用户名: 密码: 验证码:
自毒物质与病原真菌协同对连作地黄的致害作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
怀地黄是我国著名“四大怀药”之一,但其药用植物(玄参科多年生草本植物)地黄(Rehmannia glutinosa Libosch.),却存在非常严重的连作障碍。本研究基于当前连作障碍的研究现状,构建了地黄无菌苗体系,分析评价了地黄须根自毒作用,从地黄连作土壤和发病植株中分离了地黄专化型病原真菌,并进一步探讨了须根自毒物质与病原菌在地黄连作障碍中的协同作用。实验结果如下:
     道地产区与非道地产区地黄品质存在着差异,但正茬与重茬地黄的品质差异明显高于产区之间差异;两产区地黄的连作土壤均能抑制地黄幼苗生长;连作还造成根际土壤细菌数量减少,土壤真菌和放线菌数量增多,土壤微生物类型由“细菌型”向“真菌型”过渡;与正茬土壤相比,连作根际土壤中土壤脲酶、蔗糖酶和过氧化氢酶的活性显著下降,土壤多酚氧化酶、纤维素酶和蛋白酶的活性有所增加,但土壤磷酸酶活性在两个产区连作土壤中呈现相反的变化趋势。可见,地黄连作会引起土壤酶活性和土壤微生态区系的变化,影响土壤酶活性,降低了地黄对营养物质的吸收利用,进而造成地黄药用品质下降。
     通过对以地黄块根、叶片、地黄顶芽及地黄新出根生芽等作为外殖体材料的无菌苗构建体系的比较性分析,认为新出根生芽可以作为地黄组织培养的良好外殖体材料。优化并建立了以MS+6-BA1mgL-1+NAA0. mgL-11为培养基的成苗诱导体系;确定了以MS+6-BA0.3mgL-1+NAA0.2mgL-1为培养基诱导的地黄丛生苗繁殖率高,苗体粗壮;经MS+PP3330.1mgL-1生根诱导的地黄无菌苗发根快而多,根部生长强壮,植株叶色浓绿,经炼苗后移栽可作为地黄连作障碍研究提供实验材料。
     室内自毒作用潜力评价表明,相同浓度处理下的地黄须根提取物、地黄茬后土壤提取物、地黄根系分泌物均能抑制地黄生长,表现出自毒作用,且地黄须根提取物具有更强的化感抑制作用;95%乙醇进行地黄须根自毒物质浸提,经硅胶柱色谱分离,进行活性追踪实验确定部位Ⅲ为抑制活性最高的分离部位,硅烷化衍生化后进行气质联用分析得到32个化学物质;通过文献检阅后选择9个单体物质对地黄幼苗进行生物测试,结果表明所选的9个单体物质能较大程度上抑制地黄生长。进一步分析发现,地黄自毒物质不仅引起地黄体内膜脂过氧化物质的增高,导致细胞生物膜透性增强,保护酶活性持续升高,还影响地黄幼苗内源激素水平,造成植物伤害。
     通过PDA平板培养法,从连作土壤中分离到病原真菌42株,从地黄病株中分离到病原真菌24株。这66株真菌型病原菌分属子囊菌门、结合菌门、担子菌门和半知菌门等4个门。采用回接发病实验鉴定到有4株菌地黄专化型病原菌,结合菌落形态、孢子形态和iTS区的PCR扩增后测序结果初步推断菌株CCS038为镰刀菌属(Fusaiunn)雪腐镰刀菌种(Fusarium nivale),菌株CCS043为镰刀菌属(Fusaiunn)尖孢镰刀菌种(Fusarium oxysporum),菌株CCS025为曲霉属(Aspergillus)黄曲霉菌(Aspergillus flavus),菌株CCS012为曲霉属(Aspergillus)烟曲霉菌(Aspergillus fumigatus)。
     地黄须根自毒物质与病原菌存在协同作用,地黄须根自毒物质特别是阿魏酸和对羟基苯甲酸不仅能诱导地黄专化型病原菌的菌丝生长和孢子增殖和萌发,还通过增强真菌信号转导系统如SH3结构和F-box蛋白体系和分子伴侣等修饰原件加强机体内结构基因表达等过程的调控,还增强了对真菌营养代谢相关的调控,促进真菌对营养物质的利用,进而影响真菌形态建成,还能通过破坏宿主细胞壁和防御体系,增强病原菌对宿主的侵染能力,从而加剧对地黄的致害过程。
Rehmannia (Rehmannia glutinosa Libosch) is in the Scrophulariaceae family and is one of the most common and important medicinal herbal plants in China. However, the consecutively monocultured plants are prone to severe diseases resulting in reduced biomass, especially the tuberous products. In this study, the propagation system of Rehmannia was established, the autotoxicity of fibrous root was evaluated, and the host-specific pathogenic fungi were isolated from replanted soil and wilt plants of Rehmannia. Furthermore, the synergistic effect of autotoxins and phytopathogenic fungi on the consecutive monoculture of Rehmannia was explored. The main results were as follows:
     In this study, the experiments were conducted to evaluate the quality of Rehmannia due to consecutive monoculture, and to explore the decline in the quality of Rehmannia from the sides of soil micro-ecology (soil microbes and enzyme activities). The results showed that, the quality of Rehmannia from the origin region (Jiaozuo, Henan province) and production region (Linfen, Shanxi Province) were different, but the differences between the newly planted soil and monoculture soil were significantly higher than the differences in regions. The monoculture soils from the two regions both inhibited the seedling growth. The continuous cropping caused the reduction in the number of rhizosphere soil bacteria, accompanied by the increase of fungi and actinomycetes, resulted in the transition of soil type from "bacteria" to "fungi". Compared to the rotational soil, the activities of urease, sucrase and catalase in the continuous decreased significantly (P<0.05), while the activities of polyphenoloxidase, cellulase and protease were slightly increased soil. But the phosphatase activity showed an opposite trend in the newly planted soil and monoculture soils from the two regions. Therefore, we speculated that autotoxicity changed the soil micro-ecology, affected soil enzyme activity, thereby reduced Rehmannia to absorb nutrients.
     To establish the technical system of rapid propagation, the root tuber, leaves, apical buds, and radical buds of Rehmannia were cultured, and the results showed that using the radical buds as explants was best. Further, by optimizing the culture condition, the rapid propagation system of Rehmannia was established base on of radical buds inducing, which is MS+6-BA1+N AA0.1for induction, MS+6-BA0.3+NAA0.2for prolifera tion, and MS+PP3330.1for rooting. The cultivated aseptic seedlings grew in good condition and were used as material for the further study. The evaluation of potential autotoxicity showed that, fibrous root extract, replanted soil extracts and root exudates could inhibit the growth of Rehmannia glutinosa under the same concentration, and the fibrous root showed the strongest inhibitory effect. Four groups of autotoxic compounds from the aqueous extracts of the fibrous roots were isolated and characterized. The ethyl acetate extracts of these water-soluble compounds were further analyzed and separated into five fractions. Among them, the most autotoxic fraction (Fr3) was subjected to GC/MS analysis, resulting in32identified compounds. Based on literature, nine compounds were selected for testing their autotoxic effects on radicle growth. Seven out of the9compounds were phenolic, which significantly reduced radicle growth in a concentration-dependent manner. The other two were aliphatic compounds that showed a moderate inhibition effect at three concentrations. Concentration of these compounds in soil samples was determined by HPLC. Furthermore, the autotoxic compounds were also found in the top soil of the commercially cultivated Rehmannia fields. It appears that a close link exists between the autotoxic effects on the seedlings and the compounds extracted from fibrous roots of Rehmannia. Further analysis found that the autotoxic compounds not only resulted in membrane lipid peroxidation, the increasing of membrane permeability and antioxidant enzymes content, but also acted on plant indirectly by changing levels of endogenous phytohormones.
     In this paper,66fungi strains were isolated from replanted soil and wilt plants of Rehmannia. Next, morphological observation and ITS sequence analysis were employed to identify the strains. The results showed that66fungi strains could be divided into phylums of Ascomycota, Zygomycota, Basidiomycota and Deuteromycotina. By the back infestation test, the strains of CCS038, CCS043, CCS025and CCS012were screened as host-specific pathogenic fungi of Rehmannia, they were grouped into Fusarium nivale, Fusarium oxysporum, Aspergillus flavus and A spergillus fum igatus re specti vely.
     Finally, the synergistic effect of autotoxins and pathogenic fungi was discussed. The autotoxins especially ferulic acid and p-hydroxy benzoic acid not only promoted the hypha growth, spores proliferation directly, but also upgraded the expression of signal transduction system and nutrition metabolization related genes. In addition, the expression of some pathogenic genes were enhanced, which caused more sever damage to rehmannia.
引文
[1]Bertin C., Yang X., Weston L.A. The role of root exudates and allelochemicals in the rhizosphere [J]. Plant Soil,2003,256(1):67-83
    [2]Brajesh K. S., Peter M., Andrew S.W, et al. Unravelling rhizosphere-microbial interactions:opportunities and limitations [J].Trends in Microbiology, 2004,12(8):386-393
    [3]Chou C.H., Lin H.J. Autointoxication mechanisms of Oryza sativa [C]. J Chem Ecol,1976,2:353-367
    [4]Fujii Y, Akihiro F. Syuntaro H. Rhizosphere soil method:a new bioassay to evaluate allelopathy in the field [C]. Proceedings and selected papers of the fourth world congress on allelopathy,2004
    [5]Garbeva P., Vanveen J.A., Vanelsas J.D. Microbial diversity in soil:selection of microbial populations by plant and soil type and implications for disease suppressiveness [J]. Annual Review. Phytopathol,2004,42:243-270
    [6]Gershenzon J. Metabolic costs of terpenoid accumulation in higher plants [J]. J. Chem. Ecol.,1994,20:1281-1328
    [7]Gordana S. C, Anamarija I. M.,Jasna M. C., et al. HPLC Screening of Phenolic Compounds in Winter Savory (Satureja montana L.) Extracts [J]. Journal of Liquid Chromatography & Related Technologiesw,2007,30:293-306
    [8]Hao Z.P., Wang Q., Christie P., et al. Allelopathic potential of watermelon tissues and root exudates[C]. Sci Hortic-amsterdam,2007,112:315-320
    [9]Hartung, A.C. and Stephens, C.T.. Effects of allelopathic substance produced bt asparagus on incidence and severity of asparagus decline due to Fusarium crown rot [J]. J. Chen. Ecol.1983,9:1163-1174
    [10]He C.N., Gao W.W., Yang J.X., et al. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L [J]. Plant Soil,2009,318:63-72
    [11]Horton T.R., Bruns T.D. The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box [J]. Molecular Ecology,2001,10:1855-1871.
    [12]Inderjit. Soil microorganisms:an important determinant of allelopathic activity [J]. Plant and Soil,2005,274:227-236
    [13]Jennings A.J. and Nelson C.J.. Zone of Autotoxic Influence around Established Alfalfa Plants [J]. Agronomy Journal,2002,94(5):1104-1111
    [14]Lee S., Tomasetto C., Sager R.. Positive selection of candidate tumor-suppressor genes by subtractive hybridization [J]. Pro Nat Acad Sci.1991,88:2825-2829
    [15]Li X.Z., Chen X., Yang Y. J., et al. Pharmacokinetic study of baicalin in rabbits with inflammatory brain edema [J]. Chin Pharm J,1999,34(2):107-109
    [16]Wu L.K., Wang HB., Zhang Z.X., et al. Comparative Metaproteomic Analysis on Consecutively Rehmannia glutinosa-monocultured Rhizosphere Soil [J]. PLoS One.2011,6(5):e20611
    [17]Margaret M.. Rhizosphere allelopathy [J]. Allelopathy Journal, 2007,19(1):75-84.
    [18]Masahiro S., Chika M., Toshiyuki U., et al. Biological Control Efficiency of Fusarium Wilt of Tomato by Nonpathogenic Fusarium oxysporum Fo-B2 in Different Environments J]. Phytopathology,2005,95(9):1072-1080
    [19]Nicole B., Patrice R., Mohamed C., et al. Treatment with the Mycoparasite Pythium oligandrum Triggers Induction of Defense-Related Reactions in Tomato Roots When Challenged with Fusarium oxysporum f. sp. radicis-lycopersici [J]. Phytopathology,1997,87(1):108-122
    [20]Ogram A. Discussion soil molecular microbial ecology at age 20: Methodological challenges for the future [J]. Soil Biology & Bioehemistry, 2000,32:1499-1504
    [21]Peirce, L.C. and Colby, L.W.. Interaction of asparagus root filtrate with Fusarium oxysporum. Sp. Asparagi [J]. Journal of American Society of Horticultural Science,1987,112:35-40
    [22]Peirce, L.C. and Miller, H.G.. Interaction of asparagus autotoxin with Fusarium [J]. Acta Horticultrace.1990,271:305-313
    [23]Philippe H., Claude P., Benoit J.. Rhizosphere:A new frontier for soil biogeochemistry [J]. Journal of Geochemical Exploration,2006,88:210-213
    [24]Pramanik M.H, Nagai M., Asao T., et al. Effects of temperature and hotoperiod on the phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture [J]. J. Chem. Ecol.,2000,28(8):1953-1967
    [25]Yang C.S., Young C.C. Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta limpograss (Hemarthria altissima) [J]. Plant Physiology,1982,69 (1):155-160
    [26]Wu H.S., Yin X.M, Liu D.Y., et al.. Effect of fungal fusaric acid on the root and leaf physiology of watermelon (Citrullus lanatus) seedlings [J]. Plant Soil,2008, 308:255-266
    [27]Wu H.W., Pratley J., Lemerle D., et al.. Autotoxicity of wheat (Triticum aestivum L.) as determined by laboratory bioassays [J]. Plant soil,2007,1296:85-93
    [28]Cui Y.Y., Hahn E.J., Kozai T., et al. Number of air exchanges, sucrose concentration, photosynthetic photon flux, and differences in photoperiod and dark period temperatures affect growth of Rehmannia glutinosa plantlets in vitro. [J]. Plant Cell, Tissue and Organ Culture,2000,31(1):219-226
    [29]Yu J. Q., Ye S. F., Zhang M. F., et al. Effects of root exudates and aqueous root extracts of cucumber (Cucumissativus)and allelochemicals on photosynthesis and antioxidant enzymes in cucumber [J]. Biochem. Syst. Ecol.,2003,31(1):129-139
    [30]Zhao H.J., Tan J.F.,Qi C.M. Photosynthesis of Rehmannia glutinosa subjected to drought stress is enhanced by choline chloride through alleviating lipid peroxidation and increasing proline accumulation [J]. Plant Growth Regul, 2007,51:255-262
    [31]Zhao Y.J., Wang Y.P., Shao D., et al. Autotoxicity of Panax quinquefolium L. [J]. Allelopathy Journal,2005,15:67-74
    [32]Li Z.F., Zhang Z.G., Xie D.F., et al. Positive Allelopathic Stimulation and Underlying Molecular Mechanism of Achyranthe under Continuous Monoculture [J]. Acta Physiol Plant,2010, DOI 10.1007/s11738-011-0774-0
    [33]陈慧,郝慧荣,熊君,等.地黄连作对根际微生物区系及土壤酶活性的影响[J].应用生态学报,2007,18(12):2755-2759
    [34]陈嘉漠(明).本草蒙荃[M].北京:人民卫生出版社,1988.
    [35]陈永勤,胡传银.地黄不定芽诱导生根和微型块茎繁殖研究[J].湖北大学学报,2004,26(1):61-64
    [36]成田保三郎.连、轮作田土城的徽生物作用[J].日本土城肥料学杂志,1982,53(1):6-10
    [37]丁桔.黄瓜自毒物质和枯萎病的致害及其调控机制研究[C].浙江大学,2008
    [38]杜家方,尹文佳,李娟,等.连作地黄根际土壤中酚酸类物质的动态变化[J].中国中药杂志,2009,34(8):948-952
    [39]杜家方,尹文佳,张重义,等.不同间隔年限地黄土壤的自毒作用和酚酸 类物质含量[J].生态学杂志,2009,28(3):445-450
    [40]方中达编著.植病研究方法(第三版)[M].北京:中国农业出版社,1998
    [41]冯志红,闫立英,王久兴,等.连作栽培中自毒物质对黄瓜种子萌发和幼苗生长的影响[J].种子,2005,24(6):41-44
    [42]高微微,赵杨景,王玉萍,陈士林.我国药用植物栽培地的可持续利用研究[J].中国中药杂志,2006,(31)20:1665-1668
    [43]高玉峰,贺字典.影响土壤真菌多样性的土壤因素[J],中国农学通报,2010,26(10):177-181
    [44]关松荫.土壤酶及其研究法[M].北京:农业出版社,1987
    [45]官会林,陈昱君,朱海春,等.三七病株根际土壤微生物特征研究[J].农业与技术,2005,25(6):56-58
    [46]郭兰萍,黄璐琦,蒋有绪,等.药用植物栽培种植中的土壤环境恶化及防治策略[J].中国中药杂志,2006,31(9):714-717
    [47]郭巧生.药用植物栽培学[M].北京:高等教育出版社,2004
    [48]郝纯,刘庆华,杨俊仕,等.宏蛋白质组学—探索环境微生态系统的功能[J].应用与环境生物学报,2008,14(2):270-275
    [49]郝群辉,朱广军.地黄根区土壤潜在化感物质的GC-MS分析[J].河南科学,2007,25(2):255-237
    [50]何江华,马东明,贾新成,等.地黄块根膨大过程中土壤化感物质含量及微生物数量变化研究[J],河南科学,2008,26(11):1369-137
    [51]贺纪正,张丽梅,沈菊培,等.宏基因组学(Metagenomics)的研究现状和发展趋势[J].环境科学学报,2008,28(2):209-218
    [52]季尚宁,肖玉珍.土壤灭菌对连作大豆生长发育的影响[J],东北农业大学学报,1996,27(4):326-329
    [53]贾思勰著,石声汉编译.《齐民要术》今释[M].北京:科学出版社,1957
    [54]解红娥,王娇娟,解晓红,等.地黄土壤中主要病原真菌的鉴定及致病性研究[J].山西农业科学,2007,35(2):59-63
    [55]解红娥,解晓红,李江辉,等.地黄脱毒技术研究与应用[J].山西大学学报(自然科学版),2005,28(3):318-321
    [56]金扬秀,谢关林,孙祥良,等.大蒜轮作与瓜类枯萎病发病的关系[J].上海 交通大学学报,2003,21(1):9-12
    [57]鞠会艳,韩丽梅,王树起,等.连作大豆根分泌物对根腐病病原菌的化感作用[J].应用生态学报,2002,13(6):723-727
    [58]李光胜,王学军,袁燕东,等.防止或减轻地黄优良品性退化的方法[J].基层中药杂志.2001,15(1),28-29
    [59]李光胜,黄新生,朱风臣,等.地黄夏栽技术的研究[J].中国中药杂志,1993,18(12):718-722
    [60]李明军,王凤娟,张晓丽,等.航天搭载的怀地黄种子无菌萌发及试管苗快繁[J].核农学报,2009,23(2):274-278
    [61]李明军,张嘉宝,刘萍.怀地黄离体培养再生植株及其生长调控[J].河南师范大学学报(自然科学版),1996,24(4):60-63
    [62]李时珍.本草纲目(校点本,上册)[M].北京:人民卫生出版社,1982
    [63]李先恩,陈士林,魏淑秋,等.地黄适生地分析及等级划分[J].中国中药杂志,2006,31(4):344-346
    [64]李彦斌,刘建国,谷冬艳.植物化感自毒作用及其在农业中的应用[J].农业环境科学学报,2007,26(增刊):347-350
    [65]李玉占,梁文举,姜勇.苜蓿化感作用研究进展[J].生态学杂志,2004,23(5):186-191
    [66]李振方,齐晓辉,李奇松,等.地黄自毒物质提取及其生物指标测定[J].生态学报,2010,30(10):2576-2584
    [67]李振方.怀牛膝连作促进效应及其分子机理研究[M].福建农林大学,2008
    [68]李振高,潘映华,李良谟.不同基因型小麦根际细菌及酶活性的动态研究[J].土壤学报,1993,30(1):1-8
    [69]刘峰,温学森,刘彦飞,等.水苏糖对地黄根际土壤微生物失衡的影响[J].中草药,2007,38(12)
    [70]刘长河,李更生,黄迎新,等.不同产地地黄中梓醇含量比较[J].中医研究,2001,14(5):10-13
    [71]刘红彦,王飞,王永平,等.地黄连作障碍因素及解除措施研究[J].华北农学报,2006,21(4):131-132
    [72]刘少华,陆金萍,朱瑞良,等.一种快速简便的植物病原真菌基因组DNA 提取方法[J].植物病理学报,2005,35(4):362-365
    [73]吕卫光,张春兰.化感物质抑制连作黄瓜生长的作用机理[J].中国农业科学,2002,35(1):105-109
    [74]马云华,王秀峰,魏珉,等.黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响[J].应用生态学报,2004,15(6):1005-1008
    [75]邱立友,戚元成,工明道,等.植物次生代谢物的自毒作用及其与连作障碍的关系[J].土壤,2010,42(1):1-7
    [76]任南琪,赵阳国,高崇洋TRFLP在微生物群落结构与动态分析中的应用[J].哈尔滨工业大学学报,2007,39(4):552-556.
    [77]阮维斌,王敬国,张福锁,等.根际微生态系统理论在连作障碍中的应用[J].中国农业科技导报,1999,1(4):53-58
    [78]阮维斌,赵紫娟,薛健,等.高效液相色谱法检测与化感现象相关的5种酚酸[J].应用与环境生物学报,2001,7(6):609-612
    [79]史刚荣.植物根系分泌物的生态效应.生态学杂志[J],2004,23(1):97-101
    [80]孙红艳,林瑞余,叶陈英,等.苗期化感水稻对根际土壤微生物群落及其功能多样性的影响[J].中国生态农业学报,2008,16(4):894-899
    [81]孙秀山,封海胜,万书波,等.连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J].作物学报,2001,27(5):617-621.
    [82]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000
    [83]王金龙,徐冉,王彩洁,等.大豆连作条件下土壤环境的变化及其危害[J].山东农业科学,2005(2):54-57
    [84]王敏,李明福,黄璐琦,等.栽培地黄(Rehmannia glutinosa Libosch.)普遍感染TMV和CMV [J],物病理学报,2006,36(2):189-192.
    [85]王明道,吴宗伟,原增艳,等.怀地黄连作对土壤微生物区系的影响[J].河南农业大学学报,2008,42(5):532-538
    [86]王明道,吴宗伟,原增艳,等.外源阿魏酸对水培地黄生长的影响[J].河南农业大学学报,2009,43(1):25-29
    [87]王太霞,李景原,胡正海.怀地黄块根的形态发生和结构发育[J].西北植物学报,2003,23(7):1217-1223
    [88]王学奎主编.植物生理学实验指导(第三版)[M].北京:高等教育出版 社,2003
    [89]王永.地黄覆膜栽培增产效果[J].安徽技术师范学院学报,2003,17(3):237-238
    [90]王震宇.重茬大豆生长发育障碍机制初探[J].大豆科学,1991,10(1):31-36
    [91]魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979
    [92]温学森,李允尧,陈沪宁.地黄栽培研究进展[J].中药材,2002,23(7):427-429
    [93]吴凤芝,黄彩红,赵凤艳.酚酸类物质对黄瓜幼苗生长及保护酶活性的影响[J].中国农业科学.2002,35(7):821-825
    [94]吴凤芝,孟立君,文景芝.黄瓜根系分泌物对枯萎病菌菌丝生长的影响[J].中国蔬菜,2002(5):26-27
    [95]吴凤芝.酚酸类物质对连作黄瓜自毒作用的机理研究[M].东北农业大学,2003
    [96]吴洪生.西瓜连作土传枯萎病微生物生态学机理及其生物防治[M].南京农业大学,2008
    [97]吴普,孙冯翼.神农本草经[M].北京:人民卫生出版社,1982
    [98]吴宗伟,王明道,刘新育,等.重茬地黄土壤酚酸的动态积累及其对地黄生长的影响[J].生态学杂志,2009,28(4):660-664
    [99]武宗信,解红娥,冯文龙,等.地黄的组织培养和快速繁殖[J].植物生理学通讯,2002,38(6):582-583
    [100]肖辉林,彭少麟,郑煜基,等.植物化感物质及化感潜力与土壤养分的相互影响[J].应用生态学报,2006,17(9):1747-1750
    [101]肖荣凤,朱育菁,李燕丹.等.西瓜尖孢镰刀茵FOV-135的绿色荧光蛋白基因转化[J].福建农业学报,2009,24(6):521-524
    [102]徐文修,罗明,李银平,等.作物茬口对连作棉田土壤环境及棉花产量的影响[J].农业工程学报,2011,27(3):271-275
    [103]许艳丽,李兆林,韩晓增.等.大豆重茬障碍研究进展Ⅱ.大豆重茬障碍机制[J].大豆通报,2000(5):11-12
    [104]薛建平,张爱民,李明军,等.怀地黄茎尖培养和植株再生技术的研究[J].新乡医学院学报,2000.17(1):18-20
    [105]杨继祥.药用植物栽培学[M].北京:农业出版社,1993
    [106]于百功,尹丽芳,毛学华,等.地黄提芽栽培技术[J].药用植物裁培,1999,22(2):55-56
    [107]于广武,许艳丽.大豆连作障碍机制研究初报[J].大豆科学,1993,12(3):237-243
    [108]喻景权,松井佳久.豌豆根系分泌物自毒作用的研究[J].园艺学报,1999,26(3):175-179
    [109]喻敏,余均沃,曹培根,等.百合连作土壤养分及物理性状分析[J].土壤通报,2004,35(3):377-379
    [110]袁佐清.土壤中木霉的分离纯化以及对植物病原真菌的拮抗研究[J].西北农业学报,2006,15(5):132-135
    [111]泽田泰男.作物残渣的有害性和对后作的影响[J].农业与园艺,1972,48(4):528-532
    [112]张辰露,孙群,叶青.连作对丹参生长的障碍效应[J].西北植物学报,2005,25(5):1029-1034
    [113]张江红.酚类物质对苹果的化感作用及重茬障碍影响机理的研究[M].山东农业大学.2005
    [114]张淑香,高子勤.连作障碍与根际微生态系统11.根系分泌物与酚酸物质[J].应用生态学报,2000,11(1):152-156
    [115]张文婷,来航线,王延平,等.黄土高原不同植被坡地土壤微生物区系特征[J].生态学报,2008,28(9):4228-4234
    [116]张听.香蕉枯萎病菌遗传多态性及绿色荧光蛋白基因转化的研究[M].华南热带农业大学,2007
    [117]张重义,林文雄.药用植物化感白毒作用与连作障碍[J].中国生态农业学报,2009,17(1):189-196
    [118]赵杨景.植物化感作用在药用植物栽培中的重要性和应用前景[J].中草药,2000,31(8):1-4
    [119]朱广廉,钟诲文,张爱琴.植物生理学实验[M].北京:北京大学出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700