用户名: 密码: 验证码:
节节麦高分子量麦谷蛋白基因的分子鉴定与育种利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普通小麦的进化瓶颈,导致其遗传基础狭窄。特别是其D染色体组,表现得尤为突出。普通小麦D染色体组的二倍体供体物种节节麦,地域分布广泛,存在着普通小麦缺乏的大量有益变异。D组的高分子量麦谷蛋白(HMW-GS)是普通小麦烘烤品质的主要贡献者。节节麦D组HMW-GS变异类型丰富,其中很多为现有普通小麦中未发现的新亚基、新组合。因此,对节节麦HMW-GS新基因的鉴定和利用,将有助于普通小麦的品质改良。
     本研究对节节麦HMW-GS新变异类型进行了分子鉴定;探讨了D组HMW-GS基因的系统进化;将节节麦HMW-GS新基因通过人工合成小麦途径导入了普通小麦,选育出了综合农艺性状优良的普通小麦新品系;同时,对遗传背景相似且含不同HMW-GS亚基的优良姊妹系,进行了面粉品质比较分析。具体研究结果如下:
     1.从一份来自伊朗的节节麦材料(Aegilops tauschii Coss. subspecies tauschii,染色体组为DD,2n=2x=14) AS60中发现并克隆了一对新型HMW-GS基因:1Dx3.1t和1Dyll*t。其编码区全长分别为2514bp和1968bp,预测它们将编码大小分别为836和654个氨基酸残基的蛋白质亚基。基于24个已知1Dx基因保守区序列进行的网状支系分析(Median-joining network)显示,来自AS60的1Dx3.1t与其它五个仅分布在亚洲普通小麦中的稀有1Dx基因(1Dx1.5*,1Dx2.2*,1Dx5',1Dx2.6和1Dx2.8)在Glu-D1位点上的进化地位极其原始。鉴于在这六个原始序列中,仅本研究的1Dx3.1‘来自于节节麦,我们认为,历史上应该有一份含有1Dx3.1‘或类似基因的节节麦参与了普通小麦的起源。由于节节麦材料AS60属于Aegilops tauschii Coss. subspecies tauschii亚种。所以,我们认为,Aegilops tauschii Coss. subspecies tauschii亚种也可能参与了普通小麦起源。
     2.从一份采自土耳其Kars地区的美国农业部农业研究服务中心(USDA-ARS)编号为P1554324的节节麦材料(Aegilops tauschii Coss. subspecies tauschii,染色体组为DD,2n=2x=14)中发现并克隆了一对新型HMW-GS基因:1Dx5.3t+1Dy12.1**t1Dx5.3t和1Dy12.1**t的编码区长度分别为2115bp和1986bp,预测分别编码长度为703和660个氨基酸残基的蛋白质亚基。SDS-PAGE分析显示,1Dx5.3‘的电泳迁移率位于1Bx6和1Bx7之间,1Dyl2.1**t的电泳迁移率则略大于1Dyl2。1Dx5.3t是目前已知的序列中,长度最短的Dx型亚基。1Dy12.1**t也比较特殊,在其重复区的前端存在着一个额外的半胱氨酸残基。这与被公认为优质亚基的1Dx5类似,但从未在其他已知的Dy型亚基中出现过。因此,1Dy12.1**t亚基可能会像1Dx5亚基一样,对面粉品质产生积极的影响。另外,系统进化分析显示,1Dy12.1**t还在Glu-Dy位点的系统进化网络中扮演着一个关键节点的作用。
     3.通过对采自新疆及黄河流域不同地域的节节麦HMW-GS基因的克隆、测序和比对分析,找出了它们序列间的差异。基于这些序列间的差异,进行系统进化分析,探讨了我国节节麦的来源及传播关系。推测,在历史上至少有两个不同的节节麦居群传入了新疆(AS71和AS72或其相似类群)和黄河中游地区。可能的传播路线是:分布在中东地区的AS60或其相似类群的节节麦,经自然延伸或人类活动向东传播至新疆伊犁河谷地区,逐步进化形成AS71或其相似类群的节节麦,这部分节节麦经丝绸之路的人类活动继续向东传播至黄河流域,逐步进化形成今天的AS75及其相似类群的节节麦。另外,存在一份同样分布在中东地区但不同于AS60的节节麦经自然延伸或人类活动向东传播至新疆伊犁河谷地区,逐步进化形成AS72或其相似类群的节节麦,这部分节节麦经丝绸之路的人类活动自新疆传入黄河流域后,在不同的生境下,经过进一步适应演化,又分化出不同类群,形成了现在分布于黄河中游地区(陕西、河南和山东等地)的与新疆节节麦AS72亲缘关系较近的节节麦类群。
     4.利用属于4个不同亚种(圆锥小麦、野生二粒小麦、硬粒小麦、栽培二粒小麦)的9份四倍体小麦与节节麦AS60杂交,配制了9个杂交组合,获得了9份含AS60血缘的人工合成小麦。我们通过观察其田间植株形态,同时分析其种子中HMW-GS亚基组成,确认所获材料均明显含有AS60的血缘。农艺性状调查发现,它们与其它人工合成小麦相似,均存在诸多不良农艺性状,仅能作为导入外源遗传物质的中间材料,需经与普通小麦优良品系回交改良后方可利用。
     5.利用含AS60血缘的人工合成小麦Syn-SAU-1(AS2255×AS60)与优良小麦品种川麦32杂交,再经农艺性状优良的川育18和川麦42的两次回交,并自交3代后,运用系谱选育法选出了两个单株。第二年又分别在这两个植株的自交系中各选出了两个单株。最终由此四个单株形成了四个姊妹品系:23号、24号、25号和26号。这四个品系的综合农艺性状优良。四个品系材料的A、B组HMW-GS完全一致(分别同为lAxl和1Bx6+lBy8)。23号和24号材料的D组HMW-GS亚基组合同为1Dx3.1t+1Dy11*t,而25号和26号材料则均为1Dx5+1Dy10。
     6.将在一地(温江)两季(2009-2010年度和2010-2011年度)、一季(2010-2011年度)三地(都江堰、温江和西宁)种植试验中收获的四个姊妹品系(23号、24号、25号和26号)的种子,用于测试与小麦面粉品质相关的11项指标,以探讨节节麦AS60中发现的新型HMW-GS亚基组合1Dx3.1t+1Dy11*t对小麦面粉加工品质的影响。结果表明,1Dx3.1t+1Dy11*t亚基对小麦面粉烘烤品质的贡献稍逊于国际公认的优质亚基1Dx5+1Dy10亚基。另外这四个品系的蛋白质含量、SDS沉降值均较低,这可能是其所含的四倍体蓝麦(AS2255)血统所致,并可能有利于制作饼干和蛋糕。
The evolution bottleneck of common wheat (Triticum aestivum L.) largely reduced the genetic diversity of common wheat lines, especially in its D genome. Aegilops tauschii Coss., the D-genome progenitor of common wheat, has a wide geographical distribution and a large of genetic variations. High-molecular-weight glutenin subunits (HMW-GS) play an important role in determining bread-making quality of common wheat, which is largely determined by the Glu-D1locus in D-genome. Ae. tauschii has a much higher HMW-GS diversity than common wheat on Glu-D1locus. Identification and utilization of HMW-GS genes in Aegilops tauschii will be useful to improve the quality of common wheat.
     This study is aimed to report the discovery and characterization of novel x-and y-type HMW-GS alleles from Ae. tauschii, to discuss their phylogenetic relationships with previously identified alleles on the Glu-D1loci of T. aestivum and Ae. tauschii, to introduce novel HMW-GS genes from Ae. tauschii into elite common wheat lines via synthetic hexaploid wheat, and to evaluate the effect of novel HMW-GSs from Ae. tauschii on the quality of flour. The main results are as follows:
     1. A pair of novel high molecular weight glutenin subunits (HMW-GS)1Dx3.1t and1Dy11*t were revealed and characterized from Aegilops tauschii Coss. subspecies tauschii accession AS60. SDS-PAGE band of1Dx3.1t was between those of1Dx2and1Dx3, while1Dy11*t was between1Dy11and1Dy12. The lengths of1Dx3.1t and1Dy11*t were2,514bp and1,968bp, encoding836and654amino acid residues, respectively. Their authenticity was confirmed by successful expression of the coding regions in Escherichia coli. Network analysis indicated that1Dx3.1t together with other five rare alleles only detected in Asia common wheat populations represented the ancestral sequences in Glu-D1locus. Neighbor-joining tree analysis of previously cloned x-type and y-type alleles in the Glu-D1locus supported the hypothesis that more than one Ae. tauschii genotypes were involved in the origin of hexaploid wheat and that different Ae. tauschii accessions contributed the D genome to common wheat and Ae. cylindrical Host, respectively. An Ae. tauschii accession with1Dx3.1t or a closely related allele probably have involved in the origin of common wheat. Since accession AS60used in this study belonged to typical ssp. tauschii, present results suggested the possibility that ssp. tauschii was involved in the evolution of common wheat.
     2. A pair of novel high-molecular-weight glutenin subunits (HMW-GS)1Dx5.3t and1Dy12.1**t were revealed and characterized from Ae. tauschii accession PI554324. SDS-PAGE band of10x5.3t was between those of1Bx6and1Bx7, while1Dy12.1**twith slightly faster migration rate than that of1Dyl2. The lengths of1Dx5.3t and1Dy12.1**t were2115bp and1986bp, encoding703and660amino acid residues, respectively. Their authenticity was confirmed by successful expression of the coding regions in Escherichia coli.1Dx5.3t is the shortest of the known Dx-type alleles.1Dy12.1**t is also a special subunit since it has an additional cysteine in the front of the central repetitive domain. This cysteine that is not existed in previously reported Dy-type genes may be useful for improving bread wheat quality. Median-joining Network analysis indicated that1Dyl2.1*may be a key site in the genealogy of the Glu-Dy.
     3. To reveal the transmission route of Ae. tauschii accessions in Yili River valley region of Xinjiang and the middle reaches of the Yellow River of China, HMW-GS genes of nine Chinese Ae. tauschii accessions from these regions were cloned, sequenced, and compared each other. The results from phylogenetic analysis suggested that at least two Ae. tauschii accessions were transmmited into Xinjiang and the middle reaches of the Yellow River in the history. One possible route is that AS60-like accession in Middle East was eastward spread to Yili River valley region by human activities or natural extension. It was gradually evolved as accession AS71at there. This accession was also eastward spread to the middle reaches of the Yellow River and gradually evolved to AS75or its similar accessions. In addition, another Ae. tauschii accession from the middle east was also eastward spread to Yili River valley region. It was gradually evolved to AS72at there. This accession was also continued to eastward spread to the middle reaches of the Yellow River. The pathway of Chinese Ae. tauschii transmission may be the famous Silk Road. The original accession was gradually evolved to different groups in order to adapt to different habitats.
     4. Nine synthetic hexaploid wheats were developed by crossing nine T. turgidum lines belonging to four subspecies with Ae. tauschii accession AS60. Their authenticity was confirmed by morphological observation and SDS-PAGE analysis. These synthetic hexaploid wheats showed many undesirable agronomic traits, which can be used as the bridge for the gene transferring of the nine T. turgidum and Ae. tauschii AS60parents. Their agronomic traits can be improved by repeatedly backcrossing with elite common wheat cultivars.
     5. After backcrossing synthetic hexaploid wheat Syn-SAU-1(AS2255×AS60) with elite common wheat cultivars Chuanmai32, Chuanyu18, and Chuanmai42, and then selfing three times, four common wheat sister lines (23、24、25and26) were developed. The four lines showed desirable agronomy characters and were considered as elite lines, which was confirmed at Wenjiang of Sichuan province in2009-2010and2010-2011crop seasons and at Dujiangyan and Wenjiang of Sichuan provinve in2011-2012crop season and Xining of Qinghai province in2011-2012. The lines23and24have the HMW-GS1Dx3.1t+1Dy11*t, while25and26have1Dx5+1Dy10at Glu-Dl locus. All the four lines had1Ax1at Glu-Al locus and1Bx6+1By8at Glu-B1locus. Based on the analysis on11quality parameters of the four lines, it was indciated that1Dx3.1t+1Dy11*t was slightly worse than1Dx5+1Dy10on the baking quality of wheat flour.
引文
董玉琛,许树军,周荣华等.小麦-山羊草双二倍体的合成与利用.植物细胞工程与育种.北京:北京工业大学出版社,1990:178-183.
    贾继增,张正斌,Devos K等.小麦21条染色体RFLP作图位点遗传多样性分析.中国科学C辑,2001,31(1):13-21.
    王庆,黄林,袁中伟等.中国新疆与黄河流域节节麦的传播关系.四川农业大学学报,2010,28(4):407-410.
    魏会廷,李俊,彭正松等.节节麦DNA指纹关系所揭示的古代中国与西方农业技术交流.自然科学进展,2008,18(9):987-993.
    肖静,田纪春.小麦(T. aestivum L.) D基因组的研究进展.分子植物育种,2008,6(3):537-541.
    颜济,杨俊良.小麦-山羊草复合群//小麦族生物系统学.北京:中国农业出版社,1999:124-1251.
    颜济,杨俊良,崔乃然等.新疆伊犁地区节节麦(Aegilops tauschii Cosson)作物学报,1984,10(1):1-8.
    杨武云,余毅,胡晓蓉等.节节麦及其在小麦生物技术育种中的研究与应用.西南农业学报,1999,12(AHTS):19-25.
    Altschul SF, Gish W, Miller W et al. Basic local alignment search tool. J Mol Biol,1990,215(3): 403-410.
    Adams KL and Wendel JF. Polyploidy and genome evolution in plants. Curr Opin Plant Biol,2005,8(2): 135-141.
    An XL, Li HX, Xiong XJ et al. Identification and isolation of a new x-type HMW glutenin subunit 1Dx1.6t gene from Aegilops tauschii. Plant Breeding,2009,128(1):41-45.
    Anderson OD, Greene FC, Yip RE et al. Nucleotide sequences of the two high-molecular-weight glutenin genes from the D-genome of a hexaploid bread wheat, Triticum aestivum L. cv Cheyenne. Nucleic Acids Res,1989,17(1):461-462.
    Branlard G and Dardevet M. Diversity of grain proteins and bread wheat quality:1. Correlation between gliadin bands and flour quality characteristics. J Cereal Sci,1985,3(4):329-343.
    Bushuk W. Wheat breeding for end-product use. Euphytica,1998,100(1-3):137-145.
    Caldwell KS, Dvorak J, Lagudah ES et al. Sequence polymorphism in polyploidy wheat and their D-genome ancestor. Genetics,2004,167(2):941-947.
    Chang GY, Shen XF, Su YR et al. Identification, cloning and phylogenetic analysis of a y-type HMW-GS in Triticum tauschii. J Triticeae Crops,2010,30(2):198-202 (in Chinese).
    Chen WJ, Fan X, Zhang B et al. Novel and ancient HMW glutenin genes from Aegilops tauschii and their phylogenetic positions. Genet Resour Crop Evol,2012, DOI:10.1007/s 10722-011-9788-0.
    Cong H, Takata K, Ikeda TM et al. Characterization of a novel high-molecular-weight glutenin subunit pair 2.6+12 in common wheat landraces in the Xinjiang Uygur autonomous district of China. Breed Sci,2007,57(3):253-255.
    Dong H, Cox TS, Sears RG et al. High molecular weight glutenin genes:Effects on quality in wheat. Crop Sci,1991,31(4):974-979.
    Dhaliwal HS, Singh H, Gill KS et al. Evaluation and cataloguing of wheat germplasm for disease resistance and quality. In:Damania AB, ed. Biodiversity and wheat improvement. John Wiley & Sons pub, Chichester, UK,1993:103-109.
    Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science,2007,316(5833):1862-1866.
    Dvorak J, Pantaleo DT, Zhang HB et al. The evolution of polyploid wheats:identification of the A genome donor species. Genome,1993,36(1):21-31.
    Dvorak J. Genome analysis in the Triticum-Aegilops alliance. In:Slinkard AE, ed. Proceedings of the 9th International Wheat Genetics Symposium (Saskatoon, Saskatchewan, Canada). University Extension Press, University of Saskatchewan,1998:8-11.
    Dvorak J, Luo MC, Yang ZL et al. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet,1998,97(4):657-670.
    Fan X, Sha LN, Yang RW et al. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase. BMC Evol Biol, 2009,9:247.
    Fang JY, Liu Y, Zhang CG et al. Cloning and molecular characterization of a novel x-type glutenin gene Glu-D'l from Aegilops tauschii. Mol Biol Rep,2009,36(5):1195-1202.
    Feng B, An X, Xu Z et al. Molecular cloning of a novel chimeric HMW glutenin subunit gene 1Dx5' from a common wheat line W958. Mol Breeding,2011,28(2):163-170.
    Filatov DA. ProSeq:A software for preparation and evolutionary analysis of DNA sequence data sets. Mol Ecol Notes,2002,2(4):621-624.
    Gianibelli MC, Larroque OR, MacRitchie F et al. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem,2001,78(6):635-646.
    Giles RJ and Brown TA. GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor Appl Genet,2006,112(8):1563-1572.
    Gill BS and Raupp WT. Direct genetic transfers from Aegilops squarrosa L to hexaploid wheat. Crop Sci,1987,27(3):445-450.
    Gupta RB and MacRitchie F. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1, of common wheats. Ⅱ. Biochemical basis of the allelic effects on dough properties. J Cereal Sci,1994,19(1):19-29.
    Guo X, Guo J, Li X et al. Molecular characterization of two novel Glu-D1-encoded subunits from Chinese wheat(Triticum aestivum L.) landrace and functional properties of flours possessing the two novel subunits. Genet Resour Crop Evol,2010,57(8):1217-1225.
    Hammer K. Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten:Aegilops L. Genet Resour Crop Evol,1980,28(1):33-180.
    Hassani ME, Gianibelli MC, Shariflou MR et al. Molecular structure of a novel y-type HMW glutenin subunit gene present in Triticum tauschii. Euphytica,2005,141(1-2):191-198.
    Hsam SLK, Kie□er R, Zeller FJ. Significance of Aegilops tauschii glutenin genes on breadmaking properties of wheat. Cereal Chem,2001,78(5):521-525.
    Hu XG, Wu BH, Yan ZH et al. Characterization of a novel 1Ay gene and its expression protein in Triticum urartu. Agr Sci China,2010,9(11):1543-1552.
    Huang L, Wang Q, Zhang LQ et al. Haplotype variations of gene Ppd-Dl in Aegilops tauschii and their implications on wheat origin. Genet Resour Crop Evol,2011, DOI:10.1007/s10722-011-9741-2.
    Jain SK, Qualset CO, Bhatt GM et al. Geographical patterms of phenotypic diversity in a world collection of durum wheats. Crop Sci,1975,15(5):700-704.
    Jakob SS and Blattner FR. A chloroplast genealogy of Hordeum (Poaceae):long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol Biol Evol,2006,23(8):1602-1612.
    Kema GHJ, Lange W, Silfhout CH. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. Phytopathology,1995,85(4):425-429.
    Kerber ER and Tipples KH. Effects of the D genome on milling and baking properties of wheat. Can J Plant Sci,1969,49(3):255-263.
    Khan K, Tamminga G, Lukow O. The effects of wheat flour proteins on mixing and baking-correlations with protein fractions and high molecular weight glutenin subunit composition by gel electrophoresis. Cereal Chem,1989,66(5):391-396.
    Kihara H. Discovery of the DD-analyser, one of the ancestors of'Triticum vulgare. Agric Hortic (Tokyo), 1944,19:889-890.
    Kilian B, Ozkan H, Deusch O et al. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol,2007,24(1):217-227.
    Lafiandra D, D'Ovidio R, Porceddu E et al. New data supporting high Mr glutenin subunit 5 as the determinant of quality differences among the pairs 5+10 vs 2+12. J Cereal Sci,1993,18(2): 197-205.
    Lagudah ES and Appels R. Wild relatives as a source of new germplasm for cereals improvement. In Focused plant improvement:toward responsible and sustainable agriculture. Edited by B.C. Imrie and J.B. Hacker. Proceedings of the 10th Australian Plant Breeding Conference,1993:10-21.
    Lagudah ES and Halloran GM. Phylogenetic relationships of Triticum tauschii the D genome donor to hexaploid wheat.1. Variation in HMW subunits of glutenin and gliadin. Theor Appl Genet,1988, 75(4):592-598.
    Lagudah ES and Halloran GM. Phylogenetic relationships in Triticum tauschii the D genome donor to hexaploid wheat.3. Variation in, and the genetics of, seed esterases (Est-5). Theor Appl Genet, 1989,77(6):851-856.
    Lagudah ES, MacRitchie F, Halloran GM. The influence of high-molecular-weight subunits of glutenin from Triticum tauschii on flour quality of synthetic hexaploid wheat. J Cereal Sci,1987,5(2): 129-138.
    Lange W and Jochemsen G. Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T. aestivum), through chromosome-doubled hybrids I. Two strategies for the production of the amphiploids. Euphytica,1992a,59(2-3): 197-212.
    Lange W and Jochemsen G. Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T. aestivum), through chromosome-doubled hybrids Ⅱ. Morphology and meiosis of the amphiploids. Euphytica,1992b,59(2-3):213-220.
    Lelley T, Stachel M, Grausgruber H et al. Analysis of relationships between Ae. tauschii and the D genome of wheat utilizing microsatellites. Genome,2000,43(4):661-668.
    Liu DC, Lan XJ, Yang ZJ et al. A unique Aegilops tauschii genotype needless to immature embryo culture in cross with wheat. Acta Botanica Sinica,2002,44(6):708-713.
    Lu CM and Lu BR. Molecular characterization of the HMW glutenin genes Dtx1.5+Dty10 from Aegilops tauschii and their PCR-mediated recombinants. Mol Breeding,2005,15(3):247-255.
    Mackie AM, Lagudah ES, Sharp PJ et al. Molecular and biochemical characterisation of HMW glutenin subunits from T. tauschii and the D genome of hexaploid wheat. J Cereal Sci,1996,23(3): 213-225.
    Matsuoka Y, Nishioka E, Kawahara T et al. Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat Aegilops tauschii Coss. Plant Syst Evol,2009,279(1):233-244.
    Mujeeb-Kazi A, Rosas V, Roldan S. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. × T. tauschii; 2n=6x=42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol,1996,43(2):129-134.
    Ogbonnaya FC, Halloran GM, Lagudah ES. D genome of wheat-60 years on from Kihara, Sears and McFadden. In:Tsunewaki K, ed. Frontiers of Wheat Bioscience, the 100th Memorial Issue of Wheat Information Service, Kihara Memorial Foundation for the Advancement of Life Sciences, Yokohama, Japan,2005:205-220.
    Payne PI. Genetics of wheat storage proteins and the e-ect of allelic variation on bread-making quality. Annu Rev Plant Physiol,1987,38:141-153.
    Payne PI and Lawrence GJ. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for the high molecular weight subunits of glutenin in hexaploid wheat. Cereal Res Commun,1983,11(1):29-35.
    Pena RJ, Zarco-Hernandez J, Mujeeb-Kazi A. Glutenin subunit compositions and breedmaking quality characteristics of synthetic hexaploid wheats derived from Triticum turgidum × Triticum tauschii (coss.) Schmal crosses. J Cereal Sci,1995,21(1):15-23.
    Petersen G, Seberg O, Yde M et al. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol,2006,39(1):70-82.
    Pfluger LA, D'Ovidio R, Margiotta B et al. Characterisation of high-and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theor Appl Genet,2001,103(8):1293-1301.
    Poiarkova H and Baum A. Landraces of wheat from the northern Negev in Israel. Euphytica,1983, 32(1):257-271.
    Rehman A, Evans N, Gianibelli MC et al. Allelic variations in high and low molecular weight glutenins at the Glu-Dt locus of Aegilops tauschii as a potential source for improving bread wheat quality. Aust J Agr Res,2008,59(5):399-405.
    Reif JC, Zhang P, Dreisigacker S et al. Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet,2005,110(5):859-864.
    Rozas J, Sanchez-DelBarrio JC, Messeguer X et al. DNAsp4 computer software for DNA sequence polymorphism. Version 4.10.4. Barcelona University, Barcelona, Spain.2005, Available from http://www.ub.es/dnasp/
    Shewry PR, Halford NG, Tatham AS. The high molecular weight subunits of wheat, barley and rye: genetics, molecular biology, chemistry and role in wheat gluten structure and functionality. Oxford Surveys Plant Mol Cell Biol,1989,6:163-219.
    Shewry PR, Halford NG, Tatham AS. High molecular weight subunits of wheat glutenin. J Cereal Sci, 1992,15(2):105-120.
    Su YR, Zhang DL, Zhang M et al. Characterization, molecular cloning, and phylogenetic analysis of three y-type high molecular weight glutenin subunit genes from Aegilops tauschii of the middle reaches of yellow river. Acta Agron Sin,2009,35(7):1244-1252.
    Sugiyama T, Rafalski A, Peterson D et al. A wheat HMW glutenin subunit gene reveals a highly repeated structure. Nucleic Acids Res,1985,13(24):8729-8737.
    Tajima F. Statistical method for testing the neutral mutation of hypothesis by DNA polymorphism. Genetics,1989,123(3):585-595.
    Talbert LE, Smith LY, Blake NK. More than one origin of hexaploid wheat is indicated by sequence comparison of low copy DNA. Genome,1998,41(3):402-407.
    Tang YL, Yang WY, Tian JC et al. Effect of HMW-GS 6+8 and 1.5+10 from synthetic hexaploid wheat on wheat quality traits. Agr Sci China,2008,7(10):1161-1171.
    Tang YL, Yang WY, Wu YQ et al. Effect of high-molecular-weight glutenin allele, Glu-Bld, from synthetic hexaploid wheat on wheat quality parameters and dry, white Chinese noodle-making quality. Crop Pasture Sci,2010,61(4):310-320.
    Terasawa Y, Kawahara T, Sasakuma T et al. Evaluation of the genetic diversity of an Afghan wheat collection based on morphological variation, HMW glutenin subunit polymorphisms, and AFLP. Breeding Sci,2009,59(4):361-371.
    Thompson JD, Plewniak F, Poch O. A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Res,1999,27(13):2682-2690.
    Wan YF, Yan ZH, Liu KF et al. Comparative analysis of the D genome-encoded high-molecular weight subunits of glutenin. Theor Appl Genet,2005,111(6):1183-1190.
    Wang CJ, Zhang LQ, Dai SF et al. Formation of unreduced gametes is impeded by homologous chromosome pairing in tetraploid Triticum turgidum x Aegilops tauschii hybrids. Euphytica,2010, 175(3):323-329.
    Warburton ML, Crossa J, Franco J et al. Bringing wild relatives back into the family:recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica,2006,149(3):289-301.
    Watterson GA. On the number of segregation sites in genetical models without recombination. Theor Popul Biol,1975,7(2):256-276.
    Wieser H, Hsam SLK, Zeller FJ. Relationship between the qualitative and quantitative compositions of gluten protein types and technological properties of synthetic hexaploid wheat derived from Triticum durum and Aegilops tauschii. Cereal Chem,2003,80(3):247-251.
    William MDHM, Pena RJ, Mujeeb Kazi A. Seed protein and isozyme variations in Triticum tauschii (Aegilops squarrosa). Theor Appl Genet,1993,87(1-2):257-263.
    Yan YM, Hsam SLK, Yu JZ et al. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by Sodium Dodecyl Sulphate (SDS-PAGE), Acid Polyacrylamide Gel (A-PAGE) and Capillary Electrophoresis. Euphytica,2003,130(3):377-385.
    Yan Y, Zheng J, Xiao Y et al. Identification and molecular characterization of a novel y-type Glu-Dt1 glutenin gene of Aegilops tauschii. Theor Appl Genet,2004,108(7):1349-1358.
    Yan ZH, Wan YF, Liu KF et al. Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chinese Sci Bull,2002,47(3):220-225.
    Yan ZH, Guo ZF, Liu DC et al. Characterization of HMW-GS genes Dx5t and Dy12t from Aegilops tauschii accession with subunit combination Dx5t+Dy12t. Cereal Res Commun,2008,36(3): 477-487.
    Yang WY, Liu DC, Li J et al. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics,2009,36(9):539-546.
    Yang YW, Zhang LQ, Yen Y et al. Cytological evidence on meiotic restitution in pentaploid F1 hybrids between synthetic hexaploid wheat and Aegilops variabilis. Caryologia,2010,63(4):354-358.
    Yen C, Yang JL, Liu XD et al. The distribution of Aegilops tauschii Cosson in China and with reference to the origin of the Chinese common wheat.//Proc 6th Intern wheat Genet Symp. Kyoto, Japan, 1983:55-58.
    Yuan ZW, Chen QJ, Zhang LQ et al. Molecular characterization of two silenced y-type genes for Glu-B1 in Triticum aestivum ssp. yunnanese and ssp. tibetanum. J Integr Plant Biol,2009,51(1): 93-99.
    Zhang LQ, Chen QJ, Yuan ZW et al. Production of aneuhaploid and euhaploid sporocytes by meiotic restitution in fertile hybrids between durum wheat Langdon chromosome substitution lines and Aegilops tauschii. J Genet Genomics,2008a,35(10):617-623.
    Zhang LQ, Yan ZH, Dai SF et al. The crossability of Triticum turgidum with Aegilops tauschii. Cereal Res Comm,2008b,36(3):417-427.
    Zhang LQ, Liu DC, Lan XJ et al. A synthetic wheat with 56 chromosomes derived from Triticum turgidum and Aegilops tauschii. J Appl Genet,2008c,49(1):41-44.
    Zhang LQ, Liu DC, Zheng YL et al. Frequent occurrence of unreduced gametes in Triticum turgidum-Aegilops tauschii hybrids. Euphytica,2010,172(2):285-294.
    Zhang LQ, Zhang L, Luo JT et al. Synthesizing double haploid hexaploid wheat populations based on a spontaneous alloploidization process. J Genet Genomics,2011,38(2):89-94.
    Zhang YZ, Li QY, Yan YM et al. Molecular characterization and phylogenetic analysis of a novel glutenin gene (Dy10.1t) from Aegilops tauschii. Genome,2006,49(7):735-745.
    Zhang YZ, Li XH, Wang AL et al. Novel x-type high-molecular-weight glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins. Genetics,2008,178(1):23-33.
    Zhang Y, An X, Li X et al. Isolation and expression of a new high molecular weight glutenin subunit gene at the Glu-D-1-2 locus from Aegilops tauschii. Cereal Res Commun,2009,37(3):449-457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700