用户名: 密码: 验证码:
水稻高产优质节水灌溉技术及其生理基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是我国最大的粮食作物,也是农业上第一用水大户。随着人口的增长、城镇和工业的发展以及环境污染的加重,一方面为满足人口的增长需要不断增加粮食产量,另一面在不断增加粮食的同时需要应对水资源的减少。因此,研究水稻高产优质节水灌溉技术,对保障我国粮食安全、提高人们的生活质量和节约水资源,具有十分重要的意义。本研究分析了不同节水灌溉技术对水稻产量和品质的形成特点及其生理机制。主要结果如下:
     1、畦沟灌溉和轻干-湿交替灌溉对水稻产量与品质的影响
     以扬稻6号(籼稻)和扬粳4038(粳稻)为材料,自移栽至成熟设置畦沟灌溉和轻干-湿交替灌溉(土壤水势达到-15kPa再灌水)处理,以常规灌溉为对照,研究不同灌溉方式对产量与品质的形成影响。结果表明,与对照相比,畦沟灌溉和轻干-湿交替灌溉提高了分蘖成穗率和顶部3叶的叶面积比率,增加了叶长、粒叶比、透光率、抽穗至成熟的干物质积累量、抗氧化保护酶活性、叶片光合速率、根系氧化力、根系中吲哚-3-乙酸和玉米素+玉米素核苷含量。畦沟灌溉和轻干-湿交替灌溉的产量较常规灌溉增加了6.16%~11.6%。畦沟灌溉和轻干湿-交替灌溉还显著提高了稻米的糙米率、精米率、整精米率、清蛋白、谷蛋白以及稻米淀粉黏滞谱(RVA)的最高黏度和崩解值,降低了垩白米率、垩白大小、垩白度、醇溶蛋白含量和消减值。两品种结果趋势一致。上述结果表明,畦沟灌溉和轻干-湿交替灌溉可以显著提高产量和改善稻米品质,根系和冠层性能的改善是上述两种灌溉方式增加产量和改善稻米品质的重要原因。
     2、重干-湿交替灌溉对节水抗旱水稻品种产量和品质的影响
     以节水抗旱品种旱优113、旱优3、和旱优8号为材料,以常规高产品种扬辐粳8号为对照品种,在全生育期设置常规灌溉和重干-湿交替灌溉(土壤水势达到-30kPa再灌水)两种方式,分析了在重干-湿交替灌溉条件下节水抗旱品种产量和品质形成的特点。结果表明:与常规灌溉下的产量相比,节水抗旱品种在重干-湿交替灌溉下的产量增减幅度为-3.2%~+3%,两种灌溉方式下的产量差异不显著,而对照品种在重干-湿交替灌溉下的产量较常规灌溉减产21.4%,显著降低。重干-湿交替灌溉显著增加了旱优113的整精米率和崩解值,降低了垩白度和消减值,对旱优3号和旱优8号的加工和外观品质无显著影响,除胶稠度降低外,重干-湿交替灌溉对节水抗旱品种的蒸煮食味品质无显著影响;在重干-湿交替灌溉条件下,灌浆中后期节水抗旱品种叶片光合速率、根干重、根冠比和根系氧化力、根系中细胞分裂素含量及籽粒中蔗糖-淀粉代谢途径关键酶活性均显著高于对照品种。这是节水抗旱品种在重干-湿交替灌溉条件下获得较高产量和较好稻米品质的重要生理基础。
     3、施氮量和灌溉方式相互作用对水稻产量、品质及其氮肥利用效率的影响
     以两优培九(籼稻)和扬粳4038(粳稻)为材料,设置常规灌溉(CI)、轻干-湿交替灌溉(WMD)和重干-湿交替灌溉(WSD)3种灌溉方式及0氮(ON,0kghm-2),中氮(MN,240kghm-2)和高氮(HN,360kghm-2)3种氮水平,研究不同灌溉方式下氮肥对水稻生长发育、产量、品质及氮肥利用率的影响。结果表明:灌溉方式与施氮量存在明显的互作效应。各品种均以WMD+HN处理组合的产量最高,但与WMD+MN处理组合的产量差异不显著;轻干-湿交替灌溉条件下,中氮或高氮显著改善了稻米的加工品质、外观品质和食味性,在重干-湿交替灌溉条件下,中氮处理后,稻米品质变劣,高氮处理后稻米品质与常规灌溉差异不显著。氮肥利用效率均以WMD+MN处理组合最高。在WMD+MN处理组合下,根系氧化力、剑叶光合速率、籽粒中ATP酶活性及根系中IAA, Z+ZR和ABA的含量的增加是其高产优质高效的重要原因。
     4、覆盖旱种对移栽水稻产量与品质的影响
     以超级稻武粳15(粳稻)和两优培九(籼稻)为材料,从移栽至成熟进行覆膜旱种(PM)、覆草旱种(SM)和裸地旱种(NM)处理,以水种(TF)为对照。结果表明,与TF相比,旱种水稻产量都有不同程度的降低,NM、PM和SM的减产率分别为38.7%~46.5%,9.8%~17.4%和1.7%~7.0%,NM和PM的产量与TF有显著差异,SM的产量与TF差异不显著。SM改善了稻米的加工品质、外观品质和蒸煮品质,NM和PM则降低了稻米这些品质;SM还提高了稻米的最高黏度和崩解值,降低了消减值,NM和PM的结果则反。两品种的结果趋势一致。SM提高了灌浆期的根系氧化力、叶片光合速率和籽粒中蔗糖-淀粉代谢途径关键酶活性,NM和PM则降低了上述生理指标值。上述结果说明,覆草旱种不仅能获得较高的产量,而且还可以改善稻米品质。覆膜旱种则降低了产量和品质。在SM条件下,结实期较高的根系氧化力、叶片光合速率和籽粒中蔗糖-淀粉代谢途径关键酶活性是获取较高产量和较好稻米品质的重要生理基础。
     5、覆盖旱种条件下水稻籽粒中脱落酸和乙烯的变化及其与籽粒灌浆的关系
     以粳稻镇稻88和籼稻汕优63为材料,从移栽至成熟设置4个处理:覆膜旱种(PM),覆草旱种(SM)和裸地旱种(NM),以常规灌溉(TF)为对照,结果表明,同TF相比,PM, NM产量分别降低了21.0%~23.1%和50.9%~55.4%,达显著差异,SM产量降低1.4%~1.8%,与对照差异不显著。PM和SM结实率和千粒重的显著降低与籽粒灌浆速率降低密切相关,SM显著增加了灌浆速率。籽粒中ABA浓度在灌浆初期很低,当灌浆速率达到最大时,ABA含量也达到最大值,SM和PM与对照差异不显著,NM显著增加。同ABA相反,籽粒中的乙烯释放速率和ACC含量在灌浆初期很高,然后在活跃灌浆期迅速降低。PM和NM显著增加了乙烯释放速率和ACC含量,SM则显著降低。SM显著增加了ABA/ACC的比值,PM和NM则降低了ABA/ACC值,表明PM和NM条件下乙烯的增加超过了ABA的增加。籽粒ABA含量与籽粒灌浆速率呈渐近线函数关系,乙烯释放速率与籽粒灌浆速率呈衰减的指数函数关系,ABA/ACC比值与灌浆速率则呈直线相关。在灌浆初期对TF或PM稻穗喷施乙烯合成抑制物质氨基-乙氧基乙烯基甘氨酸(AVG)或ABA,显著提高了籽粒中蔗糖-淀粉代谢途径关键酶SuSase、AGPase和可溶性StSase的活性,增加了灌浆速率和粒重;喷施乙烯合成促进物质乙烯利或ABA合成抑制物质氟草酮,结果则相反。表明在覆盖旱种条件下,ABA和乙烯的拮抗作用调控了籽粒灌浆,较高的ABA/ACC提高了灌浆速率。
     6、直播覆草旱种对水稻产量与品质的影响
     水稻品种扬稻6号(籼)和扬粳4038(粳)进行直播,设置覆草(麦秸秆)旱种、无覆盖旱种和无覆盖水种(出苗后保持浅水层)处理,研究了在水稻直播条件下旱种对水稻产量与品质的影响及其生理原因。结果表明,与无覆盖水种(对照)相比,两旱种处理的产量都有不同程度的降低,覆草旱种的减产率分别为1.9%~6.6%,差异不显著,无覆盖旱种减产率为18.0%~27.6%,差异显著。覆盖旱种显著提高了稻米的整精米率、胶稠度、清蛋白和谷蛋白含量,显著降低了垩白米率、垩白度和醇溶蛋白含量,还改善了稻米的食味性。无覆盖旱种直播结果则相反。覆草旱种可以获得较高的产量并可显著改善稻米品质重要生理原因是增加了结实期剑叶中膜质过氧化酶活性、光合速率、根系氧化力以及根系中吲哚-3-乙酸和玉米素+玉米素的含量。无覆盖旱种降低了上述指标值,致产量显著下降、米质变劣。
     7、直播旱种和秸秆还田方式对直播稻产量与品质的影响
     以扬稻6号(籼稻)和扬粳4038(粳稻)为材料进行直播,设置麦秸秆掩埋水种、麦秸秆覆盖旱种,麦秸秆掩埋旱种和常规水种(秸秆不还田,对照)4种处理。结果表明:同常规水种相比,掩埋水种产量增加,增加幅度为10.19%~11.48%,同对照差异显著;掩埋旱种和覆盖旱种产量都有不同程度的降低,降低幅度为2.96%~6.61%,与对照差异不显著。掩埋水种、掩埋旱种和覆盖旱种均改善了稻米的加工品质、外观品质和蒸煮食味品质及RVA最高粘度和崩解值。秸秆还田后籽粒灌浆中后期剑叶光合速率、根系氧化力和籽粒中淀粉分枝酶活性的提高可能是掩埋旱种、掩埋水种和覆盖旱种获得较高产量和品质的重要原因。
     8、直播早种和秸秆还田方式对直播稻温室气体排放的影响
     以扬稻6号(籼稻)和扬粳4038(粳稻)为材料进行直播,设置麦秸秆掩埋水种(SIF)、麦秸秆覆盖旱种(NSM),麦秸秆掩埋旱种(NSI)和常规水种(TF,秸秆不还田,对照)4种处理。利用静态箱-气象色谱法测定稻田温室气体。结果表明:TF和SIF处理的CH4排放通量呈单一的峰值曲线,NSI和NSM变化范围较小,各处理N2O排放通量呈多峰曲线。同TF相比,SIF显著增加了CH4和CO2的平均排放通量,降低了N2O的排放速率,而NSI和NSM显著降低了CH4的平均排放通量,增加了N2O和CO2的排放通量。同TF相比,NSI排放的CH4、N2O和CO2所产生的全球增温潜势(GWP)和单位产量的GWP分别增加45.2%~51.6%,30.0%~38.3%,NSI和NSM的GWP分别降低了17.7%~25.9%,24.2%~30.2%,单位产量的GWP分别降低15.0%~23.6%,18.4%~25.4%。NSI和NSM在维持较高产量的同时,显著降低了CO2、CH4和N2O形成的温室效应。
     以上结果表明,畦沟灌溉和轻干-湿交替灌溉可以提高产量和品质,覆草旱种可以保持较高的产量和品质;在轻干-湿交替灌溉条件下施氮量为240kg hm-2时可以获得高产、优质与氮肥高效利用的效果;叶片光合速率、根系氧化力、根系中吲哚-3-乙酸和玉米素+玉米素核苷含量的增加,籽粒中蔗糖-淀粉关键酶和ATP酶活性增强及ABA与乙烯比值的提高是在畦沟灌溉、轻干-湿交替灌溉和覆草旱种条件下获得高产优质的重要生理基础。
Rice is the foremost stable food crop in China and the greatest water consumer in agriculture. With the population growth, urban and industrial development, and the aggravation in environmental pollution, the increase in total food production is necessary, meanwhile this increase needs to be accomplished under increasing scarcity of water resources. Therefore, it would have great significance to establish the water-saving techniques for high yield and good quality in promoting rice production and ensuring food security. This study investigated the characteristics of grain yield and grain quality of rice under different water-saving irrigation techniques and their physiological mechanism. The main results were as follows:
     1. Effect of furrow irrigation and alternate wetting and moderate drying irrigation on the grain yield and quality of rice
     Furrow irrigation and alternate wetting and drying irrigation have been considered as two new water-saving techniques in rice production. This study aimed to investigate yield performance in terms of quality and quantity under such practices. Two cultivars, Yangdao6(an indica hybrid cultivar) and Yangjing4038(a japonica cultivar) were field-grown and three treatments were imposed from transplanting to maturity:conventional irrigation as control (CI), furrow irrigation (FI) and alternate wetting and moderate drying (WMD, re-watered when soil water potential reached to-15kPa at15-20cm). Compared with CI, both FI and WMD enhanced percentage of productive tillers, area and length of top three leaves, grain-leaf area ratio, light transmission rate, dry matter accumulation from heading to maturity, leaf membrane lipid peroxidation, photosynthetic rate, root activity and contents of indole-3-acetic acid and zeatin+zeatin riboside in roots, and significantly increased yield by9.43%-11.6%and6.16%-9.94%respectively. Both FI and WMD either significantly increased the rates of brown rice, milled rice, head rice and contents of albumin and glutelin proteins, and peak viscosity and breakdown value of rapid visco-analyser (RVA) profiles, and reduced chalky kernels, chalk size, chalkiness and content of prolamin in grain and setback values. The two cultivars showed similar trends in quality and quantity of rice yield. Both FI and WMD could increase grain yield and quality. Improvement in root and canopy performance under FI and WMD contributed to a higher grain yield and better quality of rice.
     2. Effect of alternate wetting and severe drying irrigation on grain yield and quality of drought-resistant rice cultivars
     A field experiment was conducted with a local high-yielding cultivar, Yangfujing8and three drought-resistant cultivars, hanyou113, hanyou3and hanyou8. Two irrigation treatments, conventional irrigation as control (CI) and alternate wetting and severe drying irrigation (WSD) were imposed from transplanting to maturity. Characteristics of the grain yield and quality of water-saving and drought-resistant cultivars under WSD were investigated. Compared with CI, the WSD increased grain yield of drought-resistant cultivars by-3.2%-3%, the difference was not significant between CI and WSD. The grain yield of the local high-yielding cultivar was significantly reduced by21.4%under the WSD. The WSD significantly increased head rice and breakdown, and reduced chalkiness degree and setback of Hanyou113. Apart from Gel consistency, the differences in milling quality and appearance of Hanyou3or Hanyou8were not significant between CI and WSD. Compared with the local high-yielding cultivar, water-saving and drought-resistant cultivars under WSD significantly increased photosynthetic rate of the flag leaf, root dry weight, ratio of root to shoot, root activity, contents of zeatin+zeatin riboside (Z+ZR) in roots and activities of the key enzymes involved in the sucrose-starch metabolic pathway in grains at the mid and late grain filling stage, which would be an important physiological foundation for higher grain yield, better quality and higher water use efficiency of water-saving and drought-resistant cultivars under WSD.
     3. Effect of the interaction between nitrogen rates and irrigation regimes on grain yield, grain quality and nitrogen use efficiency of rice
     With Liangyupeijiu (indica) and Yangjing4038(japonica) as materials, the effect of different nitrogen levels, ON (0kg hm-2), MN (240kg km-2) and HN (360kg hn-2), on growth and development, grain yield, grain quality and fertilizer-N use efficiency under three irrigation regimes, conventional irrigation (CI), alternate wetting and moderate drying (WMD) and alternate wetting and severe drying (WSD) were studied. The results showed that there was a significant interaction between irrigation regimes and nitrogen applications, the yield of WMD+HN combination was the highest, whereas, the difference was not significant between WMD+HN and WMD+MN. At either MN or HN rate, milling quality, appearance quality, and eating quality were significantly higher or better under the WMD regime than under the CI regime. At the MN rate, the WSD regime significantly decreased grain yield quality when compared with the CI regime. At the HN rate, however, grain quality showed no significant difference between the two irrigation regimes. The fertilizer-N use efficiency of WMD+MN was highest among all the combinations. Increases in dry matter weigh in maturity, root activity, photosynthetic rate of the flag leaf, activity of adenosine triphosphate enzyme (ATPsse) in grains and contents of indole-3-acetic acid, zeatin+zeatin riboside, and abscisic acid in roots during grain filling combination contributed to a higher yield better grain quality and a higher efficiency of rice
     4. Effects of non-flooded mulching cultivation on the yield and quality of rice
     Two super rice cultivars, Wujing15(a japonica cultivar) and Liangyoupei9(an indica hybrid cultivar) and four cultivation treatments, traditional flooding as control (TF), non-flooded plastic film mulching (PM), non-flooded wheat straw mulching (SM), and non-flooded no mulching (NM), were imposed from transplanting to maturity. Compared with that under the TF, grain yield showed some reduction under all the non-flooded cultivations, but differed largely among the treatments. The reduction in yield was38.7%-6.5%under the NM,9.8%-17.4%under the PM, and1.7%-7.0%under the SM. The difference in grain yield was significant between the NM and the TF or between the PM and the TF, and was not significant between the SM and the TF. The SM significantly improved milling, appearance, and cooking qualities, whereas the PM or the NM decreased these qualities. SM also significantly increased the peak viscosity and breakdown value, and reduced setback value, and the PM or the NM had the opposite effect. The two cultivars showed similar trends in quality and quantity of rice yield. The SM significantly increased root oxidation activity, leaf photosynthetic rate, and activities of key enzymes in sucrose-to-starch conversion in grains during the grain filling period, whereas the PM and the NM significantly reduced these parameters. The results indicate that the SM could not only maintain a high grain yield, but also improve quality of rice. Increases in leaf photosynthetic rate, root activity, and activities of the key enzymes involved in the sucrose-starch metabolic pathway in grains under the SM contributed to a higher grain yield and better quality of rice.
     5. The relationship of grain filling with abscisic acid and ethylene under non-flooded mulching cultivation
     A field experiment was conducted with two high-yielding rice cultivars, Zhendao88(a japonica cultivar) and Shanyou63(an indica hybrid cultivar), and four cultivation treatments were imposed from transplanting to maturity:non-flooded plastic film mulching (PM), non-flooded wheat straw mulching (SM), non-flooded no mulching (NM) and traditional flooding as control (TF). Compared with that under TF, grain yield was reduced by21.0-23.1%under PM,50.9-55.4%under NM and1.4-1.8%under SM. Both PM and NM significantly reduced the proportion of filled grains and grain weight and were associated with decreased grain filling rates. In SM there was a significant increase in the grain filling rate. The concentration of abscisic acid (ABA) in the grains was very low at the early grain filling stage, reaching a maximum when the grain filling rate was the highest, and showed no significant differences between TF, PM and SM. However, it was significantly higher in NM. In contrast to ABA, the ethylene evolution rate and1-aminocyclopropane-l-carboxylic acid (ACC) concentration in the grains were very high at the start of grain filling and sharply decreased during the active grain filling period. Both PM and NM increased the ethylene evolution rate and ACC concentration, whereas these were reduced in SM. The ratio of ABA to ACC was increased under SM but decreased under PM and NM, indicating that ethylene was more enhanced than ABA when plants were grown under NM and PM, indicating that ethylene was more enhanced than ABA when plants were grown under NM and PM. The concentration of ABA correlated with the grain filling rate as a hyperbolic curve, whereas the ethylene evolution rate correlated with the grain filling rate as an exponential decay equation. The ratio of ABA to ACC significantly correlated with the grain filling rate with a linear relationship. Application of amino-ethoxyvinylglycine (inhibitor of ethylene synthesis by inhibiting ACC synthase) or ABA to panicles under TF and PM at the early grain filling stage significantly increased activities of the key enzymes involved in sucrose to starch conversion in the grains, sucrose synthase, ADP glucose pyrophosphorylase and soluble starch synthase, grain filling rate and grain weight. Application of ethephon (ethylene-releasing agent) or fluridone (inhibitor of ABA synthesis) had the opposite effect. The results suggest that antagonistic interactions between ABA and ethylene may be involved in mediating the effect of non-flooded mulching cultivation on grain filling, and a high ratio of ABA to ethylene enhances grain filling rate.
     6. Effect of non-flooded straw-mulching cultivation on grain yield and quality of direct-seeding rice
     Two rice cultivars currently used in the production, Yangdao6(an indica) and Yangjing4038(a japonica), were field grown using a direct-seeding method, and three treatments, non-flooded wheat-straw-mulching (SM), non-flooded and no mulching (NM), and traditional flooding and on mulching (Control, TF), were imposed from10days after sowing to maturity. Compared with that under TF, grain yield showed some reduction under both SM and NM. The reduction in yield was1.9%-6.6%under SM, and18.0%-27.6%under NM. The difference in grain yield was not significant between SM and TF, and was significant between NM and TF. SM significantly improved head rice, gel consistency, albumin, glutelin and eating quality, and significantly reduced chalky kernels, chalkiness and prolamin content, and NM had the opposite effect. The results indicate that non-flooded wheat-straw-mulching could maintain a high grain yield and improve grain quality of direct-seeding rice. Greater leaf photosynthetic rate, root activity, and content of IAA and Z+ZR under such a practice contributed to a high grain yield and better quality, whereas NM significantly reduced these physiological parameters and grain yield and quality were reversed under NM.
     7. Effect of direct-seeding with non-flooding and wheat residue returning patterns on grain yield and grain quality of rice
     Two rice cultivars, Yangdao6(an indica) and Yangjing4038(ajaponica), were field grown using a direct-seeding method, and four treatments, wheat straw incorporation into soil and traditional flooding (SIF), non-flooding and wheat straw mulching (NSM), non-flooding and wheat straw incorporation into soil (NSI) and traditional flooding (no straw returned, Control, TF), were imposed from10days after sowing to maturity. Compared with TF, SIF increased in yield by10.19%-11.48%, NSI and NSM showed some reduction in yield and the reduction was2.96%-6.61%. The difference in increase was significant between SIF and TF, and was not significant between NSI and NSM or between NSM and TF. SIF, NSI and NSM significantly improved milling quality, appearance quality, cooking and peak viscosity and breakdown of RVA. Increases in photosynthetic rate of the flag leaf, root activity, Q enzyme activity in grains at the mid and late grain filling stage contributed to a higher yield and better quality under SIF, NSI and NSM.
     8. Effect of direct-seeding with non-flooding and wheat residue returning patterns on greenhouse gases emission of rice
     Two rice cultivars currently used in the production, Yangdao6(an indica) and Yangjing4038(a japonica), were field grown using a direct-seeding method, and four treatments, wheat straw incorporation into soil and traditional flooding (SIF), non-flooding and wheat straw mulching (NSM), non-flooding and wheat straw incorporation into soil (NSI) and traditional flooding (no straw returned, Control, TF), were imposed from10days after sowing to maturity to study the effect of direct-seeding with non-flooding and wheat residue returning patterns on CH4, N2O and CO2emissions by using the method of static chamber-gas chromatographic techniques. The result showed that emission flux of CH4and CO2under TF and SIF exhibited a single peak curve, and NSI and NSM did not greatly changed, and emission flux of N2O showed multiple perk curves among all treatments. Compared with TF, SIF significantly increased mean emission flux of CH4and N2O, and decreased emission of N2O, and NSI and NSM significantly decreased the mean emission flux of CH4, and increased emission flux of N2O and CO2. Compared with TF, SIF increased Greenhouse Warm Potential (GWP) of CH4, N2O and CO2and the GWP per unit grain yield was increased by45.2%-51.6%,30.0%-38.3%, respectively. Both NSI and NSM decreased GWP by17.7%-25.9%,24.2%-30.2%, and the GWP per unit grain yield was decreased by15.0%-23.6%,18.4%-25.4%, respectively. The results indicate that both SIF and NSM could maintain a high yield and significantly reduce greenhouse effect of CH4, N20and CO2.
     In summarily, present results indicated that both FI and WMD could increase grain yield and grain quality, and SM could maintain a higher yield and better grain quality. The WMD could achieve a higher yield, better quality and higher nitrogen use efficiency when N rate was at240kg hm-2. Increases in photosynthetic rate, root oxidation activity, content of IAA, Z+ZR in roots, activities of the key enzymes involved in sucrose-to-starch conversion and ATPase in grains, and increases in ratio of ABA/ACC under FI, WMD and SM contributed to the high grain yield and good quality.
引文
[1]Bouman B A M. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agricultural Systems,2007,93:43-60
    [2]Fageria N K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in low land rice. Communication in Soil Science and Plant Analysis,2003,34: 259-270
    [3]Fageria N K. Yield physiology of rice. Journal of Plant Nutrition,2007,30:843-879
    [4]Belder P, Bouman B A M, Cabangon R, Guoan L, Quilang E J P, Li Y, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management,2004,65:193-210
    [5]Bouman B A M, Toung T P. Field water management to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management,2001,49:11-30
    [6]Belder P, Spiertz J H J, Bouman B A M, Lu G, Tuong T P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Research,2005,93:169-185
    [7]Borrell A, Garside A, Fukai S. Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crops Research,1997,52:231-248
    [8]Singandhupe R B, Rajput R K. Response of rice to irrigation schedule and nitrogen in sodic soil. Indian Journal of Agronomy,1987,32:130-133
    [9]Ramasamy S, Berge H F M T, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application. Field Crops Research,1997,51:65-82
    [10]Ockerby S E, Fuka S. The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Research,2001,69:215-226
    [11]Bouman B A M, Peng S, Castaneda A R, Visperas R M. Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management,2005,74:87-105
    [12]Liu X J, Wang J C, Lu S H, Zhang F S, Zeng X Z, Ai Y W, Peng S, Christie P. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems. Field Crops Research,2003,83:297-311
    [13]Tao H, Brueck H, Dittert K, Kreye C, Lin S, Sattelmacher B. Growth and yield formation for rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Research,2006,95:1-12
    [14]高明,车福才,魏朝富,谢德体.垄作免耕稻田水稻根系生长状况的研究.土壤通报,1998,29(5):236-238
    [15]高明,张磊,魏朝富,谢德体.稻田长期垄作免耕对水稻产量及土壤肥力的影响研究.植物营养与肥料学报,2004,10(4):343-348
    [16]王昌全,魏成明,李廷强,孙凤琼.不同免耕方式对作物产量和土壤理化性状的影响.四川农业大学学报,2001,19(2):152-154
    [17]章秀福,王丹英,屈衍艳,李华.垄畦栽培水稻的植株形态与生理特性研究.作物学报,2005,31(6):742-748
    [18]章秀福,王丹英,邵国胜.垄畦栽培水稻的产量、品质效应及其生理生态基础.中国水稻科学,2003,17(4):34-348
    [19]钱永德,李金峰,郑桂萍,吕艳东,郭晓红,孙长艳.垄作栽培对寒地水稻根系生长的影响.中国水稻科学,2005,19(3):238-242
    [20]张龙步,陈温福,杨守仁.水稻理想株型育种的理论和方法再论—叶片质量的品种间差异及其与产量因素的关系.中国水稻科学,1987,1(3):144-154
    [21]潘瑞炽,董愚得.植物生理学.北京:高等教育出版社,1994,pp 318-330
    [22]王长清,刘子焱,田继刚,彭绍炎.垄作栽培对寒地水稻根系生长的影响.湖北农业科学,1998,4:31-34
    [23]崔光辉,卞尚道,梁名隆.水稻垄作稻—菇—鱼立体共生复合群体结构模式的研究.现代化农业,1996,4:7-8
    [24]黄建国,哀玲.垄作对再生稻产量品质的影响.耕作与栽培,1990,3:27-28
    [25]Toung T P, Bouman B A M, Mortimer M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Production Science,2005,8:231-241
    [26]Won J G, Choi J S, Lee S P, Son S H, Chung S O. Water saving by shallow intermittent irrigation and growth of rice. Plant Production Science,2005,8:487-492
    [27]Yang C M, Yang L Z, Yang Y X, Zhu O Y.Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management, 2004,70:67-81
    [28]Kukal S S, Aggarwal G C. Pudding depth and intensity effects in rice-wheat system on a sandy loam soil, Ⅱ Water use and crop performance. Soil Tillage Research,2003,74:37-45
    [29]Bouman B A M, Fen L G, Tuong T P, Lu G, Wang H, Feng Y.Exploring options to grow rice under water-short conditions in northern China using a modelling approach, Ⅱ. Quantifying yield, water balance components, and water productivity. Agricultural Water Management,2007,88:23-33
    [30]Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crope Science,2009,49:2246-2260
    [31]Zhang H, Zhang S F, Yang J C, Wang Z Q, Zhang J H. Postanthesis moderate wetting drying improvement both quality and quantity of rice yield. Agronomy Journal,2008,100:726-724
    [32]邵玺文,阮长春,赵兰坡,胡耀辉,孙长占.分蘖期水分胁迫对水稻生长发育及产量的影响.吉林农业大学学报,2005,27(1):6-10
    [33]杨建昌,朱庆森,王志琴.土壤水分对水稻产量与生理特性的影响.作物学报,1995,21(1)110-114
    [34]Tabbal D F, Bouman B A M, Bhuiyan S I, Sibayan E B, Sattar M A. On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines. Agricultural Water Management.2002,56: 93-112
    [35]Belder P, Bouman B A M, Cabangon R, Guoan L, Quilang E J P, Li Y, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Manage,2004,65:193-210
    [36]石春海,朱军.籼稻稻米蒸煮品质的种子和母体遗传效应的分析.中国水稻科学,1994,8(8):129-134
    [37]莫惠栋.我国稻米品质的改良.中国农业科学,1993,26(4):8-14
    [38]莫惠栋.种子形状及其遗传效应的鉴别.江苏农学院学报,1994,11(2):11-15
    [39]蔡一霞,朱庆森,王志琴,杨建昌,郑雷,钱卫成.结实期土壤水分对稻米品质的影响.作物学报,2002,28(5):601-608
    [40]彭世彰,郝树荣,刘庆,刘勇,徐宁红.节水灌溉水稻高产优质成因分析.灌溉排水,2000,19(3):3-7
    [41]郑桂萍,陈书强,郭晓红,王伯仑.土壤水分对稻米成分及食味品质的影响.沈阳农业大学学报,2004,4(35):332-335
    [42]Gomez K A. Effect of environment on protein and amylase content of rice. In:Proceeding of the workshop on chemical aspects of rice grain quality, IRRI,1979, pp 59-68
    [43]王人民,丁元树.从抽穗到成熟期水稻生态因子的研究.浙江农业大学学报,1989,15(1):14-20
    [44]李国生,张慎凤,王学明,刘立军,杨建昌.结实期土壤水分对水稻产量与品质的影响.中国农学通报,2007,41(12):177-181
    [45]邵玺文,刘红丹,杜震宇,杨晶,孟繁霞,马景勇.不同时期水分处理对水稻生长及产量的影响.水土保持学报,2007,21(1):193-196
    [46]杨长明,杨林章,颜廷梅,欧阳竹.不同养分和水分管理模式对水稻抗倒伏能力的影响.应用生态学报,2004,18(4):646-650
    [47]张荣萍,马均.不同灌水方式对水稻齐穗期功能叶性状的影响.西昌学院学报(自然科学版),2008,22(3):31-34
    [48]邓环,曹凑贵,程建平,蔡明历,汪金平.不同灌溉方式对水稻生物学特性的影响.中国生态农业学报,2008,16(3):602-606
    [49]程建平,曹凑贵,蔡明历,蔡明历,汪金平.不同灌溉方式对水稻生物学特性与水分利用效率的影响.应用生态学报,2006,17(10):1859-1865
    [50]张荣萍,马均,王贺正,李艳,李旭毅.不同灌水方式对水稻生育特性及水分利用率的影响.中国农学通报,2005,21(9):144-150
    [51]徐芬芬,曾晓春,石庆华.间歇灌溉对水稻产量的影响及复水前后剑叶生理特征响应.作物杂志,2009,1:68-72
    [52]刘凯,张耗,张慎凤.结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因.作物学报,2008,34(2):268-276
    [53]陈国林,王人民,王兆骞.不同灌溉方式对水稻产量与生理特性的影响.生态学杂志,1998,17(3):21-27
    [54]Thompson J. Mid-season drainage of rice-is it worth trying on your crop. IREC Farmers'News letter, 2006,173:54-56
    [55]曾翔,李阳生,谢小立,肖国樱,廖江林.不同灌溉模式对杂交水稻生育后期根系生理特性和剑叶光合特性的影响.中国水稻科学,2003,17(4):66-70
    [56]郝树荣,郭相平,王为木,张烈君,王琴,王青梅,刘展鹏.水稻分蘖期水分胁迫及复水对根系生长的影响.干旱地区农业研究,2007,25(1):149-152
    [57]白胜双,周春喜,陈方江.环境对水稻根系影响的研究进展.现代农村科技,2009,(13):44-45
    [58]徐芬芬,曾晓春,石庆华,叶利民.不同灌溉方式对水稻根系生长的影响.干旱地区农业研究,2007,25(1):102-104
    [59]金学泳,商文楠,曹海峰,张俊宝,孙涛.不同灌溉方式对水稻生育及产量的影响.中国农学通报,2005,27(8):125-128
    [60]王秋菊,李明贤,赵宏亮,迟力勇.控水灌溉对水稻根系生长影响的试验研究.中国农学通报,2008,24(8):206-208
    [61]Kawata S, Soejima M. Effect of water management of paddy fields on the formation of superficial roots of rice. The Crop Science Society of Japan,1977,46 (1):24-36
    [62]杨建昌,王志琴,朱庆森,苏宝林.ABA与GA对水稻籽粒灌浆的调控.作物学报,1999,25(3):341-348
    [63]Liang J S, Zhang J H, Cao X Z. Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza sativa) hybrids. Plant Physiology,2001,112:470-477
    [64]Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology,2001,127:315-323
    [65]Jones R J, Schreiber B M N, Mcneil K J, Brenner M L, Foxon G. Cytokinin levels and oxidase activity during maize kernel development. In:Kaminek M, Mok B W S, Zazimalova E, eds. Physiology and Biochemistry of Cytokinins in Plants. The Hague, The Netherlands:SPB Academic Publishing,1992, pp 235-239
    [66]杨建昌,仇明,王志琴,刘立军,朱庆森.水稻发育胚乳中细胞增殖与细胞分裂素含量的关系.作物学报,2004,30(1):11-17
    [67]张慎凤.干湿交替灌溉对水稻生长发育、产量与品质的影响.硕土学位论文,扬州:扬州大学,2009
    [68]Aimi R, Murakami T. Physiological studies on the mechanism of ripening in rice plant.1. Cell-pysiology studies on the starch formation and accumulation in the ripening seed of rice and wheat. Bulletin of Natural Institute of Agricultural Science,1964, D12:1-36
    [69]杨建昌,苏宝林,王志琴,郎有忠,朱庆森.亚种间杂交稻籽粒灌浆特性及其生理的研究.中国农业科学,1998,31(1):7-14
    [70]黄发松,孙宗修,胡培松.食用稻米品质形成研究的现状与展望.中国水稻科学,1998,12(3):172-176
    [71]唐湘如,官春云.作物产量和品质的碳氮及脂肪代谢调控的研究进展.湖南农业大学学报,1997,23(1):93-103
    [72]Khush G S. Innovative approaches for improving the yield and grain quality of rice. Proceedings of the 3rd Asian Crop Science Conference. Taiwan:Taichung,1998, pp 436-450
    [73]杨建昌,彭少兵,顾世梁,Visperas R M,朱庆森.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化.作物学报,2001,27(2):157-164
    [74]潘晓华,李木英,曹黎明,刘水英.水稻发育胚乳中淀粉的积累及淀粉合成的酶活性变化.江西农业大学学报,1999,21(4):456-462
    [75]Nakamura Y, Yuki K, Park S Y. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiology,1989,30:833-839
    [76]刘凯,张耗,张慎凤,王志琴,杨建昌.结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因.作物学报,2008,34(2):268-276
    [77]Preiss J, Ball K, Smith W B, Iglesias A, Kakefuda G, Li L. Starch biosynthesis and its regulation. Biochemical Society of Transactions,1991,19:539-547
    [78]Yoshida S. Physiological analysis of rice yield. In:Fundamentals of rice crop science. International Rice Research Institute, Makita City, Philippines,1981, pp 231-251
    [79]Nakamura Y, Umenoto T, Takahata Y, Komae K, Amino E, Satoh H. Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm. Possible role of starch debranching enzyme (R-enzyme) in amylopectin biosynthesis. Physiologia Plantarum,1996,97: 491-498
    [80]彭佶松,郑志仁,刘涤,胡之璧.淀粉的生物合成及其关键酶.植物生理学通讯,1997,33(4):297-303
    [81]钟连进,程方民.水稻籽粒灌浆过程直链淀粉的积累及其相关酶的品种类型间差异.作物学报,2003,29(29):452-456
    [82]蔡一霞,王维,张祖建,朱庆森,杨建昌.结实期水分亏缺对反义Wx基因转化系水稻籽粒淀粉合成关键酶活性及淀粉累积的影响.作物学报,2006,32(3):330-338
    [83]王维,蔡一霞,杨建昌,朱庆森.结实期土壤水分亏缺影响水稻籽粒灌浆的生理原因.植物生态学报,2011,35(2):195-202
    [84]杨建昌,袁莉民,唐成,王志琴,刘立军,朱庆森.结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响.作物学报,2005,31(8):1052-1057
    [85]Lahiri A N. Interaction of water stress and mineral nutrition on growth and yield. In:Turner NC ed., Adaption of Plant to Water and High Temperature Stress. New York:Wiley-Inter science.1980, pp 38-136
    [86]Arnon I. Physiological principles of dryland crop production, In:Gupta, ed. Physiological Aspects of Dryland Farming. Oxford and IBH Publishing company,1975, pp 1-124
    [87]Begg J E, Turner N C. Crop and water deficits. Advances Agronmy,1976,28:161-218
    [88]Bhan S, Misra D K. Effects of variety spacing and soil fertility on root development in groundnut under arid conditions. Indian Joural of Agricultural Science.1970,1050-1055
    [89]杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研 究.中国农业科学,1996,29(4):58-66
    [90]陈新红.土壤水分与氮素对水稻产量和品质的影响及其生理机制.博士论文,扬州:扬州大学,2004
    [91]王维.适度土壤干旱对稻麦碳氮营养运转的调节作用及其机理.博士论文,扬州:扬州大学,2003
    [92]杨泽敏,王维金,蔡明历,陈国兴,卢碧林,朱永桂.氮肥施用期及施用量对稻米品质的影响.华中农业大学学报,2002,21(5):429-434
    [93]郑家国,任光俊,陆贤军,姜心禄.花后水分亏缺对水稻产量和品质的影响.中国水稻科学,2003,17(3):239-243
    [94]王之杰,王纪华,黄文江,马智红,赵明.冬小麦冠层不同叶层和茎鞘氮素与籽粒品质.中国农业科学,2003,36(12):1462-1468
    [95]金军,徐大勇,蔡一霞,胡署云,葛敏,朱庆森.施氮量对水稻主要米质性状及RVA谱特征参数的影响.作物学报,2004,30(2):154-158
    [96]朱晓彦,苏祖芳.穗肥不同施用期对水稻产量和米质的影响.中国农学通报,2006,22(8):308-312
    [97]程建峰,戴廷波,曹卫星,姜东.氮素对不同生态型稻种资源苗期氮素利用效率差异性的影响.科技导报,2006,24(4):12-14
    [98]李国生.氮素和结实期土壤水分对稻米品质的影响.硕士论文,扬州:扬州大学,2007
    [99]李生秀,赵伯善.早地土壤的合理施肥.干旱地区农业研究,1993,11(3):13-18
    [100]介晓磊,韩燕来,谭金芳,彭华,高文红,张化平,王立河,王喜枝.不同肥力麦田水氮交互效应与耦合模式研究.作物学报,1998,24(11):963-970
    [101]王小彬,高绪科,蔡典雄.旱地农田水肥相互作用的研究.干旱地区农业研究,1993,11(3):6-12
    [102]苗果园,尹钧,高志强,卢布,Adams W A.旱地小麦降水年型与氮素供应对产量的互作效应与土壤水分动态的研究.作物学报,1997,23(3):263-270
    [103]戴庆林,杨文耀.阴山丘陵旱农区水肥效应与藕合模式的研究.干旱地区农业研究,1995,13(1):20-24
    [104]王凤仙,李韵珠.土壤水氮资源的利用与管理Ⅱ.土壤水氮资源的利用、损失和周年利用效率模拟.植物营养与肥料学报,1999,5(4):297-306
    [105]王绍华,曹卫星,丁艳锋,田永超,姜东.水氮互作对水稻氮吸收与利用的影响.中国农业科学,2004,37(4):497-501
    [106]孙永健,孙园园,刘树金,杨志远,程洪彪,贾现文,马均.水分管理和氮肥运筹对水稻养分吸收、转运及分配的影响.作物学报,2011,37(12):2221-2232
    [107]陆景陵.植物营养学.北京:中国农业大学出版社,2003,pp 23-25
    [108]Lam H M, Coschigano K T, Oliveira I C. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review Plant Physiology and Plant Mollecular Biology,1996,47: 569-593
    [109]莫良玉,吴良欢,陶勤南.高等植物GS/GOGAT循环研究进展.植物营养与肥料学报,2001,7(2):223-231
    [110]Chen S H, Kao C H. The role of proteolytic enzymes in protein degradation during senescence of rice leaves. Physiologia Plantarum,1984,62:231-237
    [111]林振武,汤玉玮.水稻硝酸还原酶活力的调节.中国水稻科学,1989,4:379-385
    [112]洪剑明,柴小清,曾晓光,张承谦,李丹,印莉萍,黄勤妮,储望瑞,赵微平.小麦硝酸还原酶活性与营养诊断和品种选育研究.作物学报,1996,22(5):633-637
    [113]孟战赢,林同保,王育红.水肥效应对夏玉米产量及氮代谢相关指标的影响.玉米科学,2009,17(5):100-103
    [114]曹慧,王孝威,邹岩梅,束怀瑞.外源NO对水分胁迫下平邑甜茶幼苗中几种氮代谢酶的影响.园艺学报,2009,36(6):781-786
    [115]胡健,杨连新,周娟,王余龙,朱建国.开放式空气CO2浓度增高和施氮量对水稻结实期叶片内肽酶活力的影响.中国水稻科学,2008,22(2):155-160
    [116]孙永健,孙园园,李旭毅,郭翔,马均.水氮互作下水稻氮代谢关键酶活性与氮素利用的关系.作物学报,2009,35(11):2055-2063
    [117]黄明丽,邓西平,白登忠.N、P营养对旱地小麦生理过程和产量形成的补偿效应研究进展.麦类作物学报,2002,22(4):74-78
    [118]张岁歧,山仑,薛青武.氮磷营养对小麦水分关系的影响.植物营养与肥料学报,2000,6(2):147-151
    [119]卢从明,张其德,匡廷云,王忠,高煜珠.水分胁迫抑制水稻光合作用的机理.作物学报,1994,20(5):601-606
    [120]Kaiser W M. Effects of water deficit on photosynthetic capacity. Physiologia Plantarum,1978,71(1): 143-149
    [121]Morgan J A. Interaction of water supply and nitrogen in wheat. Plant Physiology,1984,76:112-117
    [122]卢从明,张其德,匡廷云.水分胁迫抑下氮素营养对水稻光合作用及水分利用效率的影响.中国科学院研究生学报,1993,10(2):197-202
    [123]杨守仁.论水稻的半水生性,水稻专题讨论文集.北京:农业出版社,1989,pp 1-12
    [124]李广敏,关军锋.小麦根冠关系的基因型差异及其与产量的关系.华北农学报,2001,16(4):20-22
    [125]陶汉之,黄文江,张玉屏,胡焱,黄义德,方一平,蔡永萍.水稻对旱作环境的响应和适应性研究.干旱地区农业研究,2002,20(2):42-48
    [126]王志琴,杨建昌,丁志家,王维,朱庆森.旱育秧水稻不同生育期灌溉指标的研究.江苏农业研究,1999,20(3):33-36
    [127]梁森,韩莉.水稻旱作节水高产技术的可行性及季节性干旱的综合防治措施.江苏农业科学,2001,(6):7-10
    [128]陈进红.水稻不同时期干旱的产量损失指标研究.浙江农业学报,1998,10(2):101-103
    [129]杨建刚,袁增玉,李淑华,陈力.旱作水稻生理特性及合理灌溉的研究初报.黑龙江农业科学,1988,2:11-14
    [130]巫伯舜.水稻的旱种技术.北京:农业出版社,1985,pp 12-20
    [131]樊小林,石卫国,曹新华,郭立彬,沈磊,李玲.根系提水作用的土壤水分变异及养分有效性,谷子根系提水作用及根系吸收对土壤水分变异的影响.水土保持学报,1995,9(4):36-42
    [132]许旭旦,诸涵素.植物根部的水分倒流现象.植物生理学通讯,1995,31(4):241-245
    [133]张让康,刘本坤.旱种水稻生产概况及栽培技术.湖南农业科学,1988,2:30-32
    [134]张让康,刘本坤.旱种水稻不同类型产量及其性状的相关分析.湖南农学院学报,1989,15(2):7-11
    [135]梁永超,胡锋,杨茂才,朱遐亮,王广平,王永乐.水稻覆膜旱作高产节水机理研究.中国农业科学,1999,32(1):26-32
    [136]吴文革,陈周前,沈绪波.水稻旱作栽培技术及其节本效益探讨.安徽农业科学,1998,1:8-9,24
    [137]董全才,易杰忠.水稻覆膜旱种的生育特性与高产栽培技术.中国农学通报,1999,4:17-20
    [138]张亚洁,陈海继,刁少华,林强森,杨建昌.种植方式对陆稻(中旱3号)和水稻(武香粳99-8生长特性和产量形成的影响.江苏农业学报,2006,22(3):205-211
    [139]艾应伟,刘学军,张福锁,毛达如,曾祥忠,吕世华,潘家荣.旱作与覆盖方式对水稻吸收利用氮的影响.土壤学报,2004,43(4):152-155
    [140]赵步洪,张洪熙,陈新红,杨建昌,朱庆森,夏光宏,刘晓斌.不同旱种方式水稻的生长发育与产量形成特性.江苏农业学报,2003,19(4):211-217
    [141]石英,沈其荣,茆泽圣,李伟.旱作条件下水稻的生物效应及表层覆盖的影响.植物营养与肥料学报,2001,7(4):271-277
    [142]李宏,樊小林,周少川.覆草旱作和常规水作对水稻品种产量及构成因素的影响.仲恺农业技术学院学报,2006,9(3):17-21
    [143]秦江涛,胡锋,李辉信,王一平,黄发泉,黄花香.覆草旱作对水稻主要农艺性状的影响及节水效应.中国水稻科学,2006,20(2):171-176
    [144]盛海君,周春霖,沈其荣,徐阳春,封克.秸秆覆盖下旱作水稻的生长发育特征研究.中国水稻科学,2004,18(1):53-58
    [145]盛海君,沈其荣,封克.覆盖旱作水稻群体发育特征分析.应用生态学报,2004,15(1):59-62
    [146]董明辉,唐成.不同栽培环境对稻米品质的影响.耕作与栽培,2005,3:20-22
    [147]孟亚利,高如嵩,张嵩午.影响稻米品质的主要气候生态因子研究.西北农业大学学报,199422(1):4043
    [148]吴永常,张蒿武,程方明.齐穗30天温度对稻米品质形成的影响.西北农大学报,1996,24(5):21-24
    [149]徐国伟,王朋,唐成,王志琴,刘立军,杨建昌.旱种方式对水稻产量与品质的影响.作物学报, 2006,32(1):112-117
    [150]张亚洁,许德美,孙斌,刁广华,林强森,杨建吕.种植方式对陆稻和水稻籽粒灌浆及垩白的影响.中国农业科学,2006,39(2):257-264
    [151]杨建昌,王志琴,陈义芳,蔡一霞,刘立军,朱庆森.旱种水稻产量与米质的初步研究.江苏农业研究,2000,21(3):1-5
    [152]盛海君,沈其荣,周春霖.早作水稻产量和品质的研究.南京农业大学学报,2003,26(4)13-16
    [153]武立权,黄义德,王荣贵,黄正来.旱作水稻品质性状分析.徽农业大学学报,2006,33(4):542-546
    [154]王平荣,邓晓建,高晓玲,陈静,万佳,姜华,徐正君.干旱对稻米品质的影响研究.中国农学通报,2004,20(6):13-16
    [155]周毓珩,张燕之,常锐,韩春莲,黄仁洙.水稻品种在旱作时主要经济性状变化规律研究.辽宁农业科学,1986,1:10-13
    [156]余叔文,陈景治,刘存德.水、陆稻的比较研究Ⅰ.水稻老来青和陆稻南通早的水分关系及抗旱的比较.植物学报,1958,7(4):187-199
    [157]黄义德,张自立,魏凤珍,李金才.水稻覆膜早作的生态生理效应.应用生态学报,1999,10(3):305-308
    [158]荣维国,王杨.水稻不同旱作条件下生长发育特性研究.安徽农学通报,2004,10(3):21,38
    [159]蔡永萍,杨其光,黄义德.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响.中国水稻科学,2000,14(4):219-224
    [160]杨建昌,徐国伟,王志琴,陈新红,朱庆森.旱种水稻结实期茎中碳同化物的运转及其生理机制.作物学报,2004,30(2):108-114
    [161]王福荣,何绍桓,于万利.旱作水稻生理特性与栽培技术研究.吉林农业大学学报,1982,(2):1-10
    [162]张玉屏,黄义德,李金才,黄文江,黄文国.旱作条件对水稻根系生长发育和产量的影响.安徽农业科学,2000,28(5):605-606,637
    [163]王熹,陶龙兴,黄效林,闵绍凯,程式华.灌溉稻田水稻旱作法研究—水稻的生育与生理特性.中国农业科学,2004,37(9):1274-1281
    [164]杨建昌,王国忠,王志琴,刘立军,朱庆森.旱种水稻灌浆特性与灌浆期籽粒中激素含量的变化.作物学报,2002,28(5):615-621
    [165]杨建昌,朱庆森,王志琴.土壤水分对水稻产量与生理特性的影响.作物学报,1995,(1):110-114
    [166]程旺大,赵国平,张国平,姚海根.水稻和陆稻籽粒灌浆特性的比较.中国水稻科学,2002,16(4):335-340
    [167]Cayler K R, Classiou K T. Plant enzyme synthesis:Hormonal regulation of invertase and peroxidase synthesis in sugar cane. Planta,1969,84:185-194
    [168]Brenner M L, Cheikh N. The role of hormones in.photosynthate partitioning and seed filling. In:P J Davies, ed. Plant Hormones, The Netherlands:Kluwer Academic Publishers,1995, pp 649-670
    [169]Jones R J, Brenner M L. Distribution of abscisic acid in maize kernel during grain filing. Plant Physiology,1987,83:905-909
    [170]杨建昌,刘立军,王志琴,郎有忠,朱庆森.稻穗颖花开花时间对胚乳发育的影响及其生理机制.中国农业科学,1999,32(3):44-51
    [171]张亚洁,周然,孙斌,林强森,杨建昌.种植方式对陆稻中旱3号和水稻武香粳99-8米质的影响.作物学报,2007,33(1):31-37
    [172]Yang S S, Liu C M, Lai C M, Liu Y L. Estimation of methane and nitrous oxide emission from paddy fields and up lands during 1990-2000 in Taiwan. Chemosphere,2003,52:1295-1305
    [173]Wang M X, Shangguan X J, Shen R X, Reiner W, Wolfgang S. Methane production, emission and possible control measures in the rice agriculture. Advances in Atmospheric Sciences,1993,10(30): 307-314
    [174]陶战,杜道灯,周毅,买光照,刘萧威.不同农作措施对稻田甲烷排放通量的影响.农业环境保护,1995,14(3):101-104
    [175]上官行健,王明星.稻田CH4排放的控制措施.地球科学进展,1993,8(5):55-62
    [176]张稳,黄耀,郑循华,于文强.稻田甲烷排放模型研究—模型灵敏度分析.生态学报,2006,26(5):1359-1366
    [177]陈宗良,邵可声,李德波.控制稻田甲烷排放的农业管理措施研究.环境科学研究,1994,7(1):1-10
    [178]吴海宝,叶兆杰.我国稻田甲烷排放量初步估算.中国环境科学,1993,13(1):76-80
    [179]Xu H, Xing G, Cai Z C, Tsuruta H. Nitrous oxide emissions from three rice paddy fields in China. Nutrient Cycling in Agroecosy'stems,1997,49:23-28
    [180]邵美红,孙加焱,阮关海.稻田温室气体排放与减排研究综述.浙江农业学报,2011,23(1):181-187
    [1]Bouman B A M. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agricultural Systems,2007,93:43-60
    [2]刘立军,薛亚光,孙小淋,王志琴,杨建昌.水分管理方式对水稻产量和氮肥利用率的影响.中国水稻科学,2009,23(3):282-288
    [3]王志琴,杨建昌,丁志家,王维,朱庆森.旱育秧水稻不同生育期灌溉指标的研究.江苏农业研究, 1999,20(3):33-36
    [4]朱安繁,曾晓春,石庆华,姚锋先.间歇灌溉对水稻抗旱性的影响及其生理机制.灌溉排水学报,2007,26(1):63-65
    [5]张祖莲,薛继亮.水稻间歇灌溉试验研究.节水灌溉,2001,6:23-24
    [6]刘凯,张耗,张慎凤,王志琴,杨建昌.结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因.作物学报,2008,34(2):268-276
    [7]杨建昌,王志琴,刘立军,郎有忠,朱庆森.旱种水稻生育特性与产量形成的研究.作物学报,2002,28(1):11-17
    [8]钱永德,李金峰,郑桂萍,吕艳东,郭晓红,孙长艳.垄作栽培对寒地水稻根系生长的影响.中国水稻科学,2005,19(3):238-242
    [9]章秀福,王丹英,邵国胜.垄畦栽培水稻的产量、品质效应及其生理生态基础.中国水稻科学,2003,17(4):343-348
    [10]凌启鸿.作物群体质量.上海:上海科学技术出版社,2000,pp 42-209
    [11]陈惠哲,朱德峰,饶龙兵,林贤青,张玉屏.强化栽培对水稻后期群体质量及产量形成的影响.华中农业大学学报,2006,25(5):483-487
    [12]王绍华,曹卫星,姜东,戴廷波,朱艳.水稻强化栽培对植株生理与群体发育的影响.中国水稻科学,2003,17(1):31-36
    [13]金军,薛艳凤,于林惠,李伟,徐丹,羌勋.水稻不同种植方式群体质量差异比较.中国稻米,2006,6:31-33
    [14]龙旭,汪仁全,孙永健,马均.不同施氮量下三角形强化栽培水稻群体发育与产量形成特征.中国水稻科学,2010,24(2):162-168
    [15]Yang J C, Zhang J H. Crop management techniques to enhance harvest index in rice. Joural of Expermental Botany,2010,61 (12):3177-3189
    [16]Mishra H S, Rathore T R, Pant R C. Effect of intermittent irrigation on groundwater table contribution, irrigation requirement and yield of rice in Mullions of Tarai region. Agricultural Water Management, 1990,18:231-241
    [17]Tabbal D F, Bouman B A M, Bhuiyan S I, Sibayan E B, Sattar M A. On-farm strategies for reducing water input in irrigated rice:case studies in the Philippines. Agricultural Water Management,2002,56:93-112
    [18]王成瑷,王伯伦,张文香,赵磊,赵秀哲,高连文.土壤水分胁迫对水稻产量和品质的影响.作物学报,2006,32(1):131-137
    [19]Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Science, 1995,35:827-831
    [20]Yang J C, Zhang J H, Liu L J, Wang Z Q, Zhu Q S. Carbon remobilization and grain filling in japonicalindica hybrid rice subjected to postanthesis water deficits. Agronomy Journal,2002,94: 102-109
    [21]Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Research,2003,81:69-81
    [22]王怡红.南方水稻垄作栽培高产形成的的初步研究.硕士论文,扬州:扬州大学,2008
    [23]Yang J C, Liu K, Wang Z Q, Zhu Q S. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. Journal of Integrative Plant Biology,2007,49: 1445-1454
    [24]王学奎.植物生理生化试验原理和技术.北京:高等教育出版社,2006,pp 167-170
    [25]Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology,1980,31:491-543
    [26]赵世杰,许长成,邹琦,孟庆伟.植物组织中丙二醛测定方法的改进.植物生理学通讯,1994,30(3):207-210
    [27]章骏德,刘国屏,施永宁.植物生理实验法.南昌:江西人民出版社,1982,pp 26-29
    [28]何钟佩.农作物化学控制实验指导.北京:北京农业大学出版社,1991,pp 60-65
    [29]Bollmark M, Kubat B, Eliasson L. Variations in endogenous cytokinin content during adventitious root formation in pea cuttings. Journal of Plant Physiology,1988,132:262-265
    [30]国家质量技术监督局.中华人民共和国国家标准.优质稻谷.GB/T17891-1999,1999
    [31]中华人民共和国农业部.优质食用稻米.NY147-88,1988
    [32]陈毓荃.生物化学研究技术.北京:中国农业出版社,1995,pp 196-197
    [33]Han Y P, Xu M, Liu X, Yan C J, Korban S S, Chen X L, Gu M H. Genes coding for starch branching enzymes are major contributors to starch viscosity characteristics in waxy rice (Oryza sativa L.). Plant Science,2004,166:357-364
    [34]杨建昌,彭少兵,顾世梁,Visperas R M,朱庆森.水稻结实期籽粒和根系中玉米素与玉米素核苷含量的变化及其与籽粒充实的关系.作物学报,2001,27(1):35-42
    [35]朱庆森,邱泽森,姜长鉴,杨建昌,金兆森,刘建国.水稻各生育期不同土壤水势对产量的影响.中国农业科学,1994,27(6):15-22
    [36]杨建昌,袁莉民,唐成,王志琴,刘立军,朱庆森.结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响.作物学报,2005,31(8):1052-1057
    [37]Lu J, Ookawa T, Hirasawa T. The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice. Plant and Soil,2000,223:207-216
    [38]Huang B R, Liu X Z, Xu Q Z. Supraoptimal soil temperatures induced oxidative stress in leaves of creeping bentgrass cultivars differing in heat tolerance. Crop Science,2001,41:430-435
    [39]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响.生态学报,2002,22(4):503-507
    [40]万安良,钟永模.水稻品种叶面积与穗重关系的研究.中国农业科学,1981,14(6):21-28
    [41]杨建昌,朱庆森,曹显祖.水稻群体冠层结构与光合特性对产量形成作用的研究.中国农业科学, 1992,25(4):7-14
    [42]马均,朱庆森,马文波,田彦华,杨建昌,周开达.重穗型水稻光合作用、物质积累与运转的研究.中国农业科学,2003,36(4):375-381
    [43]苏祖芳,张娟,王辉斌,杜永林,张亚洁.水稻群体茎蘖动态与成穗率和产量形成关系的研究.江苏农学院学报,1997,18(1):36-41
    [44]Harada J, Kang S, Morita S, Yamazaki k. Root growth and distribution in some japonica-indica hybrid and japonica type rice cultivars under field conditions. Japanese Joural of Crop Science,1994,63: 118-124
    [45]Kang S, Morita S, Yamazaki K. Root growth and distribution in some japonica-indica hybrid and japonica type rice cultivars under field conditions. Japanese Joural of Crop Science,1994,63:118-124
    [46]黄升谋,邹应斌.库源关系对杂交水稻根系及叶片衰老的影响.湖南农业大学学报.自然科学版,2002,28(3):192-194
    [47]蔡永萍,杨其光,黄义德.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响.中国水稻科学,2000,14(4):219-224
    [48]Stoop W A, Uphoff N, Kassam A. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar:opportunities for improving farming system for resource-poor farmers. Agricultural Systems,2002,71:249-274
    [49]Kende H, Zeevaart J A D. The five "classical" plant hormones. Plant Cell,1997,9:1197-1210
    [50]段俊,田长恩,梁承邺,黄毓文,刘鸿先.水稻结实过程中穗不同部位谷粒中内源激素的动态变化.植物学报,1999,41(1):75-79
    [51]Davies P J. Introduction in:Davies P J (ed). Plant Hormones, Biosynthesis, Signal Transduction, Action! The Netherlands:Kluwer Academic Publishers,2004, pp 1-35
    [52]Lur H, Setter T L. Role of auxin in maize endosperm development:Timing of nuclear DNA endoreduplication. Zein expression and cytokinins. Plant Physiology,1993,103:273-280
    [53]杨建昌,仇明,王志琴,刘立军,朱庆森.水稻发育胚乳中细胞增殖与细胞分裂素含量的关系.作物学报,2004,30:(1):11-17
    [54]Yang J C, Zhang J H, Wang Z Q, Zhu Q S. Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regulation,2003,41:185-195
    [55]Yang J C, Zhang J H, Huang Z L, Wang Z Q, Zhu Q S, Liu L J. Correlation of cytokinin levels in the endosperm and roots with cell number and cell division activity during endosperm development in rice. Annals of Botany,2002,90:369-37
    [I]Lafitte H R, Ismail A, Bennett J. Abiotic stress tolerance in rice for Asia:Progress and the future// Proceedings of the 4th International Crop Science Congress. September,2004, Brisbane, Australia. Gosford:The Regional Institute Ltd,2004
    [2]王辉,郭玉华,张燕之,刘洋,董俊.早稻与水稻主要品质性状的比较研究.辽宁农业科学,2004,1:5-7
    [3]杨建昌,朱庆森,王志琴.土壤水分对水稻产量与生理特性的影响.作物学报,1995,21(1)110-114
    [4]杨建昌,王志琴,朱庆森.水稻品种的抗旱性及其生理特性的研究.中国农业科学,1995,28(5):65-72
    [5]张燕之,周毓琦,邹吉承,金奎文,王素兰,曹炳晨,刘宛.水稻抗旱性鉴定方法与指标研究Ⅰ.生理生化方法鉴定稻的抗旱性与水分胁迫下产量关系.辽宁农业科学,1996,1:10-13
    [6]王贺正,徐国伟,马均.水稻抗旱性鉴定方法及鉴定指标的研究进展.中国种业,2009,3:6-18
    [7]王贺正,马均,李旭毅,李艳,张荣萍,汪仁全.水稻开花期一些生理生化特性与品种抗旱性的关系.中国农业科学,2007,40(2):399404
    [8]Parida A K, Dagaonkar V S, Phalak M S, Aurangabadkar L P. Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiologiae Plantarum,2008,30:619-627
    [9]Reddy P C O, Sairanganayakulu G, Thippeswamy M, Reddy P S, Reddy M K, Sudhakar C. Identification of stress induced genes from the drought tolerant semi-arid legume crop horsegram (Macrotyloma uniflorum (Lam.) Verdc.) through analysis of subtracted expressed sequence tags. Plant Science,2008,175:372-384
    [10]赵贵林,陈强,胡国霞,褚妍,马莲菊,李雪梅.水稻脯氨酸代谢关键酶对水分胁迫的响应.干旱地区农业研究,2011,29(3):80-83
    [11]Smirnoff N, Colombe S V. Drought influences the activity of enzymes of the chlorop last hydrogen peroxide scavenging system. Journal of Experimental Botany,1988,39 (8):1097-1108
    [12]Foyer C H, Lopez D H, Dat J F, Scott I M. Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signalling. Physiologia Plantarum,1997,100:241-254
    [13]Lang Y C, Hu F, Yang M C, Yu J H. Antioxidative defenses and water deficit-induced oxidative damage in rice (Oryza sativa L.) growing on non-flooded paddy soils with ground mulching. Plant and Soil,2003, 257:407-416
    [14]戴高兴,彭克勤,萧浪涛,邓国富.聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化物歧化酶活性的影响.中国水稻科学,2006,20(5):557-559
    [15]张荣萍,马均,王贺止,李艳,李旭毅,汪仁全.不同灌水方式对水稻结实期一些生理性状和产量的影响.作物学报,2008,34(3):486-495
    [16]Darbyshire B. Changes in indoleacetic acid oxidase activity associated with plant water potentials. Physiologia Plantarum,1971,25:82-87
    [17]Itai C, Vaadia Y. Cytokinin activity in water-stressed shoots. Plant Physiology,1971,47:87-90
    [18]Aharoni N, Richmond A E. Endogenous gibberellin and abscisic acid content as related to senescence of detached lettuce leaves. Plant Physiology,1978,62:224-228
    [19]Liang J S, Zhang J H, Wong M H. Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying. Photosynthetic Research,1997,51:149-159
    [20]Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stess during filling. Field Crop Research,2003,81:69-81
    [21]Weiler E W, Jordan P S, Conrad W. Levels of indole-3-acetic acid in intact and decapitated as determined by a specific and highly sensitive solid-phase enzyme immay. Planta,1981,153:561-571
    [22]Han Y P, Xu M L, Liu X Y, Yan C J, Korban S S, Chen X L, Gu M H. Genes coding for starch branching enzymes are major contributors to starch viscosity characteristics in waxy rice (Oryza sativa L.). Plant Science,2004,166:357-364
    [23]Allahgholipour M, Ali A J, Alinia F, Nagamine T, Kojima Y. Relationship between rice gain amylase and pasting properties for breeding better quality rice varieties. Plant Breeding,2006,125:357-362
    [24]Won J G, Choi J S, Lee S P, Son S H, Chung S O. Water saving by shallow intermittent irrigation and growth of rice. Plant Production Science,2005,8:487-492
    [25]Belder P, Bouman B A M, Cabangon R, Guoan L, Quilang E J P, Li Y, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management,2004,65:193-210
    [26]Mishra H S, Rathore T R, Pant R C. Effect of intermittent irrigation on groundwater table contribution, irrigation requirement and yield of rice in Mullions of Tarai region. Agricultural Water Management, 1990,18:231-241
    [27]Tabbal D F, Bouman B A M, Bhuiyan S I, Sibayan E B, Sattar M A. On-farm strategies for reducing water input in irrigated rice:case studies in the Philippines. Agricultural Water Management,2002,56:93-112
    [28]Zhang H, Zhang S F, Yang J C, Zhang J H, Wang Z Q. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agronmy Journal,2008,100:726-734
    [29]王人民,丁元树.从抽穗到成熟期水稻生态因子的研究.浙江农业大学学报,1989,15(1):14-20
    [30]邓定武,谭正之,龙兴汉.灌溉对杂交水稻产量和稻米品质的影响.作物研究,1990,4(2):7-9
    [31]Gomex K A. Effect of environment on protein and amylose content of Rice. In:Proceedings of the Workshop of Chemical Aspects of Rice Grain Quality. Philippines:International Rice Research Institute, 1979:pp 59-68
    [32]郑家国,任光俊,陆贤军,姜心禄.花后水分亏缺对水稻产量和品质的影响.中国水稻科学,2003,17(3):239-243
    [33]杨淑慎,高俊凤.活性氧、自由基与植物的衰老.西北植物学报,2001,21(2):215-220
    [34]干萍,张成军,陈国祥,王静,施大伟,吕川根.低温对水稻剑叶膜脂过氧化和脂肪酸组分的影响.作物学报,2006,32(4):568-572
    [35]刘萍,郭文善,浦汉春,封超年,朱新开,彭永欣.灌浆期高温对小麦剑叶抗氧化酶及膜脂过氧化的影响.中国农业科学,2005,38(12):2403-2407
    [36]蒋明义,荆家海,王韶唐.渗透胁迫对水稻幼苗膜脂过氧化及体内保护体统的影响.植物生理学报,1991,17(1):80-84
    [37]王志琴,杨建昌,朱庆森.土壤水分对水稻光合速率与物质运转的影响.中国水稻科学,1996,10(4):235-240
    [38]刘凯,张耗,张慎凤,王志琴,杨建昌.结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因.作物学报,2008,34(2):268-276
    [39]王贺正,马钧,李旭毅,李艳,张荣萍,汪仁全.水分胁迫对水稻结实期一些生理形状的影响.作物学报,2006,32(12):1892-1897
    [40]杨建昌,彭少兵,顾世梁,Visperas R M,朱庆森.水稻结实期籽粒和根系中玉米素与玉米素核苷含量的变化及其与籽粒充实的关系.作物学报,2001,27(1):35-42
    [41]Nakamura Y, Yuki K, Park S Y. Carbohyrate metabolism in the developing endosperm of rice grains. Plant cell physiology,1989,30:833-839
    [42]Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolismduring development of rice endosperm. Plant science,1992,82:15-20
    [43]Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop science, 1995,35:827-831
    [44]刘立军,李鸿伟,赵步洪,王志琴,杨建昌.结实期干湿交替处理对稻米品质的影响及其生理机制.中国水稻科学,2012,26(1):77-84
    [1]凌启鸿.水稻精确定量栽培理论与技术.北京:中国农业出版社,2007,pp 76-91
    [2]Koutrorbas S D, Ntanos D A. Genotypic differences for grain yield and nitrogen utilization in indica and japonica rice under Mediterranean conditions. Field Crops Research,2003,83:251-260
    [3]FAO. Statistical databases, Food and Agriculture Organization (FAO) of the United Nations.2004
    [4]崔玉亭,程序,韩纯儒,李荣刚.苏南太湖流域水稻经济生态适宜施氮量研究.生态学报,2000,4:659-662
    [5]敖和军,王淑红,邹应斌,彭少兵,程兆伟,刘武,唐启源.不同施肥水平下超级杂交稻对氮、磷、钾的吸收积累.中国农业科学,2008,41(10):3123-3132
    [6]Ying J F, Peng S B, He Q R, Yang H, Yang C D, Visperas R M, Cassman K G. Comparison of high-yield rice in tropical and subtropical environments I. Determinants of grain and dry matter yields. Field Crops Research,1998,57:71-84
    [7]Ying J F, Peng S B, Yang G Q, Zhou N, Visperas R M, Cassman K G Comparison of high-yield rice in tropical and subtropical environments Ⅱ. Nitrogen accumulation and utilization efficiency. Field Crops Research,1998,57:85-93
    [8]李庆逵.中国农业持续发展中的肥料问题.南昌:江西科学技术出版社,1997
    [9]Wang G H, Dobermanna A, Witt C, Sun Q Z, Fu R X. Performance of sit-specific nutrient management for irrigated rice in southeast China. Agronmy Journal,2001,93:869-878
    [10]Guerra L C, Bhuiyan S I, Tuong T P, Barker R. Producing more rice with less water from irrigated systems. SWIM Paper 5. IWMI/IRRI, Colombo, Sri Lanka,1998,24
    [11]Bouman B A M, Toung T P. Field water management to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management,2001,49:11-30
    [12]Belder P, Spiertz J H J, Bouman B A M, Lu G, Tuong T P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Research,2005,93:169-185
    [13]Bouman B A M, Peng S, Castaneda A R, Visperas R M. Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management,2005,74:87-105
    [14]Ockerby S E, Fukai S. The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Research,2001,69:215-226
    [15]张亚洁,许德美,孙斌,刁广华,林强森,杨建昌.种植方式对陆稻和水稻籽粒灌浆及垩白的影响.中国农业科学,2006,39(2):257-264
    [16]Liu X J, Wang J C, Lu S H, Zhang F S, Zeng X Z, Ai Y W, Peng S B, Christie P. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems. Field Crops Research,2003,83:297-311
    [17]Tao H B, Brueck H, Ditter K, Kreye C, Lin S, Sattelmacher B. Growth and yield formation for rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Research,2006,95:1-12
    [18]黄义德,张自立,魏凤珍,李金才.水稻覆膜旱作的生态生理效应.应用生态学报,1999,10(3):305-308
    [19]Toung T P, Bouman B A M, Mortimer M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Production Science,2005,8:231-241
    [20]Won J G, Choi J S, Lee S P, Son S H, Chung S O. Water saving by shallow intermittent irrigation and growth of rice. Plant Production Science,2005,8:487-492
    [21]Kukal S S, Aggarwal G C. Pudding depth and intensity effects in rice-wheat system on a sandy loam soil, Ⅱ Water use and crop performance. Soil Tillage Research,2003,74:37-45
    [22]Bouman B A M, Fen L G, Tuong T P, Lu L, Wang H, Feng Y. Exploring options to grow rice using less water in nitrogen China using a modeling approach,Ⅱ. Quantifying yield, water balance components, and water productivity. Agricultural Water Management,2007,88:23-33
    [23]Evan J R. Nitrogen and photosynthesis in flag leaf of wheat. Plant Physiology.1985,72:297-302
    [24]Lahiri A N. Interaction of water stress and mineral nutrition on growth and yield. In:Turner NC ed., Adaption of Plant to Water and High Temperature Stress. New York:Wiley-Inter Science,1980, pp 38-136
    [25]Arnon I. Physiological principles of dry land crop production, In:Gupta, U.S. (ed.) Physiological Aspects of Dryland Farming. Oxford and IBH Pub.1975, pp 1-124
    [26]Begg J E, N C Turner. Crop and water deficits. Advanced Agronmy.1976,28:161-218
    [27]Bhan S, Misra D K. Effects of variety spacing and soil fertility on root development in groundnut under arid conditions. Indian Journal of Agricutural Science,1970,40:1050-1055
    [28]Cabangon R J, Tuong T P, Castillo E G, Bao LX, Lu G A, Wang G H, Cui Y L, Bouman B A M, Li Y H, Chen C D, Wang J Z. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy Water Environment,2004,2:195-206
    [29]Belder P, Bouman B A M, Cabangon R Guoan L, Quilang E J P, Li Y H, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions Asia. Agricutural Water Management,2004,65:193-210
    [30]王绍华,曹卫星,丁艳锋,田永超,姜东.水氮互作对水稻氮吸收与利用的影响.中国农业科学,2004,37(4):497-501
    [31]邓定武,谭正之,龙兴汉.灌溉对杂交水稻产量和稻米品质的影响.作物研究,1990,4(2):7-9
    [32]彭世彰,郝树荣,刘庆,刘勇,徐宁红.节水灌溉水稻高产优质成因分析.灌溉排水,19(3)3-7
    [33]蔡一霞,朱庆森,王志琴,杨建昌,郑雷,钱卫成.结实期土壤水分对稻米品质的影响.作物学报,2002,28(5):601-608
    [34]郑桂萍,陈书强,郭晓红,王伯伦.土壤水分对稻米成分及食味品质的影响.沈阳农业大学学报, 2004,332-335
    [35]金正勋,秋太权,孙艳丽,赵久明,金学泳.氮肥对稻米垩白及蒸煮食味品质特性的影响.植物营养与肥料学报,2001,7(1):31-35
    [36]张洪程,干秀芹,戴其根,霍中洋,徐轲.施氮量对杂交稻两优培九产量、品质及吸氮特性的影响.中国农业科学,2003,36(7):800-806
    [37]金军,徐大勇,蔡一霞,胡署云,葛敏,朱庆森.施氮量对水稻主要米质性状及RVA谱特征参数的影响.作物学报,2004,30(2):154-158
    [38]邹琦.植物生理生化实验指导.北京:中国农业出版社,1995,pp 27-29
    [39]杨建昌,王志琴,郎有忠,朱庆森.亚种间杂交稻发育籽粒中ATP酶活性及其调节.扬州大学学报,1998,1(1):13-17
    [40]邵玺文,刘红丹,杜震宇,杨晶,孟繁霞,马景勇.不同时期水分处理对水稻生长及产量的影响.水土保持学报,2007,21(1):193-196
    [41]杨长明,杨林章,颜廷梅,欧阳竹.不同养分和水分管理模式对水稻抗倒伏能力的影响.应用生态学报,2004,18(4):646-650
    [42]Yang J C, Zhang J H, Liu L J, Wang Z Q, Zhu Q S. Carbon remobilization and grain filling in japonicalindica hybrid rice subjected to postanthesis water deficits. Agronomy Journal,2002,94: 102-109
    [43]Yang J C, Zhang J H, Wang Z Q, Liu L J, Zhu Q S.Postanthesis water deficits enhance grain filling in two-line hybrid rice. Crop Science,2003,43(6):2099-2108
    [44]刘立军,薛亚光,孙小淋,王志琴,杨建昌.水分管理方式对水稻产量和氮肥利用效率的影响.中国水稻科学,2009,23(3):282-288
    [45]Bhan S, Misra D K. Effects of variety spacing and soil fertility on root development in groundnut under arid conditions. Indian J Agric Sci,1970:1050-1055
    [46]尤小涛,荆奇,姜东,戴廷波,周冬琴,曹卫星.节水灌溉条件下氮肥对粳稻稻米产量和品质及氮素利用的影响.中国水稻科学,2006,20(2):199-204
    [47]蔡一霞,王维,朱智伟,张祖建,郎有忠,朱庆森.结实期水分胁迫对不同氮肥水平下水稻产量及其品质的影响.应用生态学报,2006,17(7):1201-1206
    [48]Lin X Q, Zhou W J, Zhu D F, Chen H Z, Zhang Y P. Nitrogen accumulation, remobilization and partitioning in rice (Oryza sativa L.) under an improved irrigation practice. Field Crops Research,2006, 96:448-454
    [49]苏祖芳,周培南,许乃霞,张亚洁.密肥条件对水稻氮素吸收和产量形成的影响.中国水稻科学,2001,15(2):281-286
    [50]Munjal N, Sawhney S K, Sawhney V. Activation of nitrate reductase in extracts of water stress wheat. Phytochemistry,1997,45:659-665
    [51]Sze H. Translocation ATPase:advances using membrane vesicles. Ann Rev Plant Physiol,1985,35: 175-208
    [52]黄升谋,邹应斌.库源关系对杂交水稻根系及叶片衰老的影响.湖南农业大学学报(自然科学版),2002,28(3):192-194
    [53]Lur H, Setter T L. Role of auxin in maize endosperm development:Timing of nuclear DNA endoreduplication. Zein expression and cytokinins. Plant Physiology,1993,103:273-280
    [54]杨建昌,彭少兵,顾世梁,Visperas R M,朱庆森.水稻结实期籽粒和根系中玉米素与玉米素核苷含量的变化及其与籽粒充实的关系.作物学报,2001,27(1):35-42
    [55]杨建昌,仇明,王志琴,刘立军,朱庆森.水稻发育胚乳中细胞增殖与细胞分裂素含量的关系.作物学报,2004,30(1):11-17
    [56]杨建昌,刘凯,张慎凤,王学明,王志琴,刘立军.水稻减数分裂期颖花中激素对水分胁迫的响应.作物学报,2008,34(1):111-118
    [1]Fageria N K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in low land rice. Communication Soil Science and Plant Analysis,2003,34: 259-270
    [2]Fageria N K. Yield physiology of rice. Joural of Plant Nutrition,2007,30:843-879
    [3]Belder P, Bouman B A M, Cabangon R, Guoan L, Quilang E J P, Li Y, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricutural Water Management,2004,65:193-210
    [4]Belder P, Spiertz J H J, Bouman B A M, Lu G, Tuong T P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Research,2005,93:169-185
    [5]Borrell A, Garside A, Fukai S. Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crops Research,1997,52:231-248
    [6]Liu X J, Wang J C, Lu S H, Zhang F S, Zeng X Z, Ai Y W, Peng S B, Christie P. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems. Field Crops Research,2003,83:297-311
    [7]黄义德,张自立,魏凤珍,李金才.水稻覆膜旱作的生态生理效应.应用生态学报,1999,10(3):305-308
    [8]梁永超,胡锋,杨茂成,朱遐亮,王广平,王永乐.水稻覆膜旱作高产节水机理研究.中国农业科学,1999,32(1):26-32
    [9]Fan M S, Liu X J, Jiang R F, Zhang F S, Lu S H, Zeng X Z, Christie P. Crop yields, internal nutrient efficiency, and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation. Plant Soil,2005,277:265-276
    [10]Lu X H, Wu L, Pang L H, Li Y J, Wu J G, Shi C H, Zhang F S. Effects of plastic film mulching cultivation under non-flooded condition on rice quality. Joural Science of Food Agricuture,2007,87:334-339
    [11]刘天学,纪秀娥.焚烧秸杆对土壤有机质和微生物的影响研究.土壤,2003,35(4):347-348
    [12]Miura Y, Kanna T. Emissions of trace gases (CO2, CO, CH4, and N2O) resulting from rice straw burning. Soil Science Plant Nutrition,1997,43:849-854
    [13]Liu X J, Ai Y W, Zhang F S, Lu S H, Zeng X Z, Fan M S. Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation (NFMC). Nutrient Cylcing in Agroecosystems,2005,71:289-299
    [14]Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crop Research,2003,81:69-81
    [15]Han Y P, Xu M L, Liu X Y, Yan C J, Korban S S, Chen X L, Gu M H. Genes coding for starch branching enzymes are major contributors to starch viscosity characteristics in waxy rice (Oryza sativa L.). Plant Science,2004,166:357-364
    [16]杨建昌,王志琴,陈义芳,蔡一霞,刘立军,朱庆森.旱种水稻产量与米质的初步研究.江苏农业研究,2000,21(3):1-5
    [17]Hasegawa T, Fujimura S, Shimono H, Iwama K, Jiteuyama Y. Rice growth and developing limited by root zone temperature. In:Morita S, ed. Proceedings of the Sixth Symposium of the International Society for Root Research. Nagoya, Japan:Published by Japanese Society for Root Research (JSRR),2001, pp 520-521
    [18]Funaba M, Ishibashi Y, Molla A H, Iwanami K, Iwaya-Inoue M. Influence of low/high temperature on water status in developing and maturing rice grains. Plant Production science,2006,9:347-354
    [19]刘立军,袁莉民,王志琴,徐国伟,陈云.旱种水稻倒伏生理原因分析与对策的初步研究.中国水稻科学,2002,16(3):225-230
    [20]程方民,蒋德安,吴平,石春海.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征.作物学报,2001,27(2):201-206
    [21]程方民,钟连进,孙宗修.灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响.中国农业科学,2003,36(5):492-501
    [22]钟旭华,黄农荣.水稻结实期根系活性与稻米垩白形成的相关性初步研究.中国水稻科学,2005,19(5):471474
    [23]董明辉,桑大志,王朋,张文杰,杨建昌.水稻穗上不同部位籽粒垩白性状的差异.作物学报,2006,32(1):101-111
    [24]Li Y S, Wu L H, Lu X H, Zhao L M, Fan Q L, Zhang F S. Soil microbial biomass as affected by non-flooded plastic mulching cultivation in rice. Biology and Fertilizer of Soils,2006,43:107-111
    [25]Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Science, 1995,35:827-831
    [26]Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation,2001,35:81-9
    [1]Fageria N K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in low land rice. Communication in Soil Science and Plant Analysis,2003,34: 259-270
    [2]Cabangon, R J, Tuong, T P, Abdullah, N B. Comparing water input and water productivity of transplanted and direct-seeded rice production systems. Agricultural Water Management,2002,57:11-31
    [3]Qin J T, Hu F, Zhang B, Wei Z Q, Li H X. Role of straw mulching in non-continuously flooded rice cultivation. Agricultural Water Management,2006,83:252-260
    [4]Bouman B A M, Tuong, T P. Field water management to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management,2001,49:11-30
    [5]Bouman B A M, Humphreys E, Tuong T P, Barker R. Rice and water. Advances in Agronomy,2007,92: 187-237
    [6]Belder P, Bouman B A M, Cabangon R, Guoan L,Quilang E J P, Li Y, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management,2004,65:193-210
    [7]Bouman B A M. A conceptual framework for the mprovement of crop water productivity at different spatial scales. Agricultural Systems,2007,93:43-60
    [8]Fan M S, Liu X J, Jiang R F, Zhang F S, Lu S H, Zeng X Z, Christie P. Crop yields, internal nutrient efficiency, and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation. Plant and Soil,2005,277:265-276
    [9]Tao H B, Brueck H, Dittert K, Kreye C, Lin S, Sattelmacher B. Growth and yield formation for rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Research,2006,95:1-12
    [10]Peng S B, Shen K_, Wang X, Liu J, Luo X, Wu L. A new rice cultivation technology:Plastic film mulching. International Rice Research News Letter,1999,24:9-10
    [11]Liu X J, Ai Y W, Zang F S, Lu S H, Zeng X Z, Fan M S. Crop production, nitrogen recovery and water use efficiency in rice-wheat rotations as affected by non-flooded mulching cultivation (NFMC). Nutrienty cling in Agroecosystems,2005,71:289-299
    [12]Xu G W, Zhang Z C, Zhang J H, Yang J C. Much improved water use efficiency of rice under non-flooded mulching cultivation. Journal of Integrative Plant Biology,2007,49:1527-1534
    [13]Zhang Z, C Zhang S F, Yang J C, Zhang J H. Yield, grain quality and water use efficiency of rice under nonflooded mulching cultivation. Field Crops Research,2008,108:71-81
    [14]Yang J C, Peng S B, Visperas R M, Sanico A L, Zhu Q S, Gu S L. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regulation,2000,30:261-270
    [15]Yang J C, Zhang J H, Wang Z Q, Liu K, Wang P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. Journal of Experimental Botany,2006,57: 149-160
    [16]Cheng C Y, Lur H S. Ethylene may be involved in abortion of the maize caryopsis. Physiologia Plantarum,1996,98:245-252
    [17]Mohapatra P K, Naik P K, Patel R. Ethylene inhibitors improve dry matter partitioning and development of late flowering spikelets on rice panicles. Australian Journal of Plant Physiology,2000,27:311-323
    [18]Davies P J. introduction in:Davies P J eds. Plant Hormones Biosynthesis Signal Transduction, Action! The Netherlands:Kluwer Academic Publishers,2004, pp 1-35
    [19]Xu Z Z, Yu Z W, Qi X H, Yu S L. Effect of soil drought on ethylene evolution, polyamine accumulation and cell membrane in flag leaf of winter wheat. Acta Physiologia Sinica,1995,21:295-301
    [20]Betltrano J, Ronco M G, Montaldi E R. Drought stress syndrome in wheat is provoked ethylene evolution imbalance and reversed by rewatering, aminoethoxyvinylglycine, or sodium benzoate. Journal of Plant Growth Regulation,1999,18:59-64
    [21]Yang J C, Zhang J H, Liu K, Wang Z, Liu L J. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytologist,2006,171:293-303
    [22]Lee B T, Martin P, Bangerth F. Phytohormones levels in the florets of a single wheat spikelet during pre-anthesis development and relationships to grain set. Journal of Experimental Botany,1988,39: 927-933
    [23]Morgan J M. Possible role of abscisic acid in reducing seed set in water-stressed wheat plants. Nature, 1980,285:655-657
    [24]Saini H S, Aspinall D A. Sterility in wheat (Triticum aestivum L.) induced by water deficit or high temperature:possible mediation by abscisic acid. Australian Journal of Plant Physiology,1982,9: 529-537
    [25]Ahmadi A, Baker D A. Effects of abscisic acid (ABA) on grain filling processes in wheat. Plant Growth Regulation,1999,28:187-197
    [26]Myers P N, Setter T L, Madison J T, Thompson J F. Abscisic acid inhibition of endosperm cell division in cultured maize kernels. Plant Physiology,1990,94:1330-1336
    [27]Ober E S., Setter T L., Madison J T, Thompson J F, Shapiro P S. Influence of water deficit on maize endosperm development. Enzyme activities and RNA transcripts of starch and zein synthesis, abscisic acid, and cell division. Plant Physiology,1991,97:154-164
    [28]Yang J C, Zhang J H, Wang Z W, Zhu Q S, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology,20001,127:315-323
    [29]Yang J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q S. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiology,2004,135: 1621-1629
    [30]朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析.作物学报,1988,14(3):182-193
    [31]Richards F J. A flexible growth function for empirical use. Journal of Experimental Botany,1959,10: 290-300
    [32]Beltrano J, Carbone A, Montaldi E R, Guiamet J J. Ethylene as promoter of wheat grain maturation and ear senescence. Plant Growth Regulation,1994,15:107-117
    [33]Rook F, Corke F, Card R, Munz G, Smith C, Bevan W. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signaling. Plant Journal,2001,26:421-433
    [34]Brenner M L, Cheikh N. The role of hormones in photosynthate partitioning and seed filling. Davies PJ eds. In plant hormones, physiology, biochemistry and molecular biology. The Netherlands:Kluwer Academic Publishers,1995, pp 649-670
    [35]Ackerson R C. Invertase activity and abscisic acid in relation to carbohydrate status in developing soybean reproductive structures. Crop Science,1985,25:615-618
    [36]Dewdney S J, Mcwha J A. Abscisic acid and the movement of photosynthetic assimilation towards developing wheat (Triticum aestivum L) grains. Zeitschrift fur Pflanzenphysiologie,1979,92:186-193
    [37]Sharp R E, LeNoble M E, Else M A, Thorne E T, Gherardi F. Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance:evidence for an interaction with ethylene. Journal of Experimental Botany,2000,51:1575-1584
    [38]Lenoble M E, Spollen W G, Sharp R E. Maintenance of shoot growth by endogenous ABA:genetic assessment of the involvement of ethylene suppression. Journal of Experimental Botany,2004,55: 237-245
    [1]Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Production Science,2009,12:3-8
    [2]Bouman B A M, Humphreys E, Tuong T P, Barker R. Rice and water. Advances in Agronomy,2007,92: 187-237
    [3]Lu X H, Wu L H, Pang L J, Li Y S, Wu J G, Shi C H, Zhang F S. Effects of plastic film mulching cultivation under non-flooded condition on rice quality. Journal of the Science of Food and Agriculture, 2007,87:334-339
    [4]黄义德,张自立,魏凤珍,李金才.水稻覆膜旱作的生态生理效应.应用生态学报,1999,10(3):305-308
    [5]汤美玲,程旺大,姚海根,徐民.早稻直播覆膜旱作对灌浆成熟期根叶生理特性及产量的影响.中国水稻科学,2005,19(5):475-478
    [6]Fan M S, Liu X J, Jiang R F, Zhang F S, Lu S H, Zeng X Z, Christie P. Crop yields, internal nutrient efficiency, and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation. Plant and Soil,2005,277:265-276
    [7]Peng S B, Shen K, Wang X C, Liu J, Luo X S, Wu L H. A new rice cultivation technology:Plastic film mulching. International Rice Research News Letter,1999,24:9-10
    [8]Qin J T, Hu F, Zhang B, Wei Z G, Li H X. Role of straw mulching in non-continuously flooded rice cultivation. Agricultural Water Management,2006:83:252-260
    [9]Liu X J, Wang J C, Lu S H, Zhang F S, Zeng X Z, Ai Y W, Peng S, Christie P. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems. Field Crops Research,2003,83:297-311
    [10]汀强,樊小林,刘芳,李方敏,Klaus D, Sattemacher B断根和覆草旱作条件下水稻的产量效应.中国水稻科学,2004,18(5):437-442
    [11]汪强,樊小林,Klaus D, Sattemacher B.华南地区覆盖旱种水稻节水及其水分利用效率研究.灌溉排水学报,2007,26(4):89-92
    [12]Zhang Z C, Zhang S F, Yang J C, Zhang J H. Yield, grain quality and water use efficiency of rice under non-flooded mulching cultivation. Field Crops Research,2008,108:71-81
    [13]徐国伟,王朋,唐成,王志琴,刘立军,杨建昌.旱种方式对水稻产量与品质的影响.作物学报,2006,32(1):112-117
    [14]Han Y P, Xu M L, Liu X Y, Yan C J, Korban S S, Chen X L, Gu M H. Genes coding for starch branching enzymes are major contributors to starch viscosity characteristics in waxy rice (Oryza sativa L.). Plant Science,2004,166:357-364
    [15]Allahgholipour M, Ali A J, Alinia F, Nagamine T, Kojima Y. Relationship between rice gain amylase and pasting properties for breeding better quality rice varieties. Plant Breeding,2006,125:357-362
    [16]杨建昌,王志琴,陈义芳,蔡一霞,刘立军,朱庆森.旱种水稻产量与米质的初步研究.江苏农业研究,2000,21(3):1-5
    [17]盛海君,沈其荣,周春霖.旱作水稻产量和品质的研究.南京农业大学学报,2003,26(4):13-16
    [18]Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiol,1980,31:491-543
    [19]黄升谋,邹应斌.库源关系对杂交水稻根系及叶片衰老的影响.湖南农业大学学报·自然科学版,2002,28(3):192-194
    [20]Liu X J, Ai Y W, Zhang F S, Lu S H, Zeng X Z, Fan M. Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation (NFMC). Nutrient Cycling in Agroecosystems,2005,71:289-299
    [21]Stoop W A, Uphoff N, Kassam A. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar:opportunities for improving farming system for resource-poor farmers. Agricultural Systems.2002,71:249-274
    [22]Kende H, Zeevaart J A D. The five "classical" plant hormones. Plant Cell,1997,9:1197-1210
    [23]Brenner M L, Cheikh N. The role of hormones in photosynthate partitioning and seed filling. In:Davies PJ eds. Plant hormones, physiology, biochemistry and molecular biology. The Netherlands:Kluwer Academic Publishers,1995, pp 649-670
    [24]Davies P J. Introduction. In:Davies PJ eds. Plant Hormones, Biosynthesis, Signal Transduction, Action! The Netherlands:Kluwer Academic Publishers,2004, pp 1-35
    [25]Lur H, Setter T L. Role of auxin in maize endosperm development:Timing of nuclear DNA endoreduplication. Zein expression and cytokinins. Plant Physiology,1993,103:273-280
    [26]杨建昌,彭少兵,顾世梁,Visperas R M,朱庆森.水稻结实期籽粒和根系中玉米素与玉米素核苷含量的变化及其与籽粒充实的关系.作物学报,2001,27(1):35-42
    [27]杨建昌,仇明,王志琴,刘立军,朱庆森.水稻发育胚乳中细胞增殖与细胞分裂素含量的关系.作物学报,2004,30(1):11-17
    [28]Yang J C, Zhang J H, Wang Z Q, Zhu Q S. Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regulation,2003,41:185-195
    [29]Yang J C, Zhang J H, Huang Z L, Wang Z Q, Zhu Q S, Liu L J. Correlation of cytokinin levels in the endosperm and roots with cell number and cell division activity during endosperm development in rice. Annals of Botany,2002,90:369-377
    [1]杨建昌,王志琴,刘立军,郎有忠,朱庆森.旱种水稻生育特性与产量形成的研究.作物学报,2002,28:11-17
    [2]蔡永萍,杨其光,黄义德.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响.中国水稻科学,2000,14:219-224
    [3]Peng S B, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical rice since the release of IR 8 and the challenge of increasing rice yield potential. Crop Science,1999,39: 1552-1559
    [4]钱晓晴,沈其荣,柏彦超,王娟娟,杨建昌,周明耀.旱作条件下不同水稻品种的响应特征.作物学报,2004,30:555-562
    [5]蔡一霞,朱庆森,王志琴,杨建昌,郑雷,钱卫成.结实期土壤水分对稻米品质的影响.作物学报,2002,28:601-608
    [6]刘天学,纪秀娥.焚烧秸杆对土壤有机质和微生物的影响研究.土壤,2003,35(4)347-348
    [7]江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响.土壤通报,2001,32(5):209-213
    [8]张振江.长期麦秆直接还田对作物产量与土壤肥力的影响.土壤通报,1998,29(4):154-155
    [9]Eagle A J, Bird J A, Horwath W R. Rice yield and nitrogen efficiency under alternative straw management practices. Agronomy Journal,2000,92:1096-1103
    [10]Wit C, Kenneth C, Olk D C, Biker U, Liboon S P, Samson M I, GOttow J C. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil,2000,225:263-278
    [11]Insam H, Mitchel C C, Dormaar J F. Relationship of soil microbial biomass and activity with fertilization and crop yield of three ultisols. Soil Biology and Biochemistry,1991,23:459-464
    [12]丘华昌,刘鹏程,李学垣,王启发,徐凤琳.稻草还田与土壤有机无机复合状况.植物营养与肥料学报,1998,4(1):92-96
    [13]沈波,陈能,李太贵,罗玉坤.温度对早釉稻米至白发生与胚乳物质形成的影响.中国水稻科学,1997,11(3):183-186
    [14]江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响.土壤通报,2001,32(5):209-213
    [15]张振江.长期麦秆直接还田对作物产量与土壤肥力的影响.土壤通报,1998,29(4):154-155
    [16]吴登,黄世乃,李明灌,谢毅栋,梁玉祥,陈智慧.稻草还田免耕抛秧的增产效果及节水效应.杂交水稻,2006,21(S1):109-112
    [17]李孝勇,武际,朱宏斌,王允青.秸秆还田对作物产量及土壤养分的影响.安徽农业科学,2003,31(5):870-871
    [18]马宗国,卢绪奎,万丽,陈祖光,左辉.小麦秸秆还田对水稻生长及土壤肥力的影响.作物杂志,2003,5:37-38
    [19]徐国伟,谈桂露,王志琴,刘立军,杨建昌.秸秆还田与实地氮肥管理对直播水稻产量、品质及氮肥利用的影响.中国农业科学,2009,42(8):2736-2746
    [20]刘世平,聂新平,戴其根,徐柯.免耕套种与秸秆还田对水稻生长和稻米品质的影响.中国水稻科学,2007,21(1):71-76
    [21]舒庆尧,吴殿星,夏英武,高明尉,Anna M C稻米淀粉RVA谱特征与食用品质的关系.中国农业科学,1998,31(3):25-29
    [22]蔡一霞,王维,张祖建,夏广宏,张洪熙,杨建昌,朱庆森.水旱种植下多个品种蒸煮品质和稻米RVA谱的比较性研究.作物学报,2003,29(4):508-513
    [23]王丰,程方民,钟连进,孙宗修.早籼稻米RVA谱特性的品种间差异及其温度效应特征.中国水稻科学,2003,17(4):328-332
    [24]Hasegawa T,Fujimura S, Shimono H, Iwama K, Jiteuyama Y. Rice growth and developing limited by root zone temperature. In:Morita S, ed, Proceedings of the Sixth Symposium of the International Society for Root Research. Published by Japanese Society for Root Research (JSRR),Nagoya, Japan, 2001, pp 520-521
    [25]Qin J T, Hu F, Zhang B, Wei Z G, Li H X. Role of straw mulching in non-continuously flooded rice cultivation. Agricultural Water Management,2006,83:252-260
    [1]Yang S S, Liu C M, Lai C M, Liu Y L. Estimation of methane and nitrous oxide emission from paddy fields and uplands during 1990-2000 in Taiwan. Chemosphere,2003,52:1295-1305
    [2]Wuebbles D J, Hayhoe K. Atmospheric methane and global change. Earth-Science Reviews,2002,57: 177-210
    [3]蒋静艳,黄耀,宗良纲.水分管理与秸秆施用对稻田CH4和N20排放的影响.中国环境科学,2003,23(5):552-556
    [4]李香兰,马静,徐华,曹金留,蔡祖聪,八木一行.水分管理对水稻生长期CH4和N20排放季节变化的影响.农业环境科学学报,2008,27(2):535-541
    [5]袁伟玲,曹凑贵,程建平,谢宁宁.间歇灌溉模式下稻田CH4和N20排放及温室效应评估.中国农业科学,2008,41(12):4294-4300
    [6]黄树辉,吕军,曾光辉.水稻烤田期间N20排放及其影响因素.环境科学学报,2004,24(6)1084-1090
    [7]徐华,邢光熹,蔡祖聪,鹤田治雄.土壤水分状况和质地对稻田N20排放的影响.土壤学报,2000,37(4):499-505
    [8]丁维新,蔡祖聪.氮肥对土壤甲烷产生的影响.农业环境科学学报,2003,22(3):380-383
    [9]蔡祖聪,颜晓元,徐华,鹤田治雄,八木一行,阳捷行.氮肥品种对稻田甲烷排放的影响.土壤学报,1995,32:136-143
    [10]秦晓波,李玉娥,刘克樱,万运帆.不同施肥处理稻田甲烷和氧化亚氮排放特征.农业工程学报,2006,22(7):143-148
    [11]田光明,何云峰,李勇先.水肥管理对稻田土壤甲烷和氧化亚氮排放的影响.土壤与环境,2002,11(3):294-298
    [12]傅志强,黄璜.种植方式对水稻CH4排放的影响.农业环境科学学报,2008,27(6):2513-2517
    [13]代光照,李成芳,曹凑贵,展茗,通乐嘎,梅少华,翟中兵,范端阳.免耕施肥对稻田甲烷与氧化亚氮排放及其温室效应的影响.应用生态学报,2009,20(9):2166-2172
    [14]向平安,黄璜,黄梅,甘德欣,周燕,付志强.稻-鸭生态种养技术减排甲烷的研究及经济评价.中国农业科学,2006,39(5):968-975
    [15]伍芬琳,张海林,李琳,陈阜,黄凤球,肖小平.保护性耕作下双季稻农田甲烷排放特征及温室效 应.中国农业科学,2008,41(9):2703-2709
    [16]展茗,曹凑贵,汪金平,李成芳,袁伟玲.稻鸭复合系统的温室气体排放及其温室效应.环境科学学报,2009,29(2):420426
    [17]Bhatia A, Pathak H, Jain N, Singh P K, Singh A K. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains. Atmospheric Environment,2005,39:6976-6984
    [18]徐华,蔡祖聪,李小平.烤田对种稻土壤甲烷排放的影响.土壤学报,2000,37(1):69-76
    [19]Xu H, Cai Z C, Li X P. Effect of antecedent soil water regime and rice straw application time on CH4 emission from rice cultivation. Australian Journal of Soil Research,2000,38:1-12
    [20]Cai Z C, Xu H, Zhang H H, Jin J. Estimate of methane emission from rice paddy fields in Taihu region, China. Pedosphere,1994,4(4):297-306
    [21]Yagi K, Tsuruta H, Kanda K, Minami K. Effect of water management on methane emission from a Japanese rice paddy field:Automated methane monitoring. Global Biogeochemical Cycles,1996,10: 255-267
    [22]Towprayoon S, Smakgahn, Poonkaew S. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere,2005,59:1547-1556
    [23]容湘民,袁正平,胡瑞芝,朱红梅,黄运湘,周清,张杨珠,肖永兰.地下水位与有机肥及水分管理对稻田甲烷排放的影响.湖南农业大学学报·自然科学版,2001,27(5):346-349
    [24]Denier van der Gon H A C, Neue H U. Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochemical Cycles,1995,9(5):11-22
    [25]蔡祖聪,Mosier A R土壤水分状况对CH4氧化,N2O和CO2排放的影响.土壤,1999,31(6)289-298
    [26]Xu H, Xing G X, Cai Z C, Tsuruta H. Nitrous oxide emissions from three rice paddy fields in China. Nutrient Cycling in Agroecosystems,1997,49:23-28
    [27]郑循华,王明星,王跃思,沈壬兴,龚宴邦,骆冬梅,张文,金继生,李老土.稻麦轮作生态系统中土壤湿度对N20产生与排放的影响.应用生态学报,1996,7(3):273-279
    [28]徐华,刑光熹,蔡祖聪,鹤田治雄.土壤水分状况和氮肥施用及品种对稻田N20排放的影响.应用生态学报,1999,10(2):186-188
    [29]李香兰,徐华,曹金留,蔡祖聪,八木一行.水分管理对水稻生长期N20排放的影响.土壤,2006,38(6):703-707
    [30]Aulakh M S, Doran J W, Mosier A R. Soil denitrification-significance, measurement, and effects of management. Advances in Soil Science,1992,18:1-57
    [31]McKenney D J, Wang S W, Drury C F. Denitrification and mineralization in soil amended with legume, grass, and corn residues. Soil Science Society of America Journal,1993,57:1013-1020
    [32]黄宗益,张福珠,刘淑琴,曹美秋.化感物质对土壤N20释放影响的研究.环境科学学报,1999,19(5):478-482
    [33]邹建文,黄耀,宗良纲,郑循华,王跃思.稻田CO2、CH4和N2O排放及其影响因素.环境科学学报,2003,23(6):758-764
    [34]朱咏莉,吴金水,周卫军,童成立,夏卫生.亚热带稻田生态系统CO2排放及影响因素.中国环境科学,2005,25(2):151-154
    [35]刘惠,赵平,王跃思,林永标,饶兴权.华南丘陵区农林复合生态系统稻田二氧化碳排放及其影响因素.生态学杂志,2006,25(5):471476
    [36]娄运生,李忠佩,张桃林.不同利用方式对红壤CO2排放的影响.生态学报,2004,24(5):978-983
    [37]梁巍,岳进,吴劼,史弈,黄国宏,梁站备.微生物生物量C、土壤呼吸的季节性变化与黑土稻田甲烷排放.应用生态学报,2003,14(12):2278-2280
    [1]Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crope Science,2009,49:2246-2260
    [2]Zhang H, Zhang S F, Yang J C, Wang Z Q, Zhang J H. Postanthesis moderate wetting drying improvement both quality and quantity of rice yield. Agronomy Journal,2008,100:726-724
    [3]杨建昌,朱庆森,王志琴.土壤水分对水稻产量与生理特性的影响.作物学报,1995,21(1):110-114
    [4]Tabbal D F. Bouman B A M, Bhuiyan S I, Sibayan E B, Sattar M A. On-farm strategies for reducing water input in irrigated rice:Case studies in the Philippines Agricultural Water Manage,2002,56:93-112
    [5]Belder P, Bouman B A M, Cabangon R, Guoan L, Quilang E J P, Li Y, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia Agric. Water Manage,2004,65:193-210
    [6]蔡一霞,朱庆森,王志琴,杨建昌,郑雷,钱卫成.结实期十壤水分对稻米品质的影响.作物学报,2002,28(5):601-608
    [7]彭世彰,郝树荣,刘庆,刘勇,徐宁红.节水灌溉水稻高产优质成因分析.灌溉排水,2000,19 (3):3-7
    [8]郑桂萍,陈书强,郭晓红,王伯仑.土壤水分对稻米成分及食味品质的影响.沈阳农业大学学报,2004,4(35):332-335
    [9]Gomez K A. Effect of environment on protein and amylase content of rice. In:Proceeding of the workshop on chemical aspects of rice grain quality, IRRI,1979, pp 59-68
    [10]王人民,丁元树.从抽穗到成熟期水稻生态因子的研究.浙江农业大学学报,1989,15(1):14-20
    [11]刘天学,纪秀娥.焚烧秸杆对土壤有机质和微生物的影响研究.土壤,2003,35(4):347-348
    [12]Miura Y, Kanna T. Emissions of trace gases (CO2, CO, CH4, and N2O) resulting from rice straw burning. Soil Science Plant Nutrition,1997,43:849-854
    [13]Stoop W A, Uphoff N, Kassam A. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar:opportunities for improving farming system for resource-poor farmers. Agricultural Systems.2002,71:249-274
    [14]Kende H, Zeevaart J A D. The five "classical" plant hormones. Plant Cell,1997,9:1197-1210
    [15]段俊,田长恩,梁承邺,黄毓文,刘鸿先.水稻结实过程中穗不同部位谷粒中内源激素的动态变化.植物学报,1999,41(1):75-79
    [16]Davies P J. Introduction. In:Davies P J, ed. Plant Hormones, Biosynthesis, Signal Transduction, Action! The Netherlands:Kluwer Academic Publishers,2004:1-35
    [17]Lur H, Setter T L. Role of auxin in maize endosperm development:Timing of nuclear DNA endoreduplication. Zein expression, and cytokinins. Plant Physiology,1993,103:273-280
    [18]杨建昌,仇明,王志琴,刘立军,朱庆森.水稻发育胚乳中细胞增殖与细胞分裂素含量的关系.作物学报,2004,30(1):11-17
    [19]Yang J C, Zhang J H, Wang Z Q, Zhu Q S. Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regulation,2003,41:185-195
    [20]Yang J C, Zhang J H, Huang Z L, Wang Z Q, Zhu Q S, Liu L J. Correlation of cytokinin levels in the endosperm and roots with cell number and cell division activity during endosperm development in rice. Annals of Botany,2002,90:369-37
    [21]Sze H. Translocation ATPase:advances using membrane vesicles. Annual Review of Plant Physiology, 1985,35:175-208
    [22]万骏南,吴建富,邓强辉,张冬萍.水稻籽粒灌浆的研究进展.安徽农业科学,2007,35(27):8424-8426,8429
    [23]刘凯.脱落酸和乙烯对水稻与小麦籽粒灌浆的调控作用及其机理.博士论文,扬州:扬州大学,2008
    [24]赵步洪,张洪熙,朱庆森,杨建昌.两系杂交稻籽粒充实不良的成因及其与激素含量的关系.中国农业科学,2006,39(3):477-486
    [25]Rook F, Corke F, Card R, Munz G, Smith C, Bevan W. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signaling. Plant Journal,2001,26:421-433
    [26]Brenner M L, Cheikh N. The role of hormones in photosynthate partitioning and seed filling.in Davies P J eds. Plant hormones, physiology, biochemistry and molecular biology. The Netherlands:Kluwer Academic Publishers,1995, pp 649-670
    [27]Ackerson R C. Invertase activity and abscisic acid in relation to carbohydrate status in developing soybean reproductive structures. Crop Science,1985,25:615-618
    [28]Dewdney S J, Mcwha J A. Abscisic acid and the movement of photosynthetic assimilation towards developing wheat (Triticum aestivum L) grains. Zeitschrift fur Pflanzenphysiologie,1979,92:186-193
    [29]Sharp R E, Lenoble M E, Else M A, Thorne E T, Gherardi F. Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance:evidence for an interaction with ethylene. Journal of Experimental Botany,2000,51:1575-1584
    [30]Lenoble M E, Spollen W G, Sharp R E. Maintenance of shoot growth by endogenous ABA:genetic assessment of the involvement of ethylene suppression. Journal of Experimental Botany,2004,55: 237-245
    [31]Kuehn G D, Phillips G C. Roles of polyamines in apoptosis and other recent advances in plant polyamines. Critical Reviews in Plant Scienceinte,2005,24:123-130
    [32]杨建昌,朱庆森,王志琴,曹显祖.水稻籽粒中内源多胺及其与籽粒充实和粒重的关系.作物学报,1997,23(4):385-392
    [33]王志琴,张耗,王学明,张自常,杨建昌.水稻籽粒多胺浓度与米质的关系.作物学报,2007,33(12):1922-1927

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700