Schwab W. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch. Biochem. Biophys.,2007,465(2):417-429.
    [60]Hyatt DC, Croteau R. Mutational analysis of a monoterpene synthase reaction: Altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis. Arch. Biochem. Biophys.,2005,439(2):222-233.
    [61]Crowell AL, Williams DC, Davis EM, Wildung MR, Croteau R. Molecular cloning and characterization of a new linalool synthase. Arch. Biochem. Biophys.,2002,405(1):112-121.
    [62]Iijima Y, Davidovich-Rikanati R, Fridman E, Gang DR, Bar E, Lewinsohn E, Pichersky E. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol.,2004,136(3):3724-3736.
    [63]Jia J-W, Crock J, Lu S, Croteau, Chen X-Y. (3R)-Linalool synthase from Artemisia annua L.:cDNA isolation, characterization, and wound induction. Arch. Biochem. Biophys.,1999,372:143-149.
    [64]Aharoni A, Giri AP, Verstappen FWA, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, Bouwmeester HJ. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell,2004,16(11): 3110-3131.
    [65]Nagegowda DA, Gutensohn M, Wilkerson CG, Dudareva N. Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J.,2008,55(2):224-239.
    [66]Trapp SC, Croteau RB. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics,2001,158(2):811-832.
    [67]Cseke L, Dudareva N, Pichersky E. Structure and evolution of linalool synthase. Mol. Biol. Evol.,1998,15(11):1491-1498.
    [68]Colby SM, Alonso WR, Katahira EJ, McGarvey DJ, Croteau R.4S-limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J. Biol. Chem.,1993,268(31):23016-23024.
    [69]Lu S, Xu R, Jia J-W, Pang J, Matsuda SPT, Chen X-Y. Cloning and functional characterization of a β-pinene synthase from Artemisia annua that shows a circadian pattern of expression. Plant Physiol.,2002,130(1):477-486.
    [70]Yang T, Li J, Wang H-X, Zeng Y. A geraniol-synthase gene from Cinnamomum tenuipilum. Phytochemistry,2005,66(3):285-293.
    [71]Turner G, Gershenzon J, Nielson EE, Froehlich JE, Croteau R. Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiol.,1999, 120(3):879-886.
    [72]Shimada T, Endo T, Fujii H, Hara M, Ueda T, Kita M, Omura M. Molecular cloning and functional characterization of four monoterpene synthase genes from Citrus unshiu Marc. Plant Sci.,2004,166(1):49-58.
    [73]Shimada T, Endo T, Fujii H, Omura M. Isolation and characterization of a new d-limonene synthase gene with a different expression pattern in Citrus unshiu Marc. Sci. Hortic-amsterdam,2005,105(4):507-512.
    [74]Shimada T, Endo T, Fujii H, Hara M, Omura M. Isolation and characterization of (E)-beta-ocimene and 1,8 cineole synthases in Citrus unshiu Marc. Plant Sci., 2005,168(4):987-995.
    [75]Chen F, Ro D-K, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol.,2004, 135(4):1956-1966.
    [76]Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel W-J, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell,2003, 15(12):2866-2884.
    [77]Gershenzon J, McConkey ME, Croteau RB. Regulation of Monoterpene Accumulation in Leaves of Peppermint. Plant Physiol.,2000,122(1):205-214.
    [78]Steele CL, Katoh S, Bohlmann J, Croteau R. Regulation of oleoresinosis in grand fir (Abies grandis):differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in response to wounding. Plant Physiol.,1998,116(4):1497-1504.
    [79]Arimura G-i, Ozawa R, Kugimiya S, Takabayashi J, Bohlmann J. Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus. Plant Physiol.,2004,135(4): 1976-1983.
    [80]Penuelas J, Liusia J, Asensio D, Munne-Bosch S. Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant Cell Environ., 2005,28(3):278-286.
    [81]GraBmann J, Terpenoids as plant antioxidants, in:Gerald, L. (Ed.) Vitamins & Hormones, Academic Press,2005, pp.505-535.
    [82]Grote R, Niinemets U. Modeling volatile isoprenoid emissions-a story with split ends. Plant Biology,2008,10(1):8-28.
    [83]Penuelas J, Liusia J. Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol.,2002,155(2):221-231.
    [84]Grote R, Mayrhofer S, Fischbach RJ, Steinbrecher R, Staudt M, Schnitzler JP. Process-based modelling of isoprenoid emissions from evergreen leaves of Quercus ilex (L.). Atmos. Environ.,2006,40(Supplement 1):152-165.
    [85]Kumari R, Agrawal SB, Singh S, Dubey NK. Supplemental ultraviolet-B induced changes in essential oil composition and total phenolics of Acorus calamus L. (sweet flag). Ecotox. Environ. Safe.,2009,72(7):2013-2019.
    [86]Karousou R, Grammatikopoulos G, Lanaras T, Manetas Y, Kokkini S. Effects of enhanced UV-B radiation on Mentha spicata essential oils. Phytochemistry, 1998,49(8):2273-2277.
    [87]Johnson CB, Kirby J, Naxakis G, Pearson S. Substantial UV-B-mediated induction of essential oils in sweet basil (Ocimum basilicum L.). Phytochemistry,1999,51(4):507-510.
    [88]Zavala JA, Ravetta DA. The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia, Argentina. Plant Ecol.,2002,161(2):185-191.
    [89]Yang T, Poovaiah BW. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J. Biol. Chem.,2002, 277(47):45049-45058.
    [90]Meijer HJG, Munnik T. Phospholipid-based signaling in plants. Annu. Rev. Plant Biol.,2003,54(1):265-306.
    [91]Zhao J, Hu Q, Guo Y-Q, Zhu W-H. Elicitor-induced indole alkaloid biosynthesis in Catharanthus roseus cell cultures is related to Ca2+influx and the oxidative burst. Plant Sci.,2001,161(3):423-431.
    [92]Hu X, Neill SJ, Cai W, Tang Z. Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid-induced saponin accumulation in suspension-cultured cells of Panax ginseng. Physiol. Plant.,2003,118:414-421.
    [93]Zhao J, Sakai K. Multiple signalling pathways mediate fungal elicitor-induced β-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. J. Exp. Bot., 2003,54(383):647-656.
    [94]Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D. Elicitor-stimulated ion fluxes and O2-from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. P. Natl. Acad. Sci. USA,1997,94(9):4800-4805.
    [95]Mehdy MC. Active oxygen species in plant defense against pathogens. Plant Physiol.,1994,105(2):467-472.
    [96]Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot.,2002,53(372): 1237-1247.
    [97]Modolo LV, Cunha FQ, Braga MR, Salgado I. Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor. Plant Physiol.,2002,130(3): 1288-1297.
    [98]Xu M, Dong J. Elicitor-induced nitric oxide burst is essential for triggering catharanthine synthesis in Catharanthus roseus suspension cells. Appl. Microbiol. Biot.,2005,67(1):40-44.
    [99]Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol., 2003,131(1):298-308.
    [100]Avancini G, Abreu IN, Saldana MDA, Mohamed RS, Mazzafera P. Induction of pilocarpine formation in jaborandi leaves by salicylic acid and methyljasmonate. Phytochemistry,2003,63(2):171-175.
    [101]Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv.,2005,23(4): 283-333.
    [102]El-Kereamy A, Chervin C, Roustan JP, Cheynier V. Souquet JM, Moutounet M, Raynal J, Ford C, Latche A, Pech JC, Bouzayen M. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol. Plant.,2003,119(2):175-182.
    [103]吴卫.鱼腥草种质资源研究.[博士学位论文].雅安,四川农业大学,2002.
    [104]吴卫,郑有良,杨瑞武,陈黎,魏育明.国产蕺菜的染色体数目变异及核穿壁现象.植物分类学报,2003,41(03):245-257.
    [105]刘雷.峨眉山不同山峪和海拔高度鱼腥草居群挥发油成分及槲皮素含量分析.[硕士学位论文].雅安,四川农业大学,2007.
    [106]陈黎.川产鱼腥草氨基酸的RP-HPLC及挥发油成分的TLC分析.[硕士学位论文].雅安,四川农业大学,2005.
    [107]黄春燕.两种化学型鱼腥草挥发油化学成分动态及光合速率的分析.[硕士士学位论文].雅安,四川农业大学,2006.
    [108]Chen L, Wu W, Huang CY, Yang YX, Zheng YL. Composition and variability of the essential oil of Houttuynia of China. Chem. Nat. Compd.,2008,44(6): 778-783.
    [109]国家药典委员会.中华人民共和国药典.北京,中国医药科技出版社,2010.
    [110]Nuengchamnong N, Krittasilp K, Ingkaninan K. Rapid screening and identification of antioxidants in aqueous extracts of Houttuynia cordata using LC-ESI-MS coupled with DPPH assay. Food Chem.,2009,117(4):750-756.
    [111]Lau KM, Lee KM, Koon CM, Cheung CSF, Lau CP, Ho HM, Lee MYH, Au SWN, Cheng CHK, Lau CBS, Tsui SKW, Wan DCC, Waye MMY, Wong KB, Wong CK, Lam CWK, Leung PC, Fung KP. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol.,2008,118(1): 79-85.
    [112]Frederick JE, Lubin D. Possible long-term changes in biologically active ultraviolet radiation reaching the ground. Photochem. Photobiol.,1988,47(4): 571-578.
    [113]Madronich S, McKenzie RL, Bjorn LO, Caldwell MM. Changes in biologically active ultraviolet radiation reaching the Earth's surface. J. Photoch. Photobio. B-bio.,1998,46(1-3):5-19.
    [114]Jansen MAK, Gaba V, Greenberg BM. Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci.,1998,3(4): 131-135.
    [115]Larkindale J, Knight MR. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol.,2002,128(2):682-695.
    [116]Shiu C-T, Lee T-M. Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata. J. Exp. Bot., 2005,56(421):2851-2865.
    [117]Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol.,2004,55(1):373-399.
    [118]Agrawal SB, Singh S, Agrawal M. Ultraviolet-B induced changes in gene expression and antioxidants in plants. Advances in Botanical Research,2009, 52:47-86.
    [119]Turtola S, Sallas L, Holopainen JK, Julkunen-Tiitto R, Kainulainen P. Long-term exposure to enhanced UV-B radiation has no significant effects on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings. Environ. Pollut.,2006,144(1):166-171.
    [120]Vickers CE, Gershenzon J, Lerdau MT, Loreto F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat. Chem. Biol.,2009,5(5): 283-291.
    [121]Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ. Exp. Bot.,2006,56(1):54-62.
    [122]Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol.,1977,59(3):411-416.
    [123]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.,1976,72(1-2):248-254.
    [124]Beauchamp C, Fridovich I. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels. Anal. Biochem.,1971,44(1):276-287.
    [125]Rout NP, Shaw BP. Salt tolerance in aquatic macrophytes:possible involvement of the antioxidative enzymes. Plant Sci.,2001,160(3):415-423.
    [126]Hassan MJ, Shao G, Zhang G. Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. J. Plant Nutr.,2005,28(7):1259-1270.
    [127]Clevenger JF. Apparatus for the determination of volatile oil. J. Am. Pharmaceut. Assoc,1928,17(4):345-349.
    [128]Munne-Bosch S, Alegre L. The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci.,2002,21(1):31-57.
    [129]Schwab W, Williams DC, Davis EM, Croteau R. Mechanism of monoterpene cyclization:stereochemical aspects of the transformation of noncyclizable substrate analogs by recombinant (-)-limonene synthase, (+)-bornyl diphosphate synthase, and (-)-pinene synthase. Arch. Biochem. Biophys.,2001, 392(1):123-136.
    [130]Zhao J, Matsunaga Y, Fujita K, Sakai K. Signal transduction and metabolic flux of (3-thujaplicin and monoterpene biosynthesis in elicited Cupressus lusitanica cell cultures. Metab. Eng.,2006,8(1):14-29.
    [131]Wu W, Zheng YL, Chen L, Wei YM, Yan ZH. Genetic diversity among the germplasm resources of the genus Houttuynia Thunb in China based on RAMP markers. Genet. Resour. Crop Ev.,2005,52(4):473-482.
    [132]Wu W, Zheng YL, Chen L, Wei YM, Yan ZH, Yang RW. PCR-RFLP analysis of cpDNA and mtDNA in the genus Houttuynia in some areas of China. Hereditas,2005,142(2005):24-32.
    [133]Wu W, Zheng YL, Chen L, Wei YM, Yang RW, Yan ZH. Evaluation of genetic relationships in the genus Houttuynia Thunb. in China based on RAPD and ISSR markers. Biochem. Syst. Ecol.,2005,33(11):1141-1157.
    [134]Fischbach RJ, Zimmer W, Schnitzler J-P. Isolation and functional analysis of a cDNA encoding a myrcene synthase from holm oak (Quercus ilex L.). Eur. J. Biochem.,2001,268(21):5633-5638.
    [135]Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol.,1982,157(1):105-132.
    [136]Garnier J, Osguthorpe D, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol.,1978,120(1):97.
    [137]陈黎.川渝地区鱼腥草资源化学成分研究.[博士学位论文].雅安,四川农业大学,2008.
    [138]Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant.,1962,15(3):473-497.
    [139]龚伟,胡庭兴,宫渊波,张健,王景燕.鱼腥草组织培养研究.亚热带植物科学,2005,34(1):60-62.
    [140]Tsuzuki K, Miyasita S, Kono N, Namiki M. Report on the plant regeneration from the callus made of the leaf segments of Houttuynia cordata Thunb. B. Nippon Vet. Zootech. Coll.,1995,44:65-68.
    [141]Chakraborti S, Sinha S, Sinha R. High-frequency induction of multiple shoots and clonal propagation from rhizomatous nodal segments of Houttuynia cordata Thunb.- An ethnomedicinal herb of India. In Vitro Cell. Dev.-pl., 2006,42(5):394-398.
    [142]吴卫,郑有良,刘凡,谭刚,任鸿宇,张文才.鱼腥草新品系离体培养和快速繁殖.中国中药杂志,2004,29(1):24-27.
    [143]Tang W, Newton RJ. Increase of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill.). Plant Sci.,2004,167(3):621-628.
    [144]Bhagwat B, David Lane W. In vitro shoot regeneration from leaves of sweet cherry (Prunus avium)'Lapins'and'Sweetheart'. Plant Cell Tiss. Org.,2004, 78(2):173-181.
    [145]Hewezi T, Jardinaud F, Alibert G, Kallerhoff J. A new approach for efficient regeneration of a recalcitrant genotype of sunflower (Helianthus annuus) by organogenesis induction on split embryonic axes. Plant Cell Tiss. Org.,2003, 73(1):81-86.
    [146]Kowalski B, Staden Jv. In vitro culture of two threatened South African medicinal trees - Ocotea bullata and Warburgia salutaris. Plant Growth Regul.,2001,34(2):223-228.
    [147]Hutcheson SW, Buchanan BB, Montalbini P. Polyphenol oxidation by Vicia faba chloroplast membranes:studies on the latent membrane-bound polyphenol oxidase and on the mechanism of photochemical polyphenol oxidation. Plant Physiol.,1980,66(6):1150-1154.
    [148]Sommer A, Ne'eman E, Steffens JC, Mayer AM, Harel E. Import, targeting, and processing of a plant polyphenol oxidase. Plant Physiol.,1994,105(4): 1301-1311.
    [149]Husaini A, Abdin M. Interactive effect of light, temperature and TDZ on the regeneration potential of leaf discs of Fragaria x ananassa Duch. In Vitro Cell Dev-pl.,2007,43(6):576-584.
    [150]Bhatia P, Ashwath N, Midmore D. Effects of genotype, explant orientation, and wounding on shoot regeneration in tomato. In Vitro Cell Dev-pl.,2005,41(4): 457-464.
    [151]Santarem E, Pelissier B, Finer J. Effect of explant orientation, pH, solidifying agent and wounding on initiation of soybean somatic embryos. In Vitro Cell Dev-pl.,1997,33(1):13-19.
    [152]Ibrahim R, Debergh PC. Factors controlling high efficiency adventitious bud formation and plant regeneration from in vitro leaf explants of roses (Rosa hybrida L.). Sci. Hortic-amsterdam,2001,88(1):41-57.
    [153]Zeng Y, Yan F, Tang L, Chen F. Increased crocin production and induction frequency of stigma-like-structure from floral organs of Crocus sativus L. by precursor feeding. Plant Cell Tiss. Org.,2003,72(2):185-191.
    [154]Tilkat E, Onay A, YildIrlm H, Ayaz E. Direct plant regeneration from mature leaf explants of pistachio, Pistacia vera L. Sci. Hortic-amsterdam,2009, 121(3):361-365.
    [155]Abdelwahd R, Hakam N, Labhilili M, Udupa SM. Use of an adsorbent and antioxidants to reduce the effects of leached phenolics in in vitro plantlet regeneration of faba bean. Afr. J. BiotechnoL.,2008,7(8):997-1002.
    [156]Gahan PB, George EF, Adventitious regeneration, in:George, E.F., Hall, M.A., De Klerk, G.J. (Eds.) Plant propagation by tissue culture, Exegetics, Basingstoke, UK,2008, pp.355-401.
    [157]Park YG, Son SH. In vitro organogenesis and somatic embryogenesis from punctured leaf of Populus nigra × P. maximowiczii. Plant Cell Tiss. Org.,1988, 15(2):95-105.
    [158]Kuo HL, Chen JT, Chang WC. Efficient plant regeneration through direct somatic embryogenesis from leaf explants of Phalaenopsis'Little Steve'. In Vitro Cell Dev-pl.,2005,41(4):453-456.
    [159]Bhat SR, Chandel KPS. A novel technique to overcome browning in tissue culture. Plant Cell Rep.,1991,10(6):358-361.
    [160]A.-H.-Mackerness S, John CF, Jordan B, Thomas B. Early signaling components in ultraviolet-B responses:distinct roles for different reactive oxygen species and nitric oxide. Febs. Lett.,2001,489(2-3):237-242.
    [161]Corpas F, Barroso J, Carreras A, Valderrama R, Palma J, Leon A, Sandalio L, del Rio L. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta,2006, 224(2):246-254.
    [162]Sarath G, Bethke P, Jones R, Baird L, Hou G, Mitchell R. Nitric oxide accelerates seed germination in warm-season grasses. Planta,2006,223(6): 1154-1164.
    [163]Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR. Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways. P. Natl. Acad. Sci. USA,2003,100(19): 11116-11121.
    [164]Desikan R, Griffiths R, Hancock J, Neill S. A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. P. Natl. Acad. Sci. USA,2002,99(25):16314-16318.
    [165]He J, Xu H, She X, Song X, Zhao W. The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Funct. Plant Biol.,2005,32(3):237-247.
    [166]Neill SJ, Desikan R, Clarke A, Hancock JT. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol.,2002,128(1): 13-16.
    [167]Zheng L-P, Guo Y-T, Wang J-W, Tan R-X. Nitric oxide potentiates oligosaccharide-induced artemisinin production in Artemisia annua hairy roots. J. Integr. Plant Biol.,2008,50(1):49-55.
    [168]Liao W, Xiao H, Zhang M. Role and relationship of nitric oxide and hydrogen peroxide in adventitious root development of marigold. Acta Physiol. Plant, 2009,31(6):1279-1289.
    [169]Pagnussat GC, Lanteri ML, Lamattina L. Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol.,2003,132(3):1241-1248.
    [170]He Y, Tang R-H, Hao Y Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei Z-M. Nitric oxide represses the Arabidopsis floral transition. Science,2004,305(5692): 1968-1971.
    [171]Mishina TE, Lamb C, Zeier J. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell Environ.,2007, 30(1):39-52.
    [172]Leshem YY, Wills RBH, Ku VV-V. Evidence for the function of the free radical gas-nitric oxide (NO-) -- as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol. Bioch.,1998,36(11): 825-833.
    [173]Guo F-Q, Crawford NM. Arabidopsis nitric oxide synthasel is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell,2005,17(12):3436-3450.
    [174]Xu Y, Sun X, Jin J, Zhou H. Protective effect of nitric oxide on light-induced oxidative damage in leaves of tall fescue. J. Plant Physiol.,2010,167(7): 512-518.
    [175]Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J.,2009,60(5): 795-804.
    [176]Tian Q-Y, Sun D-H, Zhao M-G,Zhang W-H. Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol.,2007,174(2):322-331.
    [177]Hao G, Du X, Zhao F, Shi R, Wang J. Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell Tiss. Org.,2009,97(2):175-185.
    [178]Farooq M, Basra SMA, Wahid A, Rehman H. Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). J. Agron. Crop Sci.,2009,195(4):254-261.
    [179]Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plant.,1997,100(2):224-233.
    [180]Mueller MJ, Brodschelm W, Spannagl E, Zenk MH. Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. P. Natl. Acad. Sci. USA,1993,90(16):7490-7494.
    [181]Idrees M, Naeem M, Aftab T, Khan M, Moinuddin. Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiol. Plant,2010,33(3):987-999.
    [182]Pitta-Alvarez SI, Spollansky TC, Giulietti AM. The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme. Microb. Tech.,2000,26(2-4): 252-258.
    [183]Bulgakov VP, Tchernoded GK, Mischenko NP, Khodakovskaya MV, Glazunov VP, Radchenko SV, Zvereva EV, Fedoreyev SA, Zhuravlev YN. Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. J. Biotechnol.,2002,97(3):213-221.
    [184]Shabani L, Ehsanpour A, Asghari G, Emami J. Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl Jasmonate and salicylic acid. Russ. J. Plant Physl+.2009,56(5):621-626.
    [185]Wang Y-D, Wu J-C, Yuan Y-J. Salicylic acid-induced taxol production and isopentenyl pyrophosphate biosynthesis in suspension cultures of Taxus chinensis var. mairei. Cell Biol. Int.,2007,31(10):1179-1183.
    [186]Aftab T, Masroor M, Khan A, Idrees M, Naeem M. Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L. J. Crop Sci. Biotechnol.,2010,13(3):183-188.
    [187]Appert C, Zon J, Amrhein N. Kinetic analysis of the inhibition of phenylalanine ammonia-lyase by 2-aminoindan-2-phosphonic acid and other phenylalanine analogues. Phytochemistry,2003,62(3):415-422.
    [188]Zon J, Amrhein N. Inhibitors of Phenylalanine Ammonia-Lyase: 2-Aminoindan-2-phosphonic Acid and Related Compounds. Liebigs Annalen der Chemie,1992,1992(6):625-628.
    [189]Lin ZF, Zhong SL, Grierson D. Recent advances in ethylene research. J. Exp. Bot.,2009,60(12):3311-3336.
    [190]Jakubowicz M, Galganska H, Nowak W, Sadowski J. Exogenously induced expression of ethylene biosynthesis, ethylene perception, phospholipase D, and Rboh-oxidase genes in broccoli seedlings. J. Exp. Bot.,2010,61(12): 3475-3491.
    [191]Shibli RA, Smith MAL, Kushad M. Headspace ethylene accumulation effects on secondary metabolite production in Vaccinium pahalae cell culture. Plant Growth Regul.,1997,23(3):201-205.
    [192]Herrera A, Rodrigo M, Gil J, Zacarias L, Ethylene stimulates emission of terpenoids and aliphatic esters in citrus fruits, in:Ramina, A., Chang, C., Giovannoni, J., Klee, H.. Perata, P., Woltering, E. (Eds.) Advances in Plant Ethylene Research, Springer Netherlands, Dordrecht.2007, pp.257-259.
    [193]Arimura G-i, Garms S, Maffei M, Bossi S, Schulze B, Leitner M, Mithofer A, Boland W. Herbivore-induced terpenoid emission in Medicago truncatula concerted action of jasmonate, ethylene and calcium signaling. Planta,2008, 227(2):453-464.
    [194]Chen Z, Silva H, Klessig D. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science,1993,262(5141): 1883-1886.
    [195]Dempsey DMA, Klessig DF. Salicylic acid, active oxygen species and systemic acquired resistance in plants. Trends Cell Biol.,1994,4(9):334-338.
    [196]Hayat Q, Hayat S, Irfan M, Ahmad A. Effect of exogenous salicylic acid under changing environment:A review. Environ. Exp. Bot.,2010,68(1):14-25.
    [197]Shulaev V, Leon J, Raskin I. Is salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell,1995,7(10):1691-1701.
    [198]Zhou ZS, Guo K, Elbaz AA, Yang ZM. Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ. Exp. Bot.,2009,65(1):27-34.
    [199]Ahmad P, Nabi G, Ashraf M. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S. Afr. J. Bot.,2011,77(1):36-44.
    [200]Panda S, Patra H. Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiol. Plant,2007,29(6): 567-575.
    [201]Wang H, Feng T, Peng X, Yan M, Tang X. Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotox. Environ. Safe.,2009,72(5):1354-1362.
    [202]Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T. Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci. Hortic-amsterdam,2010,126(3):402-407.
    [203]Chen J. Zhu C, Li L-p, Sun Z-y, Pan X-b. Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. J. Environ. Sci.,2007,19(1):44-49.
    [204]Radwan DEM, Ali Fayez K, Younis Mahmoud S, Hamad A, Lu G. Salicylic acid alleviates growth inhibition and oxidative stress caused by zucchini yellow mosaic virus infection in Cucurbita pepo leaves. Physiol. Mol. Plant P.,2006, 69(4-6):172-181.
    [205]Radwan DEM, Fayez KA, Younis Mahmoud S, Hamad A, Lu G. Physiological and metabolic changes of Cucurbita pepo leaves in response to zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiol. Bioch.,2007,45(6-7):480-489.
    [206]Urbanek Krajnc A, Kristl J, Ivancic A. Application of salicylic acid induces antioxidant defense responses in the phloem of Picea abies and inhibits colonization by Ips typographus. Forest. Ecol. Manag.,2011,261(3):416-426
    [207]Molinari S, Loffredo E. The role of salicylic acid in defense response of tomato to root-knot nematodes. Physiol. Mol. Plant P.,2006,68(1-3):69-78.
    [208]Ananieva EA, Christov KN, Popova LP. Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to Paraquat. J. Plant Physiol.,2004,161(3):319-328.
    [209]Singh B, Usha K. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul.,2003,39(2): 137-141.
    [210]He YL, Liu YL, Cao WX, Huai MF, Xu BG, Huang BR. Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Sci.,2005,45(3):988-995.
    [211]Janda T, Szalai G, Tari Ⅰ, Paldi E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 1999,208(2):175-180.
    [212]Horvath E, Janda T, Szalai G, Paldi E. In vitro salicylic acid inhibition of catalase activity in maize:differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Sci.,2002,163(6):1129-1135.
    [213]Shim I-S, Momose Y, Yamamoto A, Kim D-W, Usui K. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regul.,2003,39(3):285-292.
    [214]Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H. Nitric oxide and salicylic acid signaling in plant defense. P. Natl. Acad. Sci. USA, 2000,97(16):8849-8855.
    [215]Dong J, Wan G, Liang Z. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J. Biotechnol.,2010,148(2-3): 99-104.
    [216]Loreto F, Forster A, Durr M, Csiky O, Seufert G. On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell Environ.,1998,21(1): 101-107.
    [217]Siwko ME, Marrink SJ, de Vries AH, Kozubek A, Schoot Uiterkamp AJM, Mark AE. Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. BBA-biomembranes,2007,1768(2):198-206.
    [218]Vickers CE, Possell M, Cojocariu CI, Velikova VB, Laothawornkitkul J, Ryan A, Mullineaux PM, Hewitt CN. Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ.,2009,32(5):520-531.
    [219]Degenhardt J, Kollner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 2009,70(15-16):1621-1637.
    [220]Xu MJ, Dong JF. Nitric oxide stimulates indole alkaloid production in Catharanthus roseus cell suspension cultures through a protein kinase-dependent signal pathway. Enzyme. Microb. Tech.,2005,37(1):49-53.
    [221]Hu X, Neill SJ, Cai W, Tang Z. Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng. Funct. Plant Biol.,2003,30(8): 901-907.
    [222]Wang JW, Zheng LP, Wu JY, Tan RX. Involvement of nitric oxide in oxidative burst, phenylalanine ammonia-lyase activation and Taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures. Nitric Oxide,2006,15(4):351-358.
    [223]Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol.,2002,129(4):1642-1650.
    [224]Zhao J, Zhu W-H, Hu Q, He X-W. Improved alkaloid production in Catharanthus roseus suspension cell cultures by various chemicals. Biotechnol. Lett.,2000,22(15):1221-1226.
    [225]Yu L-J, Lan W-Z, Qin W-M, Xu H-B. Effects of salicylic acid on fungal elicitor-induced membrane-lipid peroxidation and taxol production in cell suspension cultures of Taxus chinensis. Process. Biochem.,2001,37(5): 477-482.
    [226]Wu J, Wang C, Mei X. Stimulation of taxol production and excretion in Taxus spp cell cultures by rare earth chemical lanthanum. J. Biotechnol.,2001,85(1): 67-73.
    [227]Very AA, Sentenac H. Molecular mechanisms and regulation of K+transport in higher plants. Annu. Rev. Plant Biol.,2003,54(1):575-603.
    [228]Yin X, Vyn TJ. Potassium placement effects on yield and seed composition of no-till soybean seeded in alternate row widths. Agron. J.,2003,95(1): 126-132.
    [229]Yin X, Vyn TJ. Soybean responses to potassium placement and tillage alternatives following no-till. Agron. J.,2002,94(6):1367-1374.
    [230]Pettigrew WT. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant.,2008,133(4):670-681.
    [231]Besford R, Maw G. Effect of potassium nutrition on tomato plant growth and fruit development. Plant Soil,1975,42(2):395-412.
    [232]Drew MC. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium, and potassium on the growth of the seminal root system and the shoot in barley. New Phytol.,1975,75(3):479-490.
    [233]Shin R, Berg RH, Schachtman DP. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol.,2005,46(8):1350-1357.
    [234]Bednarz CW, Oosterhuis DM, Evans RD. Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ. Exp. Bot.,1998,39(2):131-139.
    [235]Kanai S, Ohkura K, Adu-Gyamfi JJ, Mohapatra PK, Nguyen NT, Saneoka H, Fujita K. Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. J. Exp. Bot.,2007,58(11):2917-2928.
    [236]Zhao D, Oosterhuis DM, Bednarz CW. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica.,2001,39(1):103-109.
    [237]Gerardeaux E, Jordan-Meille L, Constantin J, Pellerin S, Dingkuhn M. Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environ. Exp. Bot.,2010,67(3): 451-459.
    [238]Yurtseven E, Kesmez GD, Unlukara A. The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central anatolian tomato species (Lycopersicon esculantum). Agr. Water Manage.,2005,78(1-2):128-135.
    [239]吴卫,郑有良,杨瑞武.鱼腥草氮、磷、钾营养吸收和累积特性初探.中国中药杂志,2001,26:676-678.
    [240]陈远学,吴卫,刘世全.有机肥对鱼腥草产量品质及养分吸收的影响.四川农业大学学报,2001,19:245-248.
    [241]Mullins G, Reeves D, Burmester C, Bryant H. In-row subsoiling and potassium placement effects on root growth and potassium content of cotton. Agron. J., 1994,86:136-136.
    [242]Heckman JR. Kamprath EJ. Potassium accumulation and soybean yield related to potassium fertilizer rate and placement. Commun. Soil Sci. Plan,1995, 26(1):123-143.
    [243]Pettigrew WT, Meredith WR. Dry matter production, nutrient uptake, and growth of cotton as affected by potassium fertilization. J. Plant Nutr.,1997, 20(4):531-548.
    [244]Buah S, Polito TA, Killorn R. No-tillage corn response to placement of fertilizer nitrogen, phosphorus, and potassium. Commun. Soil Sci. Plan,2000,31(19): 3121-3133.
    [245]Vyn TJ, Janovicek KJ. Potassium placement and tillage system effects on corn response following long-term no till. Agron. J.,2001,93(3):487-495.
    [246]Cakmak Ⅰ. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sc,2005,168(4):521-530.
    [247]Hermans C, Hammond JP, White PJ, Verbruggen N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci.,2006,11(12): 610-617.
    [248]Leigh RA, Wyn Jones RG. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol.,1984,97(1):1-13.
    [249]Fischer RA, Hsiao TC. Stomatal opening in isolated epidermal strips of Vicia faba. Ⅱ. Responses to KC1 concentration and the role of potassium absorption. Plant Physiol.,1968,43(12):1953-1958.
    [250]Fischer RA. Stomatal opening:role of potassium uptake by guard cells. Science, 1968,160(3829):784-785.
    [251]Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol.,1982,33(1):317-345.
    [252]Gifford RM, Evans LT. Photosynthesis, carbon partitioning, and yield. Annu. Rev. Plant Physiol.,1981,32(1):485-509.
    [253]Kramer PJ. Carbon dioxide concentration, photosynthesis, and dry matter production. Bioscience.,1981,31(1):29-33.
    [254]Zelitch I. The close relationship between net photosynthesis and crop yield. Bioscience.,1982,32(10):796-802.
    [255]Chartzoulakis K, Psarras G, Vemmos S, Loupassaki M, Bertaki M. Response of two olive cultivars to salt stress and potassium supplement. J. Plant Nutr., 2006,29(11):2063-2078.
    [256]Cakmak I. Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium-and potassium-deficient leaves, but not in phosphorus-deficient leaves. Environ. Exp. Bot.,1994,45(9):1259-1266.
    [257]Shin R, Schachtman DP. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. P. Natl. Acad. Sci. USA,2004,101(23):8827-8832.
    [258]Romero-Puertas MC, Corpas FJ, Rodriguez-Serrano M, Gomez M, del Rio LA, Sandalio LM. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J. Plant Physiol.,2007,164(10):1346-1357.
    [259]Wise RR, Naylor AW. Chilling-enhanced photooxidation:evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol.,1987,83(2):278-282.
    [260]Ort DR, Baker NR. A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr. Opin. Plant Biol,2002,5(3):193-198.
    [261]Lu H, Wu X, Liang Y, Zhang J. Variation in chemical composition and antibacterial activities of essential oils from two species of Houttuynia THUNB. Chem. Pharm. Bull.,2006,54(7):936-940.
    [262]Hayashi K, Kamiya M, Hayashi T. Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta Med.,1995,61(03):237-241.
    [263]Cho EJ, Yokozawa T, Rhyu DY, Kim HY, Shibahara N, Park JC. The inhibitory effects of 12 medicinal plants and their component compounds on lipid peroxidation. Am. J. Chinese. Med.,2003,31(6):907-917.
    [264]Cho EJ, Yokozawa T, Rhyu DY, Kim SC, Shibahara N, Park JC. Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1-diphenyl-2-picrylhydrazyl radical. Phytomedicine,2003,10(6-7): 544-551.
    [265]Tian L, Zhao Y, Guo C, Yang X. A comparative study on the antioxidant activities of an acidic polysaccharide and various solvent extracts derived from herbal Houttuynia cordata. Carbohyd. Polym.,2011,83(2):537-544.
    [266]Yadegarinia D, Gachkar L, Rezaei MB, Taghizadeh M, Astaneh SA, Rasooli I. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry,2006,67(12):1249-1255.
    [267]Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radical. Bio. Med,1999,26(9-10):1231-1237.
    [268]Kamkar A, Javan AJ, Asadi F, Kamalinejad M. The antioxidative effect of Iranian Mentha pulegium extracts and essential oil in sunflower oil. Food Chem. Toxicol.,2010,48(7):1796-1800.
    [269]林必杰.鱼腥草注射液制备工艺改进.中成药研究,1984,(07):7-8.
    [270]戴冰.鱼腥草注射液的研究近况.湖南中医药导报,1994,(01):33-35.
    [271]张婷婷,宋敏,杭太俊,吴毅,金少鸿.鱼腥草药材挥发油及其注射剂中癸酰乙醛的研究考证.药物分析杂志,2008,(09):1422-1428.
    [272]Dorman HJD, Deans SG. Antimicrobial agents from plants:antibacterial activity of plant volatile oils. J. Appl. Microbiol.,2000,88(2):308-316.
    [273]Wojdy(?)o A, Oszmianski J, Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem.,2007,105(3):940-949.
    [274]Moyo M, Ndhlala AR, Finnie JF, Van Staden J. Phenolic composition, antioxidant and acetylcholinesterase inhibitory activities of Sclerocarya birrea and Harpephyllum caffrum (Anacardiaceae) extracts. Food Chem.,2010, 123(1):69-76.
    [275]Kanatt SR, Chander R, Sharma A. Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat. Food Chem.,2007,100(2): 451-458.
    [276]Gulluce M, Sahin F, Sokmen M, Ozer H, Daferera D, Sokmen A, Polissiou M, Adiguzel A, Ozkan H. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem.,2007,103(4):1449-1456.
    [277]Mimica-Dukic N, Bozin B, Sokovic M, Mihajlovic B, Matavulj M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med.,2003,69(05):413,419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700