用户名: 密码: 验证码:
水稻根系形态生理与产量形成的关系及其栽培调控技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物根系既是水分和养分吸收的主要器官,又是多种激素、有机酸和氨基酸合成的重要场所,其形态和生理对地上部的生长发育、产量和品质形成均有重要作用。但根系作为植株“隐藏”的一半,与地上部分相比,对水稻根系形态生理及其与产量形成的关系了解较少。本研究以代表性水稻品种为材料,对水稻品种演进过程中根系形态生理的变化特点及其与产量形成的关系、超级稻品种在不同生育期根系形态生理变化特征、根系激素与强、弱势粒灌浆的调控作用、根系形态生理的关键栽培调控技术等进行了研究。主要结果如下:
     1.籼、粳稻品种演进过程中根系形态生理的变化及其与产量形成的关系江苏省中籼水稻品种和粳稻品种在品种演进过程中根系形态生理的变化及其与产量形成的关系表现基本一致。在各主要生育期,根干重、根重密度、根长、根长密度和根直径随品种演进增加。在生长早期和中期,根系氧化力、叶片光合速率、根系总吸收表面积和活跃吸收表面积以及根系伤流液中Z+ZR含量随品种演进增加或显著增加。随着品种演进产量逐步提高,其原因主要是每穗粒数的增多导致总颖花量的增加。回归分析表明,根干重、根长、根直径、根系氧化力、根系总吸收表面积和根系活跃吸收表面积与产量呈极显著线性正相关关系;颖花数、粒重和产量与根系分泌物/伤流液中有机酸和氨基酸组分和浓度显著相关。随品种演进,分蘖期根尖细胞中线粒体、高尔基体、核糖体和淀粉体数目显著增多。分蘖期根尖细胞中线粒体和高尔基体数目与根干重、根系氧化力、苗干重和分蘖数呈显著或极显著正相关关系。说明根系和地上部农艺和生理性状的改善,共同促进了现代品种尤其是超级稻品种产量的提高。
     2.超级稻品种主要生育期根系形态生理特征的变化及其与产量形成的关系整个生育期超级稻品种的根干重、地上部干物重和根长密度显著高于一般高产品种(对照)在抽穗前和抽穗期,超级稻品种单株根系氧化力(ROA)和根中玉米素(Z)+玉米素核苷(ZR)含量显著高于对照品种。在灌浆中后期则显著低于对照品种。超级稻品种两年的平均产量分别为10.2t hm-2和11.4t hm-2,分别比对照品种高13%和21%。产量的增加主要是由于库容量(总颖花量)的增大。超级稻两年的平均结实率分别为72.9%和79.0%,显著低于对照品种。相关分析表明,在灌浆期,ROA以及根中Z+ZR含量与结实率显著相关。表明超级稻具有较高的根干重、地上部干物重和根长密度以及生长早中期较高的单株ROA和根中Z+ZR含量,这些都促进了库容和产量的提高;通过提高灌浆期根系活性来提高结实率,有望进一步实现超级稻增产潜力。
     3.亚种间杂交稻根系和籽粒中激素与花后强、弱势粒灌浆的关系与强势粒及亚种内杂交稻的弱势粒相比,两个亚种间杂交稻组合弱势粒的胚乳细胞分裂速率低、籽粒灌浆慢。在灌浆前期,亚种间杂交稻组合弱势粒中赤霉素(GAs)含量较高,而细胞分裂素[玉米素(Z)+玉米素核苷(ZR)]、吲哚-3-乙酸(IAA)和脱落酸(ABA)含量较低。胚乳细胞的分裂速率和籽粒灌浆速率与根系和籽粒中Z+ZR和ABA含量及籽粒中IAA含量呈显著或极显著正相关关系,而与根系和籽粒中GAs含量及根系中IAA含量的相关性不显著。对颖花喷施激动素、IAA或ABA以及对根系施用激动素和ABA,促进了弱势粒胚乳细胞分裂速率和灌浆速率。说明根系和籽粒中较低的Z+ZR和ABA含量以及籽粒中较低的IAA含量可能是导致亚种间杂交稻弱势粒充实不良的重要原因。
     4.灌溉方式对水稻根系形态生理、产量和米质的影响
     4.1结实期干湿交替灌溉对水稻根系形态生理和产量的影响于抽穗后6天至成熟进行了轻干-湿交替灌溉(WMD)、重干-湿交替灌溉(WSD)和常规灌溉(CI,保持水层)3种灌溉方式处理。开花较早的强势粒的籽粒灌浆速率、粒重和Z+ZR含量在3种灌溉方式处理间无显著差异。与CI相比,WMD处理显著增加了弱势粒的籽粒灌浆速率和粒重,而WSD处理的结果则相反。WMD处理在土壤落干期,弱势粒和剑叶中Z+ZR含量与CI相比无显著差异,但复水后WMD处理的Z+ZR含量显著增加。在WSD处理下,弱势粒和剑叶中Z+ZR含量不论是土壤落干期还是复水期都显著下降。WMD与CI处理的根系中Z+ZR含量无显著差异。WSD处理显著增加了根系中Z+ZR含量,而显著降低了根系中异戊烯基腺嘌呤(iP)和异戊烯基腺苷(iPR)含量。弱势粒的籽粒灌浆速率和粒重与Z+ZR含量呈显著或极显著正相关关系。以上结果表明,抽穗后轻干-湿交替灌溉通过提高水稻弱势粒和剑叶中Z+ZR含量,进而促进了弱势粒的籽粒灌浆。
     4.2结实期干湿交替灌溉对稻米品质的影响在WMD处理下,籽粒灌浆后期的根系氧化力、剑叶光合速率和籽粒中蔗糖-淀粉代谢途径关键酶活性显著增加,而WSD处理的结果则相反。与CI相比,WMD处理的产量增加了9.3-9.5%,而WSD处理的产量降低了7.5~7.8%。WMD处理显著改善了稻米的加工品质、外观品质和食味品质,而WSD处理显著降低了稻米品质。说明结实期轻干-湿交替灌溉不仅可以提高水稻产量和改善稻米品质,而且还可以节约宝贵的水资源。
     4.3全生育期干湿交替灌溉对水稻根系形态生理和产量的影响在全生育期进行WMD.WSD和CI3种灌溉方式处理。与CI相比,WMD处理显著增加了根系氧化力、根叶穗中的细胞分裂素含量、叶片光合速率、籽粒中蔗糖-淀粉代谢途径关键酶活性和产量,而WSD处理的结果则相反。WMD和WSD处理均提高了水分利用效率。说明全生育期轻干-湿交替灌溉促进了根系生长,有利于其它生理过程,进而提高了产量和水分利用效率。
     5.养分管理和栽培模式对水稻根系形态生理和产量的影响
     5.1实地氮肥管理进行实地养分管理(SSNM,因地、因苗、因种施肥)和习惯施肥(FFP,对照)两种养分管理。抽穗前的根干重,FFP处理大于SSNM处理。在抽穗期及抽穗后,SSNM处理的根重大于FFP处理。SSNM处理提高了水稻整个生育过程的根-冠比。SSNM处理的水稻根系氧化力自幼穗分化期开始(尤其是单茎根系氧化力)均高于FFP处理。SSNM处理提高了抽穗后水稻剑叶光合速率。与FFP相比,SSNM处理的产量提高了7.2~9.4%,氮肥利用效率(氮肥偏生产力,产量/施氮量)增加了38~46%。表明SSNM促进生育后期根系生长是其提高产量和氮肥利用效率的一个重要原因。
     5.2饼肥和无机氮肥配施进行不施氮肥(T1)、施用无机氮(T2)、施用饼肥(T3)和饼肥与无机氮肥配施(T4)4种处理。各处理产量的高低表现为:T4>T2>T3>T1,4个处理间产量差异显著。T4处理显著增加了穗数、结实率、千粒重和收获指数,显著提高了抽穗期有效叶面积和高效叶面积、灌浆期叶片叶绿素含量和光合速率以及各主要生育时期的根干重、根长、根系氧化力、根系伤流量、根系总吸收表面积和活跃吸收表面积。表明饼肥与无机氮肥配施可以促进根部生长,进而促进地上部生长并提高产量。
     5.3高产高效栽培进行高产高效栽培(以实地养分管理和轻干-湿交替灌溉为核心技术的高产与水分养分高效利用的栽培技术体系)和当地高产栽培(对照)两种处理。与当地高产栽培相比,高产高效栽培增加了根系和地上部植株干物重、提高了根系细胞分裂素含量和根系氧化力。高产高效栽培的产量较对照增加了31%,并且显著提高了氮肥和水分利用效率。说明通过栽培技术的集成优化,可以促进根-冠生长,进而获得高产和水肥高效利用的效果。
     本研究在水稻品种演进过程中根系形态生理的变化及其与产量形成的关系、高产品种根系形态生理的诊断指标、超级稻品种主要生育期根系形态生理特征及其与地上部生长发育的关系、根系激素和籽粒激素水平的关系及其对强、弱势粒灌浆的调控作用以及根系形态生理的栽培调控技术等研究方面获得了新的认识,对水稻高产根系育种和高产、优质、高效栽培具有指导意义。
Roots are an integral part of plant organs and involved in acquisition of nutrients and water, synthesis of plant hormones, organic acids and amino acids, and anchorage of plants. Root morphology and physiology play an important role in the growth and development of aboveground plants. As a "hidden half", however, it remains much yet to be understood the relationship between root morphological and physiological traits and the yield formation in rice, relative to the aboveground growth and its relation to grain yield. Using typical rice cultivars as materials, this study investigated changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of indica and japonica rice cultivars, changes in morphological and physiological traits of roots in super rice at different growth stages, roles of root-produced hormones in regulating grain filling of superior and inferior spikelets, and the cultivation techniques to increase yield by regulating morphology and physiology of rice roots. The main results are as follows:
     1. Changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of indica and japonica rice cultivars
     Morphological and physiological traits of roots and their relationships with grain yield formation for the mid-season indica and japonica rice cultivars in Jiangsu Province showed a similar changing pattern during the evolution of rice cultivars. The root dry weight, root weight density, root length, root length density and root diameter at main growth stages were increased with the evolution of the cultivars. Compared with other cultivars, the root-shoot ratio of super rice cultivars was increased significantly at the panicle initiation stage, but showed no significant differences among the types of cultivars at latter growth stages. The root oxidation activity, leaf photosynthetic rate, total absorbing surface area and active absorbing surface area of root, and the content of cytokinins (zeatin+zeatin riboside) in root bleeding were increased or increased significantly with the evolution of the cultivars during the early and middle stages. Grain yield were increased gradually with the evolution of the cultivars. Increase in grain yield was attributed mainly to the increase in total number of spikelets, which resulted mainly from a large panicle. Regression analysis showed that the root dry weight, root length, root diameter, root oxidation activity, total absorbing surface area and active absorbing surface area of root very significantly correlated with grain yield. The numbers of spikelets, grain weight, and yield were associated with components and concentration of organic acids and amino acids in root exudates/bleeding. The number of mitochondrion, golgi body, ribosome and starch body in root-tip cells increased significantly with the evolution of the cultivars at the tillering stage. The number of mitochondrion and golgi body were significantly or very significantly and positively correlated with root dry weight, root oxidation power, seedling dry weight, and tiller number of rice at the tillering stage. The results suggest that the improved root and shoot growth increases grain yield of the modern cultivars, especially that of super rice cultivars.
     2. Changes in morphological and physiological traits of roots and their relationships with shoot growth in super rice
     Root, shoot dry weight, and root length density was significantly greater in super rice varieties than in check ones throughout the growth season. Root oxidation activity (ROA) and root zeatin (Z) zeatin riboside (ZR) content, in per plant basis, were significantly greater in super rice than check varieties before and at heading time. However, both ROA and root Z+ZR content were significantly lower in super rice than in check varieties at the mid and late grain filling stages. Grain yield of the super rice varieties, on average, was10.2t ha-1and11.4t ha-1, and was13%and21%higher than that of check varieties, respectively. The high grain yield was mainly due to a larger sink size (total number of spikelets) as a result of a larger panicle. The percentage of filled grains of the super rice varieties, on average, was72.9%and79.0%, lower than that of the check varieties. The mean ROA and root Z+ZR content during the grain filling period significantly correlated with the percentage of filled grains. The results suggest that an improved root and shoot growth, as showing a larger root and shoot biomass and greater root length density during the whole growing season and higher ROA and root Z+ZR content per plant at early and mid growth stages, contributes to the large sink size and high grain yield in the super rice varieties. The results also suggest the yield of super rice varieties could be further increased by an increase in filled grains through enhancing root activity during grain filling.
     3. Hormones in the grains and roots in relation to post-anthesis development of superior and inferior spikelets in japonicalindica hybrid rice
     Compared with inferior spikelets of indicalindica hybrid rice and superior spikelets, the inferior spikelets of japonicalindica(J/I) hybrids exhibited low rate of endosperm cell division and slow grain filling. During the early grain filling period, the inferior spikelets of J/I hybrids had more gibberellins (GAs), but less Z+ZR, indole-3-acetic acid (IAA), and abscisic acid (ABA). Rates of endosperm cell division and grain filling were positively and significantly or very significantly correlated with Z+ZR and ABA concentrations in both grains and roots or IAA in grains, whereas not significantly correlated with GAs either in grains or roots or IAA in roots. Applications of kinetin, IAA, or ABA to panicles, or kinetin and ABA to roots, enhanced cell division and grain filling in the inferior spikelets. Results suggest that low concentrations of Z+ZR and ABA in both grains and roots, and IAA in grains may result in the poor filling of inferior spikelets in the J/I hybrid rice.
     4. Effects of irrigation regimes on morphology and physiology of roots, yield, and quality of rice
     4.1Effects of alternate wetting and drying during the grain filling stage on morphology and physiology of roots and yield of rice
     Three irrigation regimes, alternate wetting and moderate soil drying (WMD), alternate wetting and severe soil drying (WSD), and conventional irrigation (CI, continuous flooding), were imposed from6d after heading to maturity. No significant differences in grain filling rate, grain weight, and cytokinin contents were observed for the earlier-flowering superior spikelets among the three irrigation regimes. Compared with the inferior spikelets in the CI, grain filling rate and grain weight were significantly increased in the WMD, whereas significantly reduced in the WSD. Cytokinin contents in inferior spikelets and the flag leaves in the WMD at the soil drying time were comparable with those in the CI, but they were significantly increased when plants were re-watered. The WSD significantly reduced cytokinin contents in inferior spikelets and the flag leaves either during the soil drying or during the re-watering period. Cytokinin contents in roots showed no significant difference between WMD and CI regimes. The WSD significantly increased trans-zeatin-type cytokinins, whereas reduced isopentenyladenine-type cytokinins, in roots. Grain filling rate and grain weight of inferior spikelets were significantly or very significantly correlated with cytokinin contents in these spikelets. The results suggested that a post-anthesis WMD holds great promise to improve grain filling of inferior spikelets through elevating cytokinin levels in inferior spikelets and the flag leaves of rice.
     4.2Effects of alternate wetting and drying during the grain filling stage on rice quality
     Root oxidation activity, the photosynthetic rate of the flag leaf, and activities of key enzymes in sucrose-to-starch conversion in grains at the late grain filling stage were significantly increased under the WMD, whereas they were significantly reduced under the WSD. The grain yield was increased by9.3-9.5%under the WMD, while it was reduced by7.5-7.8%under the WSD, when compared with that under the CI. The WMD significantly improved milling, appearance, and eating qualities, while WSD decreased these qualities. The results suggested that alternate wetting and moderate soil drying regime during the grain filling period holds great promise to both increase yield quantity and quality and also could save precious fresh water resources.
     4.3Effects of alternate wetting and drying during the whole growing season on morphology and physiology of roots and yield of rice
     Three irrigation regimes, WMD, WSD, and CI, were conducted during the whole growing season of rice. Compared with the CI, the WMD significantly increased, whereas the WSD reduced, root oxidation activity, cytokinin concentrations in roots, leaves, and grains, leaf photosynthetic rate, activities of key enzymes involved in sucrose-to-starch conversion in grains, and grain yield of rice. Both WMD and WSD increased water use efficiency (WUE). The results suggested that a moderate wetting and drying regime can enhance root growth which benefits other physiological processes and result in higher grain yield and WUE.
     5. Effects of nutrient management and cultivation patterns on morphology and physiology of roots and yield of rice
     5.1Site-specific nitrogen management
     Two nitrogen (N) managements, site-specific N management (SSNM, N application according to soil fertility, leaf color and growth status, and cultivar types) and farmers'fertilizer practice (FFP), were designed. The root dry weight in the FFP was higher than that in the SSNM before heading, whereas it was lower at and after heading. SSNM significantly increased the root-shoot ratio during the whole growing season. Compared with that under FFP, SSNM increased ROA at and after panicle initiation (especially ROA per stem). SSNM increased the photosynthetic rate of the flag leaves after heading. Compared with FFP, SSNM increased grain yield by7.2-9.4%and N use efficiency expressed as N partial-factor productivity (grain yield/amount of N applied) by38-46%. The enhancement of root growth at the latter growing stage would account for the increase in grain yield and N use efficiency under SSNM.
     5.2Application of rapeseed cake combined with inorganic nitrogen fertilizer
     Four treatments, no N application (T1), application of inorganic N fertilizer (T2), application of rapeseed cake (T3) and application of rapeseed cake combined with inorganic nitrogen fertilizer (T4), were conducted. The order of grain yield was T4> T2>T3>T1, the differences among four treatments were significant. The T4treatment significantly increased panicles, percentage of filled grains,1000-grain weight, and harvest index. It also significantly increased effective leaf area index and high effective leaf area index at the heading time, SPAD (soil-plant analysis department) values and photosynthetic rate during the grain filling period. Root dry weight, root length, root oxidation activity, amount of root bleeding, the total absorbing surface area and active absorbing surface area at different growth stages were greater under the T4treatment than those under any other treatments. The results suggest that application of rapeseed cake combined with inorganic N fertilizer can improve root growth, and consequently enhance shoot growth and increase grain yield.
     5.3High-yielding and high efficiency cultivation (HYHE)
     Two cultivation patterns, the high-yielding and high efficiency cultivation (HYHE, a cultivation system with SSNM and WMD as key techniques) and the local high-yielding cultivation (LHY), were practiced. Compared with LHY, the HYHE increased the biomass of root and shoot, root cytokinin concentration and root oxidation activity, and increased grain yield by31%. The HYHE also significantly increased water use efficiency and N use efficiency. The results suggest that root and shoot growth could be improved, and high grain yield high efficiency of water and N utilization could be achieved through integrating and optimizing cultivation techniques in rice production.
     This study would provide novel insights to understand the changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of indica and japonica rice cultivars, morphological and physiological index of roots for high-yielding, morphological and physiological traits of roots and their relationships with shoot growth in super rice, hormonal levels in roots and grains and their regulatory roles in grain filling of superior and inferior spikelets, and cultivation techniques to regulate morphology and physiology of roots, and which would have great significance in the breeding of root system and the cultivation for high grain yield, good quality, and high efficiency.
引文
1. Fitter AH. Characteristics and functions of root systems In:Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots, the Hidden Half. Marcel Dekker, Inc,2002. pp 15-32
    2. Fitter AH. Roots as dynamic systems:the developmental ecology of roots and root systems. In:Press MC, Scholes JD, Barker MG, eds. Plant Physiological Ecology. Blackwell Scientific, London,1999. pp 115-131
    3. Inukai Y, Ashikari M, Kitano H. Function of the root system and molecular mechanism of crown root formation in rice. Plant and Cell Physiology,2004,45(Suppl):17
    4. Weaver JE. The Ecological Relations of Roots. Washington:Carnegie Institution of Washington Publications,1919. pp 1-22
    5. Waisel Y, Eshel A, Kafkafi U. Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots, the Hidden Half. New York:Marcel Dekker Inc,2002. pp ⅲ-ⅳ
    6. Peng SB, Tang QY, Zou YB. Current status and challenges of rice production in China. Plant Production Science,2009,12:3-8
    7. Araki H, Morita S, Tatsumi J, Iijima M. Physiol-morphological analysis on axile root growth in upland rice. Plant Production Science,2002,5:286-293
    8. Arima S, Saisho K, Harada J. Morphological analysis of the rice root system based on root diameter. Japanese Journal of Crop Science,2001,70:408-417
    9. Shimizu H, Tanabata T, Xie XZ. Physiological function of phytochromes in seminal root growth of rice seedlings. Plant and Cell Physiology,2006,47(Suppl):203-206
    10.何强,邓华凤,舒服,杨益善,刘国华,刘建丰,陈立云.杂交水稻苗期发根性状与生育后期根系活力及穗部性状的关系.杂交水稻,2006,21(3):75-77
    11.钟旭华,黄农荣.水稻结实期根系活性与稻米垩白形成的相关性初步研究.中国水稻科学,2005,19(5):471-474
    12.朱德峰,林贤青,曹卫星.水稻深层根系对生长和产量的影响.中国农业科学,2001,34(4):429-432
    13. Zhang H, Xue Y, Wang Z, Yang J, Zhang J. Morphological and physiological traits of roots and their relationships with shoot growth in "super" rice. Field Crops Research,2009,113(1):31-40
    14.李木英,石庆华,许锦彪,胡志红,谭雪明.不同早稻品种灌浆期高温胁迫后根系生理差异研究.中国生态农业学报,2006,14(3):105-107
    15.石庆华,李木英,许锦彪,谭雪明.高温胁迫对早稻根系质膜ATPase活性及NH4+吸收的影响.作物学报,2006,32(7):1044-1048
    16.陶龙兴,王熹,黄效林,闵绍楷,程式华.水稻灌浆期间土壤含水量对根系生理活性的影响.中国农业科学,2004,37(11):1616-1620
    17. Yang L, Wang Y, Kobayashi K, Zhu J, Huang J, Yang H, Wang Y, Dong G, Liu G, Han Y, Shan Y, Hu J, Zhou J. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Global Change of Biology,2008,14:1-10
    18. Colmer TD, Cox M CH, Voesenek L ACJ. Root aeration in rice (Oryza sativa L.):evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatization. New Phytologist,2006,170: 767-777
    19. Debi BR, Taketa S, Ichii M. Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice(Oryza sativa L). Journal of Plant Physiology,2005,162:507-515
    20.郭再华,贺立源,徐才国.磷水平对不同耐低磷水稻苗根系生长及氮、磷、钾吸收的影响.应用与环境生物学报,2006,12(4):449-452
    21.曾翔,李阳生,谢小立,肖国樱,廖江林.不同灌溉模式对杂交水稻生育后期根系生理特性和剑叶光合特性的影响.中国水稻科学,2003,17(4):355-359
    22. MacMillan K, Emrich K, Piepho HP. Assessing the importance of genotype × environment interaction for root traits in rice using a mapping population. Ⅰ:a soil-filled box screen. Theoretical and Applied Genetics, 2006,113:977-986
    23. Chaitra J, Vinod MS, Sharma N. Validation of markers linked to maximum root length in rice (Oryza sativa L.). Current Science,2006,90:835-838
    24.腾胜,曾大力,钱前,国广泰史,藤本宽,黄大年,朱立煌.水稻根系活力的遗传分析.中国水稻科学,2002,16(2):119-123
    25.徐吉臣,邹亮星.利用相关分析鉴定与水稻根系性状表达相关的分子标记.遗传学报,2002,29(3):245-249
    26.陆景陵.植物营养学(上册),第2版.北京:中国农业大学出版社,2003.pp 23
    27. Monita S, Suga T, Yamazaki K. The Relationship between root length density and yield in rice plants. Japanese Journal of Crop Science,1988,57(3):438-443
    28.苗果园,张云亭,尹钧,侯跃生.黄土高原旱地冬小麦根系生长规律的研究.作物学报,1989,15(2):104-115
    29.川田信一郎.水稻的根系.北京:农业出版社,1984.pp1-11
    30. Kim HH. Varietal difference in root distribution of direct seeded rice. Korean Journal of Crop Sciences, 1998,43(1):38-43
    31. Kang SY, Morita S. Root growth and distribution in some japonica/indica hybrid and japonica type rice cultivars under field condition. Japanese Journal of Crop Science,1994,63(1):118-124
    32.凌启鸿,陆伟平,蔡建中,曹显祖.水稻根系分布与叶角关系的研究初报.作物学报,1989,15(2):123-131
    33. Morita S, Iwabuchi A, Yamazaki K. Relationships between the growth direction of primary roots and yield in rice plants. Japanese Journal of Crop Science,1996,55:520-525
    34. Terashima K, Ogata T, Akita S. Eco-physiological characteristics related with lodging tolerance of rice in direct sowing cultivation Ⅱ. Root growth characteristics of tolerant cultivars to root lodging. Japanese Journal of Crop Science,1994,63:34-41
    35. Khush GS. Breaking the yield frontier of rice. Geological Journal,1995,35(3):329-332
    36. Oyanagi A. Gravitropic response growth angle and vertical distribution of roots of wheat (Triticum aestivwn L.). Plant and Soil,1994,165:323-326
    37.凌启鸿.初麦研究新进展.东南大学出版社,1991.pp168-211
    38.郑景生,林文,姜照伟,李义珍.超高产水稻根系发育形成学研究.福建农业大学学报,1999,14(3):1-6
    39.朱德峰,林贤青,曹卫星.超高产水稻品种的根系分布特点.南京农业大学学报,2000,23(4):5-8
    40.董桂春,王余龙.水稻根系生长动态的研究.扬州大学学报,2002,23(4):51-55
    41.黄燕湘,罗丽华,何静.不同类型水稻根系形态特性实验方法的比较与分析.实验技术与管理,2006,23(7):24-26
    42.丁颖.稻根发展及分布情形之观察.稻作论文集.北京:农业出版社,1983.pp 174-183
    43.石庆华,黄英金,李木英,徐益群,谭雪明,张佩莲.水稻根系性状与地上部的相关及根系性状的遗传研究.中国农业科学,1997,30(4):61-67
    44.陈健.籼粳稻及其杂交育种根系的比较研究.沈阳农业大学学报,1991,22(S):99-104
    45.罗利军,张启发.栽培稻抗旱性研究的现状与策略.中国水稻科学,2001,15(3):209-214
    46. Champoux MC, Wang G, Sarkaruag S, Mackill DJ, O'Toole JC, Huang N, McCouch SR. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theoretical and Applied Genetics,1995,90:969-981
    47. Yang C, Yang L, Yang Y, Ouyang Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management,2004,70: 67-81
    48. Osaki M, Shinano T, Matsumoto M, Zheng T, Tadano T. A root-shoot interaction hypothesis for high productivity of field crops. Soil Science and Plant Nutrition,1997,37:445-454
    49. Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the new plant type of tropical rice lines. Journal of Plant Nutrition,2005,28:835-850
    50. Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines. Soil Science and Plant Nutrition,2004,50(4):545-554
    51. Harada J, Kang S, Yamazaki K. Root system development of japonica-indica hybrid rice cultivars. Japanese Journal of Crop Science,1994,63:423-429
    52.朱庆森,张祖建,杨建吕,曹显祖,郎有忠,王增春.亚种间杂交稻产量源库特征.中国农业科学,1997,30(3):52-59
    53. Yoshida S. Relation between rice plant type and root growth. Soil science and plant nutrition,1982,28(4): 473-482
    54.王余龙,蔡建中,何杰升,陈林,徐家宽,卞悦.水稻颖花根活量与籽粒灌浆结实的关系.作物学报,1992,18(2):8l-88
    55.石庆华,李木英,徐益群,张佩莲.水稻根系特征与地上部关系的研究初报.江西农业大学学报,1995,17(2):110-115
    56.任万军,黄云,刘代银,帅玲,杨文钰.水稻栽后前期根系与地上部增重模型及相互关系.四川农业大学学报,2010,28(4):421-425
    57.蔡昆争,骆世明,段舜山.水稻群体根系特征与地上部生长发育和产量的关系.华南农业大学学报(自然科学版),2005,26(2):1-4
    58.汪强,樊小林,Klaus D, Sattemacher B.不同水分条件下水稻根系生长与产量变化关系研究.中国农学通报,2006,22(11):106-111
    59.刘桃菊,戚吕瀚,唐建军.水稻根系建成与产量及其构成关系的研究.中国农业科学,2002,35(11):1416-1419
    60. Passioura JB. Roots and drought resistance. Agricultural Water management,1983,7:265-280
    61.蔡昆争,骆世明,段舜山.水稻根系的空间分布及其与产量的关系.华南农业大学学报(自然科学版),2003,24(3):1-4
    62.汪强,樊小林,刘芳,李方敏,Klaus D, Sattemacher B.断根和覆草旱作条件下水稻的产量效应.中 国水稻利.学,2004,18(5):437-442
    63.蔡昆争,骆世明,段舜山.水稻根系在根袋处理条件下对氮养分的反应.生态学报,2003,23(6):1109-1116
    64.刘文兆,李秧秧.断伤作物根系对籽粒产量与水分利用效率的影响研究现状及问题.西北植物学报,2003,8:1320-1324
    65.白书农,肖翊华.近年来水稻根系生理研究的几个特点.植物生理学通讯,1986(4):18-22
    66. Armstrong W. The oxidizing activity of roots in water-logged soils. Physiologia Plantarum.1967,20: 920-926
    67.杨照吕.水稻根系氧化力变化规律初探.探贵州农业科学,1984,6:7-10
    68. Zhang H, Tan G, Yang L, Yang J, Zhang J, Zhao B. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonicalindica hybrid rice. Plant Physiology and Biochemistry,2009,47:195-204
    69. Kato T, Takeda K. Associations among characters related to yield sink capacity in space-planted rice. Crop Science 1996,36:1135-1139
    70.敖和军,王淑红,邹应斌,彭少兵,唐启源,方远祥,肖安民,陈玉梅,熊吕明.超级杂交稻干物质生产特点与产量稳定性研究.中国农业科学,2008,41(7):1927-1936
    71. Peng S, Khush GS, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Research,2008,108:32-38
    72. Peng S, Cassman KG, Virmani SS, Sheehy J, Khush GS. Yield potential trends of tropical since the release of IR8 and its challenge of increasing rice yield potential. Crop Science,1999,39:1552-1559
    73. Yang J, Peng S, Zhang Z, Wang Z, Romeo M, Zhu Q. Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrids, Crop Science,2002,42:766-772
    74.许明,贾德涛,马殿荣,王嘉宁,苗微,陈温福.北方超级粳稻根系生理、叶片光合性能特点及其相互关系.作物学报,2010,36(6):1030-1036
    75. Lur HS, Setter TL. Role of auxin in maize endosperm development:Timing of nuclear DNA endoreduplication, zein expression, and cytokinins. Plant Physiology,1993,103:273-280
    76. Morris RD, Blevins DG, Dietrich JT, Durley RC, Gelvin SB, Gray J, Hommes NG, Kaminek M, Mathews LJ, Meilan R, Reinbott TM, Sayavedra-Soto L. Cytokinins in plant pathogenic bacteria and developing cereal grains. Australian Journal of Plant Physiology,1993,20:621-637
    77.朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述.2003,12(1):102-105
    78.沈宏,严小龙.根系分泌作用及其诱导机制.土壤与环境,2001,10(4):339-342
    79. Kende H, Zeevaart JAD. The five "classical" plant hormones. Plant Cell,1997,9:1197-1210
    80. Brenner ML, Cheikh N. The role of hormones in photosynthate partitioning and seed filling. In:Davies PJ, ed. Plant hormones, physiology, biochemistry and molecular biology. Dordrecht, The Netherlands: Kluwer Academic Publishers,1995. pp 649-670
    81. Davies PJ. Introduction. In:Davies PJ, ed. Plant Hormones, Biosynthesis, Signal Transduction, Action! Dordrecht, The Netherlands:Kluwer Academic Publishers,2004. pp 1-35
    82. Zhang ZJ, Zhou WJ, Li HZ. The role of GA, IAA and BAP in the regulation of in vitro shoot growth and microtuberization in potato. Physiologia Plantarum,2005,27:363-369
    83. Kiyota H, Oritani T, Kuwahara S. Synthesis and biological evaluation of abscisic acid, jasmonic acid, and its analogs. ACS Symposium Series,2005,892:246-254
    84. Srivastava A, Handa AK. Hormonal regulation of tomato fruit development:A molecular perspective. Journal of Plant Growth Regulation,2005,24:67-82
    85. Animoto E. Regulation of root growth by plant hormones-Roles for auxin and gibberellin. Critical Reviews in Plant Sciences,2005,24:249-265
    86. del Pozo JC, Lopez-Matas MA, Ramirez-Parra E, Crisanto Gutierrez. Hormonal control of the plant cell cycle. Physiologia Plantarum,2005,123:173-183
    87. Jimenez VM. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regulation,2005,47:91-110
    88. Xie ZJ, Jiang D, Cao WX, et al. Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statusses. Plant Growth Regulation,2003,41:117-127
    89. Akihiro T, Mizuno K, Fujimura T. Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant and Cell Physiology, 2005,46:937-946
    90. Lee BH, Henderson DA, Zhu JK. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell,2005,17:3155-3175
    91. Kangasjarvi J, Jaspers P, Kollist H. Signalling and cell death in ozone-exposed plants. Plant Cell and Environment,2005,28:1021-1036
    92. Cowan AK., Taylor NJ, van Staden J. Hormone homeostasis and induction of the small-fruit phenotype in 'Hass' avocado. Plant Growth Regulation,2005,45:11-19
    93. Yamanishi H, Yamazaki H, Koshioka M, Yoshida K. Low temperature effects on levels of some plant hormones at the flowering stage in rice panicles. Plant Physiology,1997,114(Suppl):818
    94. Devos S, Vissenberg K, Verbelen JP, Prinsen E. Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth:impacts on cell wall metabolism and hormone balance. New Phytologist,2005,166:241-250
    95. Suarez-Lopez P. Long-range signalling in plant reproductive development. International Journal of Developmental Biology,2005,49:761-771
    96. Thomas SG, Rieu I, Steber CM. Gibberellin metabolism and signaling. Vitamins and Hormones-Advances in Research and Applications,2005,72:289-338
    97. Hou XL, Wu P, Jiao FC, Jia QJ, Chen HM, Yu J, Song XW, Yi KK. Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and local Pi signalling and hormones. Plant Cell and Environment,2005,28:353-364
    98. Malonek S, Bomke C, Bornberg-Bauer E, Rojas MC, Heddend P, Hopkinsd P, Tudzynskia B. Distribution of gibberellin biosynthetic genes and gibberellin production in the gibberella fujikuroi species complex. Phytochemistry,2005,66:1296-1311
    99. Chiwocha SD, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross AR, Kermode AR. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant Journal,2005,42:35-48
    100. Murata Y. Studies on the photosynthesis of rice plant. Ⅷ. On the interrelationships between photosynthetic activity of the leaf and physiological activity of the root. Proceedings of Crop Science Society of Japan,1965,34(2):148-153
    101. Lee JH. The role of system of rice plant in relation to the physiological and morphological characteristics of areaial parts, Ⅵ. Characteristics of aerial parts and root under different seasonal cultivations. Proceedings of Crop Science Society of Japan,1972,41(1):1-13
    102. Murata Y, Matsushima S. Rice. In:Evans LT, ed. Crop physiology. Cambridge:Cambridge University Press,1975. pp 75-99
    103. Cao X, Zhu Q, Yang J. Classification of source-sink types in rice varieties with corresponding cultivated ways. In:Xiong Z, Min S, eds. Prospects of rice farming for 2000. Hangzhou:Zhejiang Science & Technology Press,1992. pp 361-372
    104.张祖建,王志琴,徐生,郎有忠,曹显祖,朱庆森.水稻胚乳细胞增殖和充实与子房生理活性变化关系的研究.作物学报,1998,24(6):670-676
    105.黄发松,孙宗修,胡培松,唐绍清.食用稻米品质形成研究的现状与展望.中国水稻科学,1998,12(3):172-176
    106.王丰,程方民.从籽粒灌浆过程上讨论水稻粒间品质差异形成的生理机制.种子,2004,23(1):31-35
    107.张祖建,王志琴,朱庆森.水稻胚乳细胞增值动态分析及其与籽粒生长的关系.作物学报,1998,24(3):257-263
    108. Jones RJ, Schreiber BMN, McNeil KJ. Cytokinin levels and oxidase activity during maize kernel development. In:Kaminek M, Mok BWS, Zazimalova E, eds. Physiology and Biochemistry of Cytokinins in Plants. The Hague, the Netherlands:SPB Academic Publishing,1992. pp 235-239
    109. Yang J, Peng S, Visperas RM, Sanico AL, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regulation,2000,30:261-270
    110. Zeevaart.JAD and RA Creelman. Metabolism andphysiology of abscisic acid. Annual Review Plant Physiology and Plant Molecular Biology,1988,39:439-473
    111. Ober ES, Setter TL, Madison JT, Thompson JF, Shapiro PS. Influence of water deficit on maize endosperm development. Enzyme activities and RNA transcripts of starch and zein synthesis, abscisic acid, and cell division. Plant Physiology,1991,97:154-164
    112. Anderson MN, Asch F, Wu Y, Jensen CR, Naested H, Mogensen VO, Koch KE. Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiology,2002,130:591-604
    113. Dembinska O, Lalonde S, Saini HS. Evidence against the regulation of grain set by spikelet abscisic acid levels in water-stressed wheat. Plant Physiology,1992,100:1599-1602
    114. Kato T, Sakurai N, Kuraishi S. The changes of endogenous abscisic acid in developing grains of two rice cultivars with different grain size. Japanese Journal of Crop Science,1993,62:456-461
    115. Ross GS, McWha JA. The distribution of abscisic acid in Pisum sativum plants during seed development. Journal of Plant Physiology,1990,136:137-142
    116. Schussler JR, Brenner ML, Brun WA. Relationship of endogenous abscisic acid to sucrose level and seed growth rate of soybeans. Plant Physiology,1991,96:1308-1313
    117.杨建吕,王志琴,朱庆森,苏宝林.ABA与GA对水稻籽粒灌浆的调控.作物学报,1999,25(3):341-347
    118. Davis WJ, Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:55-76
    119. Kwak KS, Iijima M, Yamauchi A, Kono Y. Changes with aging of endogenous abscisic acid and zeatin riboside in the root system of rice. Japanese Journal of Crop Science,1996,65:686-692
    120. Soejima H, Sugiyama T, Ishihara K. Changes in the chlorophyll contents of leaves and in leaves of cytokinins in root exudates during ripening of rice cultivars:Nipponbare and Akenohoshi. Plant and Cell Physiology,36(6):1105-1114
    121.田晓莉,杨培珠,何钟佩,李不明.棉花根-冠关系的研究.中国农业大学学报,1999,4(5):92-97
    122.杨建吕,王朋,刘立军,王志琴,朱庆森.中籼水稻品种产量与株型演进特征研究.作物学报,2006,32(7):949-955
    123.沈波,王熹.籼粳亚种间杂交稻根系伤流强度的变化规律及其与叶片生理状况的相互关系.中国水稻科学,2000,14(2):122-124
    124.李阳生,李绍清.淹涝胁迫对水稻生育后期的生理特性和产量性状的影响.武汉植物学研究,2000,18(2):117-122
    125.林贤青,朱德峰,李春寿,阮关海,张玉屏,陈惠哲.水稻不同灌溉方式下的高产生理特性.中国水稻科学,2005,19(4):328-332
    126. Tsugeki R, Fedoroff NV. Genetic ablation of root cap cells in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America,1999,96:12941-12946
    127. Sievers A, Braun M, Monshausen GB. The root cap:structure and Function//Waisel Y, Eshel A, Kafkafi U. Plant Roots:the Hidden Half. New York:Marcel Dekker,2002. pp 33-47
    128. Olsen GM, Mirza JI, Maher EP. Ultrastructure and movements cell organelles in the root cap of agravitropic mutants and normal seedlings of Arabidopsis thaliana. Physiologia Plantarum,1984,60: 523-531
    129. HaWes MC, Gunawardena U, Miyasaka S. The role of root border cells in plant defense. Trends in Plant Sciences,2000,5:128-133
    130. Hayashi S. Effect of limiting oxygen supply on the ultrastructure of root tip cells in the germinating stage of rice seeds. Japanese Journal of Crop Science,1998,67:41-48
    131.杨建吕.水稻根系形态生理与产量、品质形成及养分吸收利用的关系.中国农业科学,2011,44(1):36-46
    132. Peng SB, Huang JL, Zhong XH, Yang JC, Wang GH, Zou YB, Zhang FS, Zhu QS. Buresh RJ, Witt C. Challenge and opportunity of in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agricultural Sciences in China,2002,1:776-785
    133. Peng SB, Buresh RJ, Huang JL, Yang JC, Zou YB, Zhong XH, Wang GH, Zhang FS. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems'in China. Field Crops Research,2006,96:37-47
    134.杨肖娥,孙曦.不同水稻品种对低氮反应的品种差异及其机制的研究.土壤学报,1992,29(1):73-79
    135. Cassman KG, Dobermann A, Walters DT. Agroecosystems, nitrogen-use efficiency and nitrogen management, Ambio,2002,31:132-140
    136.程建峰,戴廷波,荆奇,姜东,潘晓云,曹卫星.不同水稻基因型的根系形态生理特性与高效氮素吸收.土壤学报,2007,44(2):266-272
    137.魏海燕,张洪程,张胜飞,杭杰,戴其根,霍中洋,许轲,马群,张庆,刘艳阳.不同水稻氮利用效率基因型的根系形态与生理指标研究.作物学报,2008,34(3):429-436
    138.石庆华,李木英,涂起红.杂交水稻根系N素营养效率及其生理困素研究.杂交水稻,2002,17(4):45-48
    139.徐富贤,熊洪,谢戎,张林,朱永川,郭晓艺,杨大金,周兴兵,刘茂.水稻氮素利用效率的研究进展及其动向.植物营养与肥料学报,2009,15(5):1215-1225
    140.严小龙,张福锁.植物营养遗传学.北京:中国农业出版社,1997.pp 78-106
    141.魏海燕,张洪程,杭杰,戴其根,霍中洋,许轲,张胜飞,马群,张庆,张军.不同水稻氮利用效率基因型的物质生产与积累特性.作物学报,2007,33(11):1802-1809
    142. Yang J, Zhang J. Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany,2010,61:3177-3189
    143. Ma SC, Li FM, Xu BC, Huang ZB. Effect of lowering the root/shoot ratio by pruning roots on water use efficiency and grain yield of winter wheat. Field Crops Research,2010,115:158-164
    144.马守臣,徐炳成,李凤民,黄占斌.根修剪对冬小麦根系效率、水分利用及产量的影响.应用与环境生物学报,2009,15(5):606-609
    145. Xue Q, Zhu Z, Musick JT, Stewart BA, Dusek DA. Root growth and water uptake in winter wheat under deficit irrigation. Plant and Soil,2003,257(1):151-161
    146. Rovira AD. Plant root excretions in relation to the rhizosphere effect. Plant and Soil,1956,36(2): 178-194
    147. Lynch JM, Whipps JM. Substrate flow in the rhizosphere. Plant and Soil,1990,129:1-10
    148. Kato N, Ino T, Sata N, Yamamura S. Isolation and identification of a potent allelopathic substance in rice root exudates. Physiologia Plantarum,2002,115(3):401-405
    149. Aulakh MS, Wassmann R, Bueno C. Characterization of root exudates at different growth stages often rice (Oryza saliva L.) cultivars. Plant Biology,2001,3(2):139-148
    150.牟金明,李万辉,张凤霞,姜岩.根系分泌物及其作用.吉林农业大学学报,1996,18(4):114-118
    151.涂书新,孙锦荷,郭智芬,谷峰.植物根系分泌物与根际营养关系评述.十壤与环境,2000,9(1):64-67
    152.陈龙池,廖利平,汪思龙,肖复明.根系分泌物生态学研究.生态学杂志,2002,21(6):57-62
    153.洪常青,聂艳丽.根系分泌物及其在植物营养中的作用.生态环境,2003,12(4):508-511
    154.常二华,张耗,张慎凤,王志琴,杨建吕.结实期氮磷营养水平对水稻根系分泌物的影响及其与稻米品质的关系.作物学报,2007,33(12):1949-1959
    ]55.常二华,张慎凤,王志琴,王学明,杨建昌.结实期氮磷营养水平对水稻根系和籽粒氨基酸含量的影响.作物学报,2008,34(4):612-618
    156. Yang JC, Chang EH, Zhang WJ, Wang ZQ, Liu LJ. Relationship between root chemical signals and grain quality of rice. Agricultural Sciences in China,2007,6(1):47-57
    157.张玉屏,黄义德,李金才,黄文江,黄文国.旱作条件对水稻根系生长发育和产量的影响.安徽农业科学,2000,28(5):605-606,637
    158.王熹,陶龙兴,黄效林,闵绍楷,程式华.灌溉稻田水稻旱作法研究-水稻的生育与生理特性.中国农业科学,2004,37(9):1274-]281
    159. Davies WJ, Zhang JH. Root signals and the regulation of growth and development of plant in drying soil. Annual Review of Plant Physiology,1991,42:55-76
    160. Davies WJ, Kudoyarova G, Hartung W. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant's response to drought. Journal of Plant Growth Regulation,2005,24:285-295
    161. Yang JC, Zhang JH, Wang ZQ, Liu LJ, Zhu QS. Postanthesis water deficits enhance grain filling in two-line hybrid rice. Crop Science,2003,43:2099-2108
    162. Zhang ZC, Zhang SF, Yang JC, Zhang JH. Grain yield, grain quality and water use efficiency of rice under non-flooded mulching cultivation. Field Crops Research,2008,108:71-81
    163. Liu FL, Shahnazari A, Andersen MN, Jacobsen SE, Jensen CR. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying:ABA signaling, leaf gas exchange, and water use efficiency. Journal of Experimental Botany,2006,57:3727-3735
    164. Li FS, Yu JM, Nong ML, Kang SZ, Zhang JH. Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers. Agricultural Water Management,2010,97:231-239
    165.彭世彰,徐俊增,黄乾,吴宏霞.控制灌溉水稻叶片水平的水分利用效率试验研究.农业工程学报,2006,22(11):47-52
    166.汀强,樊小林,Klaus D, Sattemacher B.华南地区覆盖旱种水稻节水及其水分利用效率研究.灌溉排水学报,2007,26(4):89-92
    167. Zhang H, Xue YG, Wang ZQ, Yang JC, Zhang JH. An Alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Science,2009,49:2246-2260
    168. Yang J, Liu K, Wang Z, Du Y, Zhang J. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. Journal of Integrative Plant Biology,2007,49: 1445-1454
    169. Zhang H, Zhang S, Zhang J, Yang J, Wang Z. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agronomy Journal,2008,100:726-734
    170. Tuong TP, Bouman BAM, Mortimer M. More rice, less water-Integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Production Science,2005,8:231-241
    171.曾翔,李阳生,谢小立,肖国樱,廖江林.不同灌溉模式对杂交水稻生育后期根系生理特性和剑叶光合特性的影响.中国水稻科学,2003,17(4):66-70
    172.郝树荣,郭相平,王为木,张烈君,王琴,王青梅,刘展鹏.水稻分蘖期水分胁迫及复水对根系生长的影响.干旱地区农业研究,2007,25(1):149-152
    173.陈国林,王大民,王兆骞.不同灌溉方式对水稻产量与生理特性的影响.生态学杂志,1998,17(3):21-27
    174.白胜双,周春喜,陈方江.环境对水稻根系影响的研究进展.现代农村科技,2009,13:44-45
    175.徐芬芬,曾晓春,石庆华,叶利民.不同灌溉方式对水稻根系生长的影响.干旱地区农业研究,2007,25(1):102-104
    176.金学泳,商文楠,曹海峰,张俊宝,孙涛.不同灌溉方式对水稻生育及产量的影响.中国农学通报,2005,27(8):125-128
    177.王秋菊,李明贤,赵宏亮,迟力勇.控水灌溉对水稻根系生长影响的试验研究.中国农学通报,2008,24(8):206-208
    178. Kawata S, Soejima M. Effect of water management of paddy fields on the formation of superficial roots of rice. The Crop Science Society of Japan,1977,46(1):24-36
    179. Sah RN, Mikkelsen SDS. Availability and utilization of fertilizer nitrogen by rice under alternate flooding; I. Kinetics of available nitrogen under rice culture. Plant and Soil,1983,75:221-226
    180. Eriksen AB, Kjeldby M, Nilsen S. The effect of intermittent flooding on the growth and yield of wetland rice and nitrogen-loss mechanism with surface-applied and deep-placed urea. Plant and Soil,1985,84: 387-401
    181. Mishra HS, Rathore TR, Pant RC. Effect of intermittent irrigation on groundwater table contribution, irrigation requirement and yield of rice in mollisols of Tarai region. Agricultural Water Management, 1990,18:231-241
    182.王维,蔡一霞,张祖建,郎有忠,杨建昌,朱庆森.结实期低土壤水势对水稻强弱势粒灌浆特性及主要米质性状的影响.中国农学通报,2005,21(9):170-173,183
    183.陶龙兴,王熹,黄效林,闵绍楷,程式华.水稻灌浆期间土壤含水量对根系生理活性的影响.中国农业科学,2004,37(11):1616-1620
    184.杨建昌,王国忠,王志琴,刘立军,朱庆森.早种水稻灌浆特性与灌浆期籽粒中激素含量的变化.作物学报,2002,(28)5:615-621
    185. Tabbal DF, Bouman BAM, Bhuiyan SI, Sibayan EB, Sattar MA. On-farm strategies for reducing water input in irrigated rice:case studies in the Philippines. Agricultural Water Management,2002,56:93-112
    186. Belder P, Bouman BAM, Cabangon R, Guoan L, Quilang EJP, Li Y, Spiertz JHJ, Tuong TP. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management,2004,65:193-210
    187.鲁如坤.化肥工业与农业现代化.化肥工业,1979,5:63-66
    188.张福锁,马文奇.肥料投入水平与养分资源高效利用的关系.土壤与环境,2000,9(2):154-157
    189.乔云发,罗盛国,刘元英,韩晓增,苗淑杰.叶龄模式氮肥调控对水稻颖花根活量的影响.农业系统科学与综合研究,2006,22(2):121-124
    190.田光明,蔡祖聪,曹金留,李小平.镇江丘陵地区稻田化肥氮的氨挥发及其影响因素.土壤学报,2001,38(3)324-332
    191.赵全志,高尔明,黄不生,凌启鸿.水稻穗颈节与基部节间伤流的比较及其氮素调控研究.作物学报,2001,27(1):103-109
    192.孙静文,陈温福,曾雅琴,马英杰.氮素水平对粳稻根系形态及其活力的影响.沈阳农业大学学报,2003,34(5):344-346
    193.刘宝玉,徐家宽,王余龙,姚友礼,吕贞龙,黄建晔,蔡建中.不同生育时期氮素供应水平对杂交水稻根系生长及其活力的影响.作物学报,1997,23(6):699-706
    194.樊剑波,张亚丽,万小羽,沈其荣.水稻根系与氮素吸收利用之研究进展.中国农学通报,2007,23(2):236-240
    195.丁克坚,黄义德,汪振华,李桂亭,檀根甲.氮肥、密度对水稻产量及纹枯病、褐飞虱发生程度的影响.安徽农业大学学报,1998,25(4):336-341
    196.陈恒喜,姚克兵.氮肥施用对稻曲病的影响初报.江苏农机与农艺,2000,4:15
    197.张岁岐,山仑.氮素营养对春小麦抗干旱适应性及水分利用的影响.水土保持研究,1995,2(1):31-36
    198.魏道智,宁书菊.拔节期追施氮肥对小麦根、叶衰老生理特性的影响.河北农业大学学报,2003,26(2):15-19
    199.李秧秧,邵明安.小麦根系对水分和氮肥的生理生态反应.植物营养与肥料学报,2000,6(4):383-388
    200.张福锁,马文奇,陈新平.养分资源综合管理理论与技术概论.北京:中国农业大学出版社,2006.pp48-58
    201.凌启鸿.水稻精确定量栽培理论与技术.北京:中国农业出版社,2007
    202.吴伟明,程式华.水稻根系育种的意义与前景.中国水稻科学,2005,19(2):174-180
    1.杨建昌,王朋,刘立军,王志琴,朱庆森.中籼水稻品种产量与株型演进特征研究.作物学报,2006,32(7):949-955
    2. Zhang Q. Strategies for developing green super rice. Proc Natl Acad Sci USA,2007,104:16402-16409
    3. Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and development on hybrid rice:A super-domesticate in China. Annals of Botany,2007,100:959-966
    4. Fitter A. Characteristics and functions of root systems. Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots, the Hidden Half. New York:Marcel Dekker Inc,2002. pp 15-32
    5. Inukai Y, Ashikari M, Kitano H. Function of the root system and molecular mechanism of crown root formation in rice. Plant and Cell Physiology,2004,45(S):17-19
    6.中国水稻研究所.中国水稻种植区划.杭州:浙江科技出版社,1988.pp 1-47
    7.郑景生,黄育民.中国稻作超高产的追求与实践.分子植物育种,2003,1(5-6):585-596
    8.吴伟明,宋祥甫,孙宗修,于永红,邹国燕.不同类型水稻的根系分布特征比较.中国水稻科学,2001,15(4):276-280
    9.董桂春,王余龙,王坚刚,单玉华,马爱京,杨洪建,张传胜,蔡惠荣.不同类型水稻品种间根系性状的差异.作物学报,2002,28(6):749-755
    10.朱德峰,林贤青,曹卫星.超高产水稻品种的根系分布特点.南京农业大学学报,2000,23(4):5-8
    11.张耗,谈桂露,孙小淋,刘立军,杨建昌.江苏省中籼水稻品种演进过程中米质的变化.作物学报,2009,35(11):2037-2044
    12.杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究.中国农业科学,1996,29(4):58-66
    13.萧浪涛,王三根.植物生理学实验技术.北京:中国农业出版社,2005.pp61-62
    14.陈远平,杨文钰.卵叶韭休眠芽中GA3, IAA, ABA和ZT的高效液相色谱法测定.四川农业大学学报,2005,23(4):498-500
    15. Cheng C, Lur H. Ethylene may be involved in abortion of the maize caryopsis. Physiologia Planlarum, 1996,98:245-252
    16. Hayashi S. Effect of limiting oxygen supply on the ultra-structure of root tip cells in the germinating stage of rice seeds. Japanese Journal of Crop Science,1998,67:41-48
    17.凌启鸿.作物群体质量.上海:上海科技出版社,2000.pp 42-107
    18.刘文兆,李秧秧.断伤作物根系对籽粒产量与水分利用效率的影响研究现状及问题.西北植物学报,2003,23(8):1320-1324
    19. Harada J, Kang S, Yamazaki K. Root system development of japonica-indica hybrid rice cultivars. Japanese Journal of Crop Science,1994,63:423-429
    20. Kang S, Morita S, Yamazaki K. Root growth and distribution in some japonica-indica hybrid and japonica type rice cultivars under field conditions. Japanese Journal of Crop Science,1994,63:118-124
    21. Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the New Plant Type of tropical rice lines. Journal of Plant Nutrition,2005,28:835-850
    22.杨建昌.水稻根系形态生理与产量、品质形成及养分吸收利用的关系.中国农业科学,2011,44(1):36-46
    23.潘晓华,王永锐,傅家瑞.水稻根系生长生理的研究进展.植物学通报,1996,13(2):13-20
    24.孙静文,陈温福,臧春明,王彦荣,吴淑琴.水稻根系研究进展.沈阳农业大学学报,2002,33(6):466-470
    25.张成良,姜伟,肖叶青,邬文吕,陈大洲,黄英金.水稻根系研究现状与展望.江西农业学报,2006,18(5):23-27
    26. Passioura JB. Roots and drought resistance. Agricultural Water Management,1983,7:265-280
    27.蔡昆争,骆世明,段舜山.水稻根系在根袋处理条件下对氮养分的反应.生态学报,2003,23(6):1109-1116
    28.汪强,樊小林,刘芳,Klaus D, Sattemacher B.断根和覆草旱作条件下水稻的产量效应.中国水稻科学,2004,18(5):437-442
    29.刘桃菊,戚昌瀚,唐建军.水稻根系建成与产量及其构成关系的研究.中国农业科学,2002,35(11):1416-1419
    30. He HB, Lin WX, Wang HB, Fang CX, Gan QF, Wu WX, Chen XX, Liang YY. Analysis of metabolites in root exudates from allelopathic and non allelopathic rice seedlings. Allelopathy Journal, 2006,18:247-254
    31.何海斌,陈祥旭,林瑞余,林文雄,何华勤,贾小丽,熊君,沈荔花,梁义元.化感水稻PI312777苗期根系分泌物中化学成分分析.应用生态学报,2005,16(12):2383-2388
    32.常学季,段昌群,王焕梭.根分泌作用与重金属毒害的抗性.应用生态学报,2000,11(2):315-320
    33.赵全志,高尔明,黄不生,凌启鸿.水稻穗颈节伤流势与源库质量的关系研究.中国农业科学,1999,32(6):104-106
    34.马跃芳.杂交水稻抽穗后根伤流液中游离氨基酸含量的变化.植物生理学通讯,1989,6:41-43
    35. Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biology,2001,3(2):139-148
    36.常二华.根系化学讯号与稻米品质的关系及其调控技术.博士论文,扬州:扬州大学,2008
    37. Nozu Y, Tsugita A, Kamijo K. Proteomic analysis of rice leaf, stem and root tissues during growth course. Proteomics,2006,6:3665-3670
    38. Yang J, Zhang J. Grain filling problem in "super" rice. Journal of Experimental Botany,2010,61:1-5
    39.杨建昌.水稻弱势粒灌浆机理与调控途径.作物学报,2010,36(12):2011-2019
    40. Kobata T, Palta JA, Turner NC. Rate of development of postanthesis water deficits and grain-filling of spring wheat. Crop Science,1992,32:1238-1242
    41. Samonte S, Wilson LT, McClung AM, Tarpley L. Seasonal dynamics of non-structural carbohydrate partitioning in 15 diverse rice genotypes. Crop Science,2001,41:902-909
    42. Gebbing T, Schnyder H. Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiology,1999,121:871-878
    43. Takai T, Fukuta Y, Shirawa T, Horie T. Time-related mapping of quantitative trait loci controlling grain-filling in rice. Journal of Experimental Botany,2005,56:2107-2118
    44.曹显祖,朱庆森,顾自奋.关于杂交水稻结实率的研究.江苏农业科学,1981,(1):1-7
    45. Peng S, Buresh R, Huang J, Yang J, Zou Y, Zhong X, Wang G, Zhang F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research,2006,96: 37-47
    46. HaWes MC, Gunawardena U, Miyasaka S, Zhao X. The role of root broder cells in plant defense. Trends in Plant Sciences,2000,5:128-133
    47. Olsen GM, Mirza JI, Maher EP, Iversen TH. Ultrastructure and movements cell organelles in the root cap of agravitropic mutants and normal seedlings of Arabidopsis thaliana. Physiologia Plantarum,1984,60: 523-531
    48. Buckhout TJ. ATP-dependent Ca2+-transport in endoplasmic reticulum isolated from the roots of Lepidium sativum L. Planta,1983,159:84-90
    1.凌启鸿.作物群体质量.上海:上海科技出版社,2000.pp 42-120
    2.孔祥斗,张洪熙,刘晓静,刘广清,夏广宏,刘晓斌,谭长乐,郭勋斌.江苏省粳稻品种经济性状的演变及高产育种的设想.江苏农业科学,1997,(3):2-16
    3.王伯伦,刘新安,陈健.1949年以来辽宁省水稻发展形势的分析.沈阳农业大学学报,2002,33(2):83-86
    4.邵国军,邱福林,韩勇.辽宁省水稻新老品种比较研究.辽宁农业科学,1998,(1):12-17
    5.金建松,夏有龙.江苏粳稻发展的原则及配套技术.江苏农业科学,1998,(1):6-10
    6.杨建昌,王朋,刘立军,王志琴,朱庆森.中籼水稻品种产量与株型演进特征研究.作物学报,2006,32(7):949-955
    7.袁江,王丹英,丁艳锋,廖西元,章秀福,王绍华.早籼稻品种遗传改良进程中株型的演变特征.中国水稻科学,2009,23(3):277-281
    8. Mohapatra PK, Sahu SK. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primary branches. Journal of Experimental Botany,1991,42:871-879
    9.凌启鸿,杨建昌.水稻群体“粒叶比”与高产栽培途径的研究.中国农业科学,1986,19(3):1-8
    10.郑景生,黄育民.中国稻作超高产的追求与实践.分子植物育种,2003,1(5-6):585-596
    11.王文明.水稻超高产育种的现状与展望.西南农业学报,1998,11(2):7-12
    12.袁隆平.杂交水稻超高产育种.杂交水稻,2000,15(2):31-33
    13.邹应斌,周上游,唐启源.中国超级杂交水稻高产栽培研究的现状与展望.湖南农业大学学报(自然科学版),2003,29(1):78-84
    14. Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and development on hybrid rice:a super-domesticate in China. Annals of Botany,2007,100:959-966
    15. Peng S, Khush GS, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Research,2008,108:32-38
    16. Zhang H, Xue Y, Wang Z, Yang J, Zhang J. Morphological and physiological traits of roots and their relationships with shoot growth in "super" rice. Field Crops Research,2009,113:31-40
    17. Zhang H, Zhang S, Yang J, Zhang J, Wang Z. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agronomy Journal,2008,100:726-734
    18. Peng S, Gassman KG, Virmani SS, Sheehy J, Khush GS. Yield potential trends of tropical rice since release of IR.8 and the challenge of increasing rice yield potential. Crop Science,1999,39:1552-1559
    19. Yang J, Peng S, Zhang Z, Wang Z, Visperas RM, Zhu Q. Grain yield and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice. Crop Science,2002,42:766-772
    1. Zhang Q. Strategies for developing green super rice. Proceedings of the National Academy of Sciences of the United States of America,2007,104:16402-16409
    2. Horie T, Shiraiwa T, Homma K, Katsura K, Maeda Y, Yoshida H. Can yields of lowland rice resume the increases that showed in the 1980s? Plant Production Science,2005,8:259-274
    3. Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and development on hybrid rice:A super-domesticate in China. Annals of Botany,2007,100:959-966
    4. Katsura K, Maeda S, Horie T, Shiraiwa T. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crops Research,2007,103:170-177
    5. Peng S, Khush GS.,Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Research,2008,108:32-38
    6.杜士云,王守海,李成荃,王德正,罗彦长,吴爽.超级稻育种进展及存在的问题.中国农学通报,2006,22(8):195-198
    7.黄农荣,钟旭华,王丰,郑海波.超级杂交稻结实期根系活力与籽粒灌浆特性研究.中国农业科学,2006,39(9):1772-1779
    8. Yang P, Li X, Liang Y, Jing Y, Shen S, Kuang T. Proteomic analysis of the response of Liangyoupeijiu (super high-yield hybrid rice) seedlings to cold stress. Journal of Integrative Plant Biology,2006,48: 945-951
    9. Wu W, Zhang H, Wu G, Zhai C, Qian Y, Cheng Y, Xu J, Dai Q, Xu K. Preliminary study on canopy characters of super rice. Scientia Agricultura Sinica,2007,40:250-257
    10.朱德峰,林贤青,陈苇,孙永飞,卢婉芳,段彬伍,张玉屏.超级稻协优9308营养特性与施肥技术.中国稻米,2002,2:18-19
    11.王熹,陶龙兴,俞美玉,黄效林.超级杂交稻协优9308,生理模型的研究.中国水稻科学,2002,16(1):38-44
    12. Zhai H, Cao S, Wan J, Zhang R, Lu W, Li L, Kuang T, Min S, Zhu D, Cheng S. Relationship between leaf photosynthetic function at grain filling stage and yield in super high-yielding hybrid rice (Oryza saliva L.). Science in China Series C:Life Sciences,2002,45:637-646
    13. Yang C, Yang L, Yang Y, Ouyang Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management,2004,70: 67-81
    14. Yang L, Wang Y, Kobayashi K, Zhu J, Huang J, Yang H, Wang Y, Dong G, Liu G, Han Y, Shan Y, Hu J, Zhou J. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Global Change Biology,2008,14:1-10
    15. Wang H, Inukai Y, Yamauchi. A. Root development and nutrient uptake. Critical Reviews in Plant Sciences,2006,25:279-301
    16. Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in new plant type of tropical rice lines. Journal of Plant Nutrition,2005,28:845-850
    17. Debi BR, Taketa S, Ichii M. Cytokinin inhibits lateral root inhibition but stimulates lateral root elongation in rice(Oryza sativa L.). Journal of Plant Physiology,2005,162:507-515
    18. Van Staden J, Davey JE. The synthesis, transport and metabolism of endogenous cytokinins. Plant Cell and Environment,1979,2:93-106
    19. Nooden LD, Singh S, Letham DS. Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiology,1990,93:33-39
    20. Davies PJ. Introduction. In:Davies, P.J. (Ed.), Plant Hormones, Biosynthesis, Signal Transduction, Action! Kluwer Academic Publishers, Dordrecht, The Netherlands,2004. pp 1-15
    21.沈波,王熹.两个亚种间杂交稻组合的根系生理活性.中国水稻科学,2002,16(2):146-150
    22. Yang J, Peng S, Visperas RM, Sanico AL, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regulation,2000,30:261-270
    23. Yang J, Zhang J, Huang Z, Wang Z, Zhu Q, Liu L. Correlations of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Annals of Botany, 2002,90:369-377
    24. Shu QC, R XZ, Wei L, Zhi RD, Qi MZ. The involvement of cytokinin and abscisic acid levels in roots in the regulation of photosynthesis function in flag leaves during grain filling in super high-yielding rice {Oryza sativa L.). Journal of Agronomy and Crop Science,2004,190:73-80
    25.王志琴,仇明,桑大志,杨建昌,朱庆森.两优培九结实期植株体内细胞分裂素与叶片衰老的关系.扬州大学学报(农业与生命科学版),2003,24(4):54-57
    26.赵步洪,张洪熙,朱庆森,杨建吕.两系杂交稻籽粒充实不良的成因及其与激素含量的关系.中国农业科学,2007,6:930-940
    27.薛艳凤,郎有忠,吕川根,张洪熙,朱庆森,杨建吕,邹江石.两优培九及其父本扬稻6号抽穗后叶片与根系衰老特点的研究.扬州大学学报(农业与生命科学版),2008,29(3):7-11
    28. Ramasamy S, ten Berge, HFM, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application. Field Crops Research,1997,51:65-82
    29. Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines. Soil Science and Plant Nutrition,2004,50:545-554
    30. Zhang Z, Zhang S, Yang J, Zhang J. Yield, grain quality and water use efficiency of rice under non-flooded mulching cultivation. Field Crops Research,2008,108:71-81
    31. Van der Werf A, Kooijman A, Welschen R, Lambers H. Respiratory energy costs for the maintenance of biomass, for growth and for uptake in roots of Carex diandra and Carex acutiformis. Physiologia Plantarum,1988,72:483-491
    32. Bollmark M, Kubat B, Eliasson L. Variations in endogenous cytokinin content during adventitious root formation in pea cuttings, Journal of Plant Physiology,1988,132:262-265
    33.何钟佩.作物化控实验指导.北京:中国农业大学出版社,1993.pp 60-68
    34. Weiler EW, Jordan PS, Conrad W. Levels of indole-3-acetic acid in intact and decapitated as determined by a specific and highly sensitive solid-phase enzyme immunoassay. Planla,1981,153:561-571
    35. Osaki M, Shinano T, Matsumoto M, Zheng T, Tadano T. A root-shoot interaction hypothesis for high productivity of field crops. Soil Science and Plant Nutrition,1997,37:445-454
    36. Harada J, Kang S, Yamazaki K. Root system development of japonica-indica hybrid rice cultivars. Japanese Journal of Crop Science,1994,63:423-429
    37. Kang S, Morita S, Yamazaki K. Root growth and distribution in some japonica-indica hybrid and japonica type rice cultivars under field conditions. Japanese Journal of Crop Science,1994,63:118-124
    38.朱庆森,张祖建,杨建吕,曹显祖,郎有忠,王增春.亚种间杂交稻产量源库特征.中国农业科学,1997,30(3):52-59
    39. Tanaka A. Studies on the nutrio-physiology of leaves of rice plant. Journal of the Faculty of Agriculture, Hokkaido University,1961,51:449-550
    40. Zhang H, Tan G, Yang L, Yang J, Zhang J, Zhao B. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonicalindica hybrid rice. Plant Physiology and Biochemistry,2009,47:195-204
    41. Yang J, Peng S, Zhang Z, Wang Z. Visperas RM, Zhu Q. Grain and dry matter yields and partitioning of assimilates in japonicalindica hybrid rice. Crop Science,2002,42:766-772
    42.敖和军,王淑红,邹应斌,彭少兵,唐启源,方远祥,肖安民,陈玉梅,熊吕明.超级杂交稻干物质生产特点与产量稳定性研究.中国农业科学,2008,41(7):1927-1936
    1. Yang J, Peng S, Zhang Z, Wang Z. Visperas RM, Zhu Q. Grain and dry matter yields and partitioning of assimilates in japonicalindica hybrids. Crop Science,2002,42:766-772
    2. Yuan LP. Increasing yield potential in rice by exploitation of heterosis. in:S.S. Virmani (ed.), Hybrid Rice Technology, New Developments and Future Pprospects. International Rice Research Institute, Los Banos, Philippines,1994. pp 1-6
    3.袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-6
    4. Yuan LP. Hybrid rice breeding in China, in:. Virmani SS, Siddiq EA, Muralidharan K, eds. Advances in hybrid rice technology. Proceedings of the Third International Symposium on Hybrid Rice, Hyderabad, India,14-16 November 1996, International Rice Research Institute, Los Banos, Philippines,1998. pp 27-33
    5. Liang J, Zhang J, Cao X. Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza saliva) hybrids. Physiologia Plantarum,2001,112:470-477
    6. Zhang XM, Shi CH,. Wu JG,. Yue SH, Qi YB. Analysis of developmental genetics for phenylalanine content in indica-japonica hybrid rice (Oryza saliva L.) across environments. Cereal Research Communications,2006,34:949-956
    7. Brenner ML, Cheikh N. The role of hormones in photosynthate partitioning and seed filling. in:Davies PJ, eds, Plant Hormones, Kluwer Academic Publishers, The Netherlands,1995. pp 649-670
    8. Davies PJ. The plant hormones:Their nature, occurrence, and functions. Plant Hormones, Biosynthesis, Signal Transduction, Action! Kluwer Academic Publishers, Dordrecht, The Netherlands,2004. pp 1-15
    9. Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology,2001,127:315-323
    10. Morris RD, Blevins DG, Dietrich JT, Durly RC, Gelvin SB, Gray J, Hommes NG, Kaminek M, Mathews LJ, Meilan R, Reinbott TM, Sagavendra-Soto L. Cytokinins in plant pathogenic bacteria and developing cereal grains. Australian Journal of Plant Physiology,1993,20:621-637
    11. Yang J, Peng S, Visperas RM, Sanico AL, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regulation,2000,30:261-270
    12. Yang J, Zhang J, Huang Z, Wang Z, Zhu, Q, Liu L. Correlations of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Annals of Botany, 2002,90:369-377
    13. Hansen H, Grossmann K. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiology,2000,124:1437-1448
    14. Eeuwens CJ, Schwabe WW. Seed and pod wall development in Pisum sativum L. in relation to extracted and applied hormones. Journal of Experimental Botany,1975,26:1-14
    15. Suzuki Y, Kurogochi S, Murofushi N, Ota Y, Takahashi N. Seasonal changes of GA1, GA19 and abscisic acid in three rice cultivars. Plant and Cell Physiology,1981,22:1085-1093
    16. Lur HS, Setter TL. Role of auxin in maize endosperm development:Timing of nuclear DNA endoreduplication, zein expression, and cytokinins. Plant Physiology,1993,103:273-280
    17. De Bruijn SM, Vreugdenhil D. Abscisic acid and assimilate partitioning to develop seeds, I. Dose abscisic acid influence the growth rate of pea seeds? Journal of Plant Physiology,1992,140:201-206
    18. Kato T, Sakurai N, Kuraishi S. The changes of endogenous abscisic acid in developing grains of two rice cultivars with different grain size. Japanese Journal of Crop Science,1993,62:456-461
    19. Schussler JR, Brenner ML, Brun,WA. Relationship of endogenous abscisic acid to sucrose level and seed growth rate of soybeans, Plant Physiology.1991,96:1308-1313
    20. Yang J, Zhang J, Liu K, Wang Z, Liu L. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytologist,2006,171:293-303
    21. Mohapatra PK, Patel R, Sahu SK. Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Australian Journal of Plant Physiology,1993,20:231-242
    22. Mohapatra PK, Sahu SK. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primary branches. Journal of Experimental Botany,1991,42:871-879
    23. Wang Y. Effectiveness of supplied nitrogen at the primordial panicle stage on rice characteristics and yields. International Rice Research News Letter,1981,6:23-24
    24.朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析.作物学报,1988,14(3):182-192
    25. Mae T, Ohira K. The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza saliva L.). Plant and Cell Physiology,1981,22:1067-1074
    26. Singh BM, Jenner CF. A modified method for the determination of cell number in wheat endosperm. Plant Science Letter,1982,26:273-278
    27. Liang J, Zhang J, Cao X. Grain sink strength may be related to the poor grain filling of indica-japonica rice(Oryza sativa)hybrids. Physiologia Plantarum,2001,112:470-477
    28. Richards FJ. A flexible growth functions for empirical use. Journal of Experimental Botany,1959,10: 290-300
    29. Bollmark M, Kubat B, Eliasson L. Variations in endogenous cytokinin content during adventitious root formation in pea cuttings, Journal of Plant Physiology,1988,132:262-265
    30.何钟佩.作物化控实验指导.北京:中国农业大学出版社,1993.pp 60-68
    31. Venkateswarlu B, Visperas RM. Source-sink relationships in crop plants. IRRPS (International Rice Research Paper Series),1987,125:1-19
    32.杨建昌,苏宝林,王志琴,郎有忠,朱庆森.亚种间杂交稻籽粒灌浆特性及其生理的研究.中国农业科学,1998,31(1):61-70
    33. Pharis RP. Gibberellins and reproductive development in seed plants. Annual Review of Plant Physiology, 1985,36:517-568
    34.覃章铮,唐锡华.稻胚形成期间一些生物大分子的动态.中国科学(B辑),1984,12:1103-1110
    35. Van Hengel AJ, Barber C, Roberts K. The expression patterns of arabinogalactan-protein AtAGP30 and GLABRA2 reveal a role for abscisic acid in the early stages of root epidermal patterning. The Plant Journal,2004,39:70-83
    36. Rook F, Corke F, Card R, Munz G. Smith C. Bevan MW. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signaling. The Plant Journal,2001,26:421-433
    37. Yang J, Zhang J, Wang Z,. Xu G. Zhu Q. Activities of key enzymes in sucrose- to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiology,2004,135:1621-1629
    38. Bangerth F. Dominance among fruits/sinks and the search for a correlative signal. Physiologia Plantarum, 1989,76:608-614
    39. Singh G, Gurung SB. Hormonal role in the problem of sterility in Oryza sativa. Plant Physiology and Biochemistry,1982,9:22-32
    40. Bano A, Dorffling K, Bettin D, Hahn H. Abscisic acid and cytokinins as possible root-to-shoot signals in xylem sap of rice plants in drying soils. Australian Journal of Plant Physiology,1993,20:109-115
    41. Bollmark M, Kubat B, Eliasson L. Variations in endogenous cytokinin content during adventitious root formation in pea cuttings. Journal of Plant Physiology,1988,132:262-265
    42. Nooden LD, Singh S, Letham DS. Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiology,1990,93:33-39
    1. Bouman BAM, Tuong TP. Field water management to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management,2001,49:11-30
    2. Bouman BAM. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agricultural Systems,2007,93:43-60
    3. Tuong TP, Bouman BAM, Mortimer M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Production Science,2005,8:231-241
    4. Yang J, Liu K, Wang Z, Du Y, Zhang J. Water-Saving and High-Yielding Irrigation for Lowland Rice by Controlling Limiting Values of Soil Water Potential. Journal of Integrative Plant Biology,2007,49: 1445-1454
    5. Zhang H, Zhang S, Zhang J, Yang J, Wang Z. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agronomy Journal,2008,100:726-734
    6. Zhang H, Xue Y, Wang Z, Yang J, Zhang J. An Alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Science,2009,49:2246-2260
    7. Belder P, Bouman BAM, Cabangon R, Guoan L, Quilang EJP, Li Y, Spiertz JHJ, Tuong TP. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management,2004,65:193-210
    8. Belder P, Spiertz JHJ, Bouman BAM, Lu G, Tuong TP. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Research,2005,93:169-185
    9. Tabbal DF, Bouman BAM, Bhuiyan SI, Sibayan EB, Sattar MA. On-farm strategies for reducing water input in irrigated rice:case studies in the Philippines. Agricultural Water Management,2002,56:93-112
    10. Argueso CT, Ferreira FJ, Kieber JJ. Enviromental perception avenues:the interaction of cytokinin and environmental response pathways. Plant, Cell and Environment,2009,32:1147-1160.
    11. Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. The Plant Cell,2009,21:3152-3169
    12. Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta,2002,215:645-652
    13. Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant, Cell and Environment,2003,26:1621-1631
    14. Mohapatra PK, Patel R, Sahu SK. Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Australian Journal of Plant Physiology,1993,20:231-242
    15. Yang J, Peng S, Visperas RM, Sanico AL, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regulation,2000,30:261-270
    16. Zhang H, Xue Y, Wang Z, Yang J, Zhang J. Morphological and physiological traits of roots and their relationships with shoot growth in "super" rice. Field Crops Research,2009,113:31-40
    17. Yang J, Zhang J. Grain-filling problem in'super'rice. Journal of Experimental Botany,2010,61 (1):1-5
    18. Yang J, Zhang J, Wang Z, Zhu Q. Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regulation,2003,41:185-195
    19. Yang J, Zhang J, Wang Z, Liu K, Wang P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. Journal of Experimental Botany,2006,57:149-160
    20. Yang J, Zhang J, Huang Z, Zhu Q, Wang Z. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endospenn development in rice. Annals of Botany,2002, 90:369-377
    21. Zhang H, Tan G, Yang L, Yang J, Zhang J. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonicalindica hybrid rice. Plant Physiology and Biochemistry,2009,47:195-204
    22. Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K, Kakimoto T. Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences of the United States of America,2008,105:20027-20031
    23. Havlova M, Dobrev PI, Motyka V, Stochova H, Libus J, Dobra J, Malbeck J, Gaudinova A, Vankova R. The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG 12 promoters. Plant, Cell and Environment,2008,31: 341-353
    24.朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析.作物学报,1988,14(3):182-192
    25. Richards FJ. A flexible growth functions for empirical use. Journal of Experimental Botany,1959,10: 290-300
    26. Frebort I, Sebela M, Galuszka P, Werner T. Cytokinin oxidase/cytokinin dehydrogenase assay:optimized procedures and applications. Analytical Biochemistry,2002,306:1-7
    27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72:248-254
    28. Brenner ML, Cheikh N. The role of hormones in photosynthate partitioning and seed filling. In:Davies PJ, ed. Plant hormones, physiology, biochemistry and molecular biology. Dordrecht:Kluwer Academic Publishers,1995. pp 649-670
    29. Gan S, Amasino RM. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995,270:1986-1988
    30. Werner T, Holst K, Pors Y, Guivarc'h A, Mustroph A, Chriqui D, Grimm B, Schmulling T. Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. Journal of Experimental Botany,2008,59:2659-2672
    31. Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormonal Changes in the grains of rice subjected to water stress during grain filling. Plant Physiology,2001,127:315-323
    32. Yang J, Zhang J. Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany,2010,61 (12):3177-3189
    33. Xu G, Zhang J, Lam H, Wang Z, Yang J. Hormonal changes are related to poor grain filling in the inferior spikelets of rice cultivated under non-flooded and mulched condition. Field Crops Research,2007,101: 53-61
    34. Pernisova M, Klima P, Horak J, Valkova M, Malbeck J, Soucek P, Reichman P, Hoyerova K, Dubova J, Friml J, Zazimalova E, Hejatko J. Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proceedings of the National Academy of Sciences of the United States of America,2009,106:3609-3614
    35. Nooden LD. Senescence in the whole plant. In:Thimann KV, ed. Senescence in plants. Boca Raton:CRC Press,1980. pp 219-258
    36. Davies PJ. Introduction. In:Davies PJ, ed. Plant hormones, biosynthesis, signal transduction, action! Dordrecht, The Netherlands:Kluwer Academic Publishers,2004. pp 1-35
    37. Ghanem ME, Albacete A, Martinnez-Andujar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Perez-Alfovea F. Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). Journal of Experimental Botany,2008,59:3039-3050
    1. IRRI (International Rice Research Institute). Rice Almanac,2nd Edition. IRRI, Los Banos, Philippines, 1997. pp 181
    2. Guerra LC,. Bhuiyan SI, Tuong TP, Barker R. Producing more rice with less water from irrigated systems. SWIM Paper 5. IWMI/IRRI, Colombo, Sri Lanka,1998. pp 24
    3. Bouman BAM, Toung TP. Field water management to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management,2001,49:11-30
    4. Belder P, Spiertz JHJ, Bouman BAM, Lu G, Tuong TP. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Research,2005,93:169-185
    5. Belder P, Bouman BAM, Cabangon R, Guoan L, Quilang EJP, Li Y, Spiertz JHJ, Tuong TP. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management,2004,65:193-210
    6. Tuong TP, Bouman BAM, Mortimer M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Production Science,2005,8:231-241
    7. Yang J, Liu K, Wang Z, Du Y, Zhang J. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. Journal of Integrative Plant Biology,2007,49: 1445-1454
    8. Zhang H, Zhang S, Zhang J, Yang J, Wang Z. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agronomy Journal,2008,100:726-734
    9. Zhang H, Xue Y, Wang Z, Yang J, Zhang J. An Alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Science,2009,49:2246-2260
    10. Tabbal DF, Bouman BAM, Bhuiyan SI, Sibayan EB, Sattar MA. On-farm strategies for reducing water input in irrigated rice:case studies in the Philippines. Agricultural Water Management,2002,56:93-112
    11. Han Y, Xu M, Liu X, Yan C, Korban SS, Chen X, Gu M. Genes coding for starch branching enzymes are major contributors to starch viscosity characteristics in waxy rice(Oryza sativa L.). Plant Science,2004, 166:357-364
    12. Borrell A, Garside A, Fukai S. Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crops Research,1997,52:231-248
    13. Cheng W, Zhang G, Zhao G, Yao H, Xu H. Variation in rice quality of different cultivars and grain positions as affected by water management. Field Crops Research,2003,80:245-252
    14. Dingkuhn M, Gal Pierre-Yves L. Effect of drainage date on yield and dry matter partitioning in irrigated rice. Field Crops Research.1996,46:117-126
    15. Kobata T, Takami S. Maintenance of the grain growth in rice subjected to water stress during the early grain filling. Japanese Journal of Crop Science,1981,50:536-545
    16.郑家国,任光俊,陆贤军,姜心禄.花后水分亏缺对水稻产量和品质的影响.中国水稻科学,2003,17(3):239-243
    17. Yoshida S. Physiological aspects of grain yield. Annual Review of Plant Physiology,1972,23:437-464
    18. Nakamura Y, Yuki K, Park SY. Carbohydrate metabolism in the developing endosperm of rice grains. Plant and Cell Physiology,1989,30:833-839
    19. Preiss J, Ball K., Smith-White B, Iglesias A, Kakefuda G, Li L. Starch biosynthesis and its regulation. Biochemical Society Transactions,1991,19:539-547
    20. Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Science. 1995,35:827-831
    21. Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Research,2003,81:69-81
    22.国家质量技术监督局.中华大民共和国国家标准:优质稻谷.GB/T 17891-1999,1999
    23.中华人民共和国农业部.食用稻品种品质.NY/T-593-2002,2002
    24.蔡一霞,朱庆森,王志琴,杨建昌,郑雷,钱卫成.结实期土壤水分对稻米品质的影响.作物学报,2002,28:601-608
    25. Bason ML, Blakeney AB, Booth RI. Assessing rice quality using the RVA-results of an international collaborative trial. RVA World,1994,6:2-5
    26.舒庆尧,吴殿星,夏英武,高明尉,Anna McClung. RVA谱特性与食用品质的关系.中国农业科学,1998,31:25-29
    27. Wopereis MCS, Kropff MJ, Maligaya AR, Tuong TP. Drought-stress responses of two lowland rice cultivars to soil water status. Field Crops Research,1996,46:21-39
    28. Lu J, Ookawa T, Hirasawa T. The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice. Plant and Soil,2000,223:207-216
    29. Hawker JS, Jenner CJ. High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm. Australian Journal of Plant Physiology,1993, 20:197-209
    30. Ahmadi A, Baker DA. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation,2001,35:81-91
    31. Hurkman WJ, McCue KF, Altenbach SB, Korn A, Tanaka CK, Kothari KM, Johnson EL, Bechtel DB, Wilson JD. Anderson OD, DuPont FM. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science,2003,164:873-881
    32. Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Remobilization of carbon reserves in response to water deficit during grain filling of rice. Field Crops Research,2001,71:47-55
    33. Jiang D, Cao W, Dai T, Jing Q. Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike. Plant Growth Regulation,2003, 41:247-257
    34. Stoop WA, Uphoff N, Kassam A. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar:opportunities for improving farming system for resource-poor farmers. Agricultural Systems,2002,71:249-274
    35. Yang C, Yang L, Yang Y, Ouyang Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management,2004,70: 67-81
    1. Bouman BAM. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agricultural Systems,2007,93:43-60
    2. Fageria NK. Yield physiology of rice. Journal of Plant Nutrition,2007,30:843-879
    3. Maclean JL, Dawe DC, Hardy B, Hettel GP. Rice Almanac,3rd edn. IRRI, Los Banos, Philippines.2002
    4. Bouman BAM, Tuong TP. Field water management to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management,2001,49:11-30
    5. Belder, P, Spiertz JHJ, Bouman BAM, Lu G, Tuong TP. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Research,2005,93:169-185
    6. Bouman BAM, Feng L, Tuong TP, Lu L, Wang H, Feng Y. Exploring options to grow rice using less water in nitrogen China using a modeling approach, II. Quantifying yield, water balance components, and water productivity. Agricultural Water Management,2007,88:23-33
    7. Belder, P, Bouman BAM, Cabangon R, Guoan L, Quilang EJP, Li Y, Spiertz JHJ, Tuong TP. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management,2004,65:193-210
    8. Yang J, Liu K, Wang Z, Du Y, Zhang J. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. Journal of Integrative Plant Biology,2007,49: 1445-1454
    9. Belder, P, Bouman BAM, Spiertz JHJ. Exploring options for water saving in lowland rice using a modeling approach. Agricultural Systems,2007,92:91-114
    10. Zhang H, Zhang S, Zhang J, Yang J, Wang Z. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agronomy Journal,2008,100:726-734
    11. Ockerby SE, Fukai S. The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Research,2001,69:215-226
    12. Vories ED, Counce PA, Keisling TC. Comparison of flooded and furrow-irrigated rice on clay. Irrigation Science,2002,21:139-144
    13. Lage, M, Bamouh A, Karrou M, Mourid MEl. Estimation of rice evapotranspiration using a microlysimeter technique and comparison with FAO Penman-Monteith and Pan evaporation methods under Moroccan conditions. Agronomic,2003,23:625-631
    14. Bouman, BAM, Peng S, Castaneda AR, Visperas RM. Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management,2005,74:87-105
    15. Tao H, Brueck H, Dittert K, Kreye C, Lin S, Sattelmacher B. Growth and yield formation for rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Research,2006, 95:1-12
    16. Zhang Z, Zhang S, Yang J, Zhang J. Yield, grain quality and water use efficiency of rice under non-flooded mulching cultivation. Field Crops Research,2008,108:71-81
    17. Yang C, Yang L, Yang Y, Ouyang Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management,2004,70: 67-81
    18. Tabbal DF, Bouman BAM, Bhuiyan SI, Sibayan EB, Sattar MA. On-farm strategies for reducing water input in irrigated rice:Case studies in the Philippines. Agricultural Water Management,2002,56:93-112
    19. Kukal SS, Hira GS, Sidhu AS. Soil matric potential-based irrigation scheduling to rice(Oryza sativa). Irrigation Science,2005,23:153-159
    20. Tuong TP, Bouman BAM, Mortimer M. More rice, less water-Integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Production Science,2005,8:231-241
    21. Sah RN, Mikkelsen SDS. Availability and utilization of fertilizer nitrogen by rice under alternate flooding; I. Kinetics of available nitrogen under rice culture. Plant and Soil,1983,75:221-226
    22. Eriksen AB, Kjeldby M, Nilsen S. The effect of intermittent flooding on the growth and yield of wetland rice and nitrogen-loss mechanism with surface-applied and deep-placed urea. Plant and Soil,1985,84: 387-401
    23. Mishra HS, Rathore TR, Pant RC. Effect of intermittent irrigation on groundwater table contribution, irrigation requirement and yield of rice in mollisols of Tarai region. Agricultural Water Management, 1990,18:231-241
    24. Osaki M, Shinano T, Matsumoto M, Zheng T, Tadano T. A root-shoot interaction hypothesis for high productivity of field crops. Soil Science and Plant Nutrition,1997,43:1079-1084
    25. Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines. Soil Science and Plant Nutrition,2004,50:545-554
    26. Hawker JS, Jenner CJ. High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm. Australian Journal of Plant Physiology,1993,20: 197-209
    27. Ahmadi, A, Baker DA. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation,2001,35:81-91
    28. Hurkman, WJ, McCue KF, Altenbach SB, Korn A, Tanaka CK, Kothari KM, Johnson EL, Bechtel DB, Wilson JD, Anderson OD, DuPont FM. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science,2003,164:873-881
    29. Jiang, D, Cao W, Dai T, Jing Q. Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike. Plant Growth Regulation,2003, 41:247-257
    30. Yang J, Zhang J, Wang Z, Xu G, Zhu Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiology,2004,135:1621-1629
    31. Yang J, Zhang J, Huang H, Wang Z, Zhu Z, Liu. L.Correlations of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Annals and Botany,2002,90:369-377
    32. Davies, PJ. Introduction. In P.J. Davies. Plant hormones, biosynthesis, signal transduction, action! Kluwer Academic Publishers, Dordrecht, the Netherlands,2004. pp 1-15
    33. del Pozo, JC, Lopez-Matas MA, Ramirez-Parra E. Hormonal control of the plant cell cycle. Physiologia Plantarum,2005,123:173-183
    34. Manguiat IJ, Broadbent FE. Recoveries of tagged N (15N-labelled) under some management practices for lowland rice. Philippine Agriculture,1977,60:367-377
    35. Fillery IRP, Vlek PLG. The significance of denitrification of applied nitrogen in fallow and cropped rice soils under different flooding regimes. Plant and Soil,1982,65:153-169
    1.FAO. Statistical databases, Food and Agriculture Organization (FAO) of the United Nations, Rome,2004
    2.鲁如坤.化肥工业与农业现代化.化肥工业,1979(5):63-66
    3.张福锁,马文奇.肥料投入水平与养分资源高效利用的关系.十壤与环境,2000,9(2):154-157
    4.单玉华,王余龙,黄建晔,安藤丰,山本由德,董桂春,周小冬.中后期追施15N对水稻氮素积累与分配的影响.江苏农业研究,2000,21(4):18-21
    5.崔玉亭,程序,韩纯儒,李荣刚.苏南太湖流域水稻经济生态适宜施氮量研究.生态学报,2000,20(4):659-662
    6.邢光熹,颜晓光.中国农田N20排放的分析估算与减缓对策.农村生态环境,2000,16(4):1-6
    7.徐华,邢光熹,蔡祖聪,鹤田治雄.土壤水分状况和氮肥施用及品种对稻田N20排放的影响.应用生态学报,1999,10(2):186-188
    8.李荣刚,翟云忠.江苏省武进市高产水稻田氮素渗漏损失研究.农村生态环境,2000,16(3):19-22
    9.朱兆良.农田中氮肥的损失与对策.十壤与环境,2000,9(1):1-6
    10.蔡贵信.农田生态系统中的氮素循环.赵其国主编,土壤圈物质循环与农业和环境.南京:江苏科技出版社,1995.pp 8-24
    11.朱兆良.关于提高氮肥利用率的问题.肥料与农业发展国际学术讨论会论文集.中国农业科技出版社,1995.pp 221-229
    12.朱兆良.稻田节氮的水肥综合管理技术的研究.十壤,1991,23:241-245
    13.朱兆良.农田生态系统中化肥氮的去向和氮素管理.中国十壤氮素,南京:江苏科技出版社,1992.pp213-249
    14.朱兆良.农田生态系统中化肥氮的去向和氮素管理.中国土壤氮素.南京:江苏科技出版社,1992.pp213-249
    15.李光锐,陈培森,郭毓德,张夏.模拟机具追施碳酸氢铵对旱作土壤中氮肥去向的影响.土壤肥料, 1988,2:15-18
    16.牟善积,何明华,卢树昌,刘惠芳,臧凤艳.重谈有机肥与化肥并重.天津农学院学报,2000,7(3):30-34
    17.黄东迈.有机无机肥对提高土壤氮素肥力的作用及其配合施用.土壤通报,1985,16(5):197-201
    18.张夫道.有机-无机肥料配合是现代化施肥技术的发展方向.土壤肥料,1984,1:16-19
    19.任祖淦,唐福钦.缓效氨肥的增产效应研究.土壤通报,1997,28(1):22-24
    20.张春伦,米兴明,胡思农.缓释尿素的肥效及氮素利用率研究.土壤肥料,1998,6:17-20
    21.吴平宵,廖宗文,毛小云.改性碳酸氢铵的肥效及淋溶特性研究初探.华南农业大学学报,2000,21(3):94
    22.吴平宵,廖宗文,毛小云.改性尿素的肥效及淋溶特性初探.土壤环境,2000,9(1):75-76
    23.曾思坚,林翠兰,李小玲.几种水稻深层专用肥一次性施用的肥效试验.土壤与环境,2000,9(6):75-76
    24.孙德芳,霍现英,车爱萍,马杰.冬小麦应用长效尿素的增产效果及施用技术.山东农业科学,1993,6:42-46
    25.阙金华,张洪程,戴其根,霍中洋,许轲.氮肥对稻米品质影响的研究进展.江苏农业科学,2002,6(1):14-16
    26. Peng S, Garcia FV, Laza RC, Sanico AL, Visperas RM, Cassman KG. Increased N-use efficiency sue a chlorophyll meter on high-yielding irrigated rice. Field Crops Research,1996,47:243-252
    27. Hussain F, Bronson KF, Yadvinder-Singh, Bijiay-singh, Peng S. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agronomy Journal,2000,92:875-879
    28. Balasubramanian V, Morales AC, Cruz RT, Abdulrachman S. On-farm adaptation of knowledge-intensive nitrogen management technologies for rice system. Nutrient Cycling in Agroecosystems,1999,53(1): 59-69
    29. Dobermann AC, Witt D, Dawe S. Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research,2002,74:37-66
    30. Witt C, Dobermann A. Towards a decision support system for site-specific nutrient management. in increasing productivity of intensive rice systems through site-specific nutrient management, edited by Dobermann A, Witt C, Dawe D:Science Publishers, and Los Banos, Philippines:International Rice Research Institute,2004. pp 359-395
    31. Yang WH, Peng S, Huang J. Using leaf color charts to estimate leaf nitrogen status of rice. Agronomy Journal,2003,95:212-217
    32. Wang GH, Dobermann C, Witt Q, Sun QZ, Fu RX. Performance of site-specific nutrient management for irrigated rice in Southeast China. Agronomy Journal,2001,93:869-878
    33. Cao X, Zhu Q, Yang J. Classification of source-sink types in rice varieties with corresponding cultivated ways. In:Xiong Z, Min S, eds. Prospects of rice farming for 2000. Hangzhou:Zhejiang Science & Technology Press,1992. pp 361-372
    34.张岁岐,山仑.氮素营养对春小麦抗干旱适应性及水分利用的影响.水土保持研究,1995,2(1):31-36
    1. FAO. Statistical databases, Food and Agriculture Organization (FAO) of the United Nations, Rome,2004
    2.凌启鸿.作物群体质量.上海:上海科学技术出版社,2000.pp 42-216
    3.王志敏,王树安.发展超高产技术,确保中国末米16亿大口的粮食安全.中国农业科技导报,2000,2(7):8-11
    4.吕殿青,周延安,孙本华.氮肥施用对环境污染影响的研究.植物营养与肥料学报,1998,4(1):8-15
    5.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6
    6.朱兆良.关于提高氮肥利用率的问题.肥料与农业发展国际学术讨论会论文集,中国农业科技出版 社,1995.pp 221-229
    7.邢光熹,颜晓光.中国农田N2O排放的分析估算与减缓对策.农村生态环境,2000,16(4):1-6
    8.崔玉亭,程序,韩纯儒,李荣刚.苏南太湖流域水稻氮肥利用率及氮肥淋洗量研究.中国农业大学学报,1998,3(5):51-54
    9.张福锁,马文奇.肥料投入水平与养分资源高效利用的关系.土壤与环境,2000,9(2):154-157
    10. De Datta SK. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. Fertilizer Research, 1986,9:171-186
    11.杨红旗,徐艳华.我国油菜生产现状与发展.种子世界,2010,7:1-2
    12.左青,张新雄.我国油菜籽种植和加工现状.中国油脂,2010,35(5):1-3
    13.李娜,杨涛.我国油菜籽产业发展现状与策略.粮油食品科技,2009,17(2):34-36
    14.李俊良,韩琅丰,江荣风.碳、氮比对有机肥料氮素释放和植物吸氮的影响.北京农业大学学报,1996,1(5):57-62
    15.唐玉霞,孟春香,贾树龙,刘巧玲,王惠敏.不同碳源物质对土壤无机氮生物固定的影响.河北农业科学,2004,8(1):6-9
    16.王传雷,瞿和平,万一花,李四斌,葛秀文,刘卫平.有机无机肥配合施用长期定位试验.湖北农业科学,2003,5:58-59
    17.郑兰君,曾广永,王鹏飞.有机肥、化肥长期配合施用对水稻产苗及土壤养分的影响.中国农学通报,2001,17(3):48-50
    18.宋永林,袁锋明,姚造华.北京褐潮十长期施肥条件下对冬小麦产量及产量变化趋势影响的定位研究.北京农业科学,2001,1:29-32
    19. Yadav, RL. Dwivedi, BS. Kamta Prasad. Tomar, OK. Shurpali, NJ. Pandey, PS. Yield trends, and changes in soil organic-C and available NPK in a long-term rice-wheat system under integrated use of manures and fertilizers. Field Crops Research,2000,68:219-246
    20.刘杏兰,高宗,刘存寿,司立征.有机无机肥料配施的增产效益及对土壤肥力影响的定位研究.土壤学报,1996,33(2):138-147
    21.任祖金,陈玉水,唐福钦,王东海,张逸清.优化肥料结构促进稻田土壤生态良性循环.生态学报,1996,16(5):548-554
    22.杨林章,刘元昌,徐琪,田中明,长谷川满良.施肥对水稻产量和稻田土壤理化性质的影响.生态学杂志,1989,8(3):39-43
    23.肖凯,张树华,邹定辉,张荣铣.不同形态氮素营养对小麦光合特性的影响.作物学报,2000,26(1):53-58
    24.姜东,于振文,许玉敏,余松烈.有机无机肥配合施用对冬小麦根系和旗叶衰老的影响.土壤学报,1999,36(4):440-447
    25.周伯瑜,杨子江.论有机肥料在农业生态系统中的地位和作用.生态学杂志,1992,11(3):53-55
    26.杨长明,杨林章.有机无机肥配施对水稻剑叶光合特性的影响.生态学杂志,2003,22(1):1-4
    27.王毅,瞿兴,杨跃.菜籽饼肥与化肥配合施用对烤烟生长及土壤养分的影响.华中农业大学学报,2006,25(1):50-54
    28.彭娜,王开峰,谢小立,王凯荣.长期有机无机肥配施对稻田十壤基本理化性状的影响.中国土壤与肥料,2009,2:6-10
    29.朱焕潮,符冠富,王丹英,章秀福.饼肥对稻田土壤酶活性的影响及其与水稻成熟期衰老的关系.中国稻米,2008,6:57-62
    30. Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines. Soil Science and Plant Nutrition,2004,50:545-554
    31. Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in new plant type of tropical rice lines. Journal of Plant Nutrition.2005,28:845-850
    32. Osaki M, Shinano T, Matsumoto M, Zheng T, Tadano T. A root-shoot interaction hypothesis for high productivity of field crops. Soil Science and Plant Nutrition,1997,37:445-454
    33. Yang C, Yang L, Yang Y, Ouyang Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management,2004,70: 67-81
    34.何永梅,李建国.饼肥施用技术问答.2010,6:61
    35.蒋浩永.饼肥施用技术.农技服务.2009,26(6):37
    1. FAO. FAO Statistical databases. Food and Agricultural Organization (FAO) of United Nations, Rome, 2007
    2. Peng SB, Huang JL, Zhong XH, Yang JC, Wang GH, Zou YB, Zhang FS, Zhu QS. Buresh RJ, Witt C. Challenge and opportunity of in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agricultural Science in China,2002,1(7):776-785
    3. Peng SB, Buresh RJ, Huang JL, Yang JC, Zou YB, Zhong XH, Wang GH, Zhang FS. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research,2006,96:37-47
    4. Peng SB, Tang QY, Zou YB. Current status and challenges of rice production in China. Plant Production Science,2009,12:3-8
    5.张福锁,马文奇,陈新平.养分资源综合管理理论与技术概论.北京:中国农业大学出版社,2006.pp48-58
    6. Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS. Significant acidification in major Chinese croplands. Science,2010,327:1008-1010
    7. Katsura K, Maeda S, Horie T, Shiraiwa T. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crops Research,2007,103:170-177
    8.李保国,彭世琪.1998-2007年中国农业用水报告.北京:中国农业出版社,2009.pp 72-78
    9. Qin J, Hu F, Zhang B, Wei Z, Li H. Role of straw mulching in non-continuously flooded rice cultivation. Agricultural Water Management,2006,83:252-260
    10. Lu X, Wu L, Pang L, Li Y, Wu J, Shi C, Zhang F. Effects of plastic film mulching cultivation under non-flooded condition on rice quality. Journal of the Science of Food and Agriculture,2007,87:334-339
    11.郑捷,李永光,韩振中.中关主要农作物灌溉水分生产率分析.农业工程学报,2008,24(11):46-50
    12. Cassman KG. Ecological intensification of cereal production systems:Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America, 1999,96:5952-5959
    13. Cassman KG, Dobermann A, Walters DT. Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resources,2003,28:315-358
    14. Tilman DK, Cassman KG, Matson PA. Agricultural sustainability and intensive production practices. Nature,2002,418:671-678
    15. Zhang H, Xue Y, Wang Z, Yang J, Zhang J. Morphological and physiological traits of roots and their relationships with shoot growth in "super" rice. Field Crops Research,2009,113:31-40
    16. Tsugeki R, Fedoroff NV. Genetic ablation of root cap cells in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America,1999,96:12941-12946
    17. Sievers A, Braun M, Monshausen GB. The root cap:structure and Function//Waisel Y, Eshel A, Kafkafi U. Plant Roots:the Hidden Half. New York:Marcel Dekker,2002. pp 33-47
    18. Olsen GM, Mirza JI, Maher EP. Ultrastructure and movements cell organelles in the root cap of agravitropic mutants and normal seedlings of Arabidopsis thaliana. Physiologia Plantarum,1984,60: 523-531
    19. HaWes MC, Gunawardena U, Miyasaka S. The role of root broder cells in plant defense. Trends in Plant Sciences,2000,5:128-133
    20. Hayashi S. Effect of limiting oxygen supply on the ultra-structure of root tip cells in the germinating stage of rice seeds. Japanese Journal of Crop Science,1998,67:41-48
    1.潘晓华,王永锐,傅家瑞.水稻根系生长生理的研究进展.植物学通报,1996,13(2):13-20
    2. 孙静文,陈温福,臧春明,王彦荣,吴淑琴.水稻根系研究进展.沈阳农业大学学报,2002,33(6):466-470
    3.张成良,姜伟,肖叶青,邬文昌,陈大洲,黄英金.水稻根系研究现状与展望.江西农业学报,2006,18(5):23-27
    4.刘桃菊,戚昌瀚,唐建军.水稻根系建成与产量及其构成关系的研究.中国农业科学,2002,35(11):1416-1419
    5.蔡昆争,骆世明,段舜山.水稻根系在根袋处理条件下对氮养分的反应.生态学报,2003,23(6):1109-1116
    6.汪强,樊小林,刘芳,Klaus D, Sattemacher B.断根和覆草旱作条件下水稻的产量效应.中国水稻科学,2004,18(5):437-442
    7.刘文兆,李秧秧.断伤作物根系对籽粒产量与水分利用效率的影响研究现状及问题.西北植物学报,2003,23(8):1320-1324
    8.蔡永萍,杨其光,黄义德.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响.中国水稻科学,2000,14(4):219-224
    9.杨建昌.水稻根系形态生理与产量、品质形成及养分吸收利用的关系.中国农业科学,2011,44(1):36-46
    10. Yuan LP. Hybrid rice breeding in China//Proceedings of the Third International Symposium on Hybrid Rice. Los Banos, Philippines:International Rice Research Institute,1998:27-33
    11. Khush GS, Peng SB. Breaking the yield frontier of rice//Reynolds MP, Rajaram S, McNab A. Increasing yield potential in wheat:Breaking the barriers. Mexico:International Maize and Wheat Improvement Center,1996:36-51
    12. Jackson RB, Manwaring JH, Coldwell MM. Rapid physiologically adjustment of roots to localized soil enrichment. Nature,1990,344:58-60
    13.昊伟明,程式华.水稻根系育种的意义与前景.中国水稻科学,2005,19(2):174-180
    14. Peng SB, Tang QY, Zou YB. Current status and challenges of rice production in China. Plant Production Science,2009,12:3-8
    15. Cassman KG. Ecological intensification of cereal production systems:Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America,1999,96:5952-5959
    16. Cassman KG, Dobermann A, Walters DT. Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resources,2003,28:315-358 注:不同字母表示在0.05水平上差异显著,同一栏同一品种内比较;CI:常规灌溉:WMD:轻干-湿交替灌溉;WSD:重干-湿交替灌溉;下表同。Notes:Values followed by different letters within the same column and the same cultivar are significantly different at the 0.05 probability level; CI:conventional irrigation; WMD:alternate wetting and moderate soil drying; WSD:alternate wetting and severe soil drying; The same are as following tables.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700