用户名: 密码: 验证码:
植物根际促生菌的筛选及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高产、优质和高效农业是我国农业发展的方向。这一进程中,化肥、农药、激素等化学农资产品的大量使用依然不可避免。化学农资产品的过度依赖必然造成环境污染和食品安全问题。因此,如何在相对减少农药化肥等用量的前提下,提高植物产量和品质,已成为农产品质量与安全领域的重要研究方向。对农学家和育种学家而言,改进栽培措施、培育优良品种,是解决这一问题的途径之一。除此之外,农用生物制剂如生物肥料和生物农药等因其效果显著、环境友好,也逐渐受到人们的关注。
     农用生物制剂常用的微生物素材是植物根际促生菌(plant growth promoting rhizobacteria, PGPR),主要是定殖于植物根际系统,并能促进植物生长的一类细菌。PGPR能通过产生抵抗多种病原菌的抗生素类物质、毒素或诱导寄主植物产生病程相关蛋白等途径,帮助植物抵抗生物类侵害,包括病原细菌、真菌、病毒及线虫等;PGPR还能通过产生如ACC脱氨酶、IAA、气体信号分子等途径,帮助植物忍受多种非生物胁迫,包括重金属、干旱、盐分、肥力低下或过剩等。总之,PGPR作用机制多样,人们可以根据不同的需求,筛选合适的PGPR。然而,许多PGPR在实验室和温室条件下表现良好,但是在大田条件下的表现往往缺乏很好的重现性,这就限制了PGPR菌的大面积使用。因此,筛选高效广适的PGPR,并进行最适作用植物、土壤等条件的相关研究,成为研发生物制剂的关键。基于此,本研究致力于从不同植物根际筛选多株高效PGPR,并进行应用实践,以期为农用生物制剂的研制提供素材和依据。结果及结论如下:
     (1)按国际通用方法,从盐城、扬州等地不同植物根际筛选到14株PGPR,体外促生指标显示,所筛菌株具有一定的应用前景,并从分子水平进行了菌株鉴定。分类鉴定结果显示:7株属于假单胞菌属(Pseudomonas)、3株属于类芽孢杆菌属(Paenibacillus)、2株为芽孢杆菌属(Bacillus)、1株为布克氏菌属(Burkholderia)、1株为欧文氏菌属(Erwinia)。
     (2)通过体外促生试验明确:Pseudomonas sp. RA6和Bacillus sp. WP8可用于豇豆盆栽试验;Bacillus sp. RBB1、Bacillus sp. WP8和Pseudomonas sp. RBP1可用于水稻育秧试验;Erwinia sp. RA2和Bacillus sp.WP8可用于番茄青枯病的生物防治。
     (3) PGPR对豇豆的促生作用因接种方式、接种量的不同而不同。WP8、RA6浸种处理的出苗率分别比对照(CK)提高14.29%和9.52%(p<0.05);15d时的株高分别比CK提高14.39%和10.40%(p<0.05);茎叶干物重分别比CK增加19.69%和17.71%(p<0.05)。WP8、 RA6低拌处理(104cfu/g soil)出苗率、15d时的株高以及茎叶干物重等指标与CK相比,均无显著差异(p>0.05); WP8. RA6中拌处理(106cfu/g soil)出苗率比CK提高4.76%,但未达显著差异(p>0.05);15d时的株高分别比CK提高1.08%和5.65%(p>0.05);茎叶干物重分别比CK增加12.71%和18.59%(p<0.05)。WP8、RA6高拌处理(108cfu/g soil)出苗率分别比CK提高9.52%和14.29%(p<0.05);15d时的株高分别比CK提高6.37%和7.64%(p<0.05);茎叶干物重分别比CK增加27.37%和20.43%(p<0.05)。说明供试菌株对豇豆均有一定程度的促生作用,表现在提高豇豆种子出苗率,增加茎叶干物重,提高植物高度,且浸种处理效果优于拌土处理。分析还表明,茎叶干物重和种子出苗率显著相关,说明用茎叶干物重作为PGPR促生的生物学指标更为敏感。
     DGGE指纹图谱分析结果显示:各处理在15d和45d时,除WP8浸种处理外,其余土壤微生物群落多样性和CK均已发生明显变化,其中RA6菌株在土壤中可随时间推延,优势地位更趋明显,表现在45d时仍可明显检测到;WP8在土壤中存活时间不长,但拌十处理改变了土著细菌的群落结构。试验暗示WP8的促生作用很可能与土著微生物群落的变化有关。
     (4)通过水稻塑盘育秧的促生试验,我们发现:①RBP1和WP8可不同程度地促进秧苗生长,主要表现在促使秧苗矮壮、增加干物质积累;②PGPR拌土普遍优于浸种方式;③PGPR的有效性受是否与壮秧剂混用的影响,其次是接种方式;④地上部干物重对PGPR不同处理方式较为敏感,是评价促生效果的理想指标;⑤PGPR对土壤细菌群落结构有一定的影响,但不十分明显。
     (5)供试菌株WP8、RA2浸种处理12d时的出苗率分别达到90.4%和92.5%,显著高于青枯病菌处理(71.8%)和对照处理(60.2%);健株率分别达62.8%和68.9%,远高于青枯病菌处理(22.4%);生防效果分别为52.1%和59.9%;35d时的株高分别比病原菌对照处理高86.00%和81.56%p<0.05);根长分别比病原菌对照处理长136.91%和118.12%p<0.05);茎基粗分别比病原菌对照处理增粗109.65%和96.49%p<0.05);茎叶干物重分别比病原菌对照处理增重110.82%和63.20%(p<0.05);根干重分别比病原菌对照处理增重205.83%和159.13%(p<0.05);35d时的土壤水稳性团聚体比例分别比病原菌对照处理增加156.88%和55.56%(p<0.05)。WP8、RA2拌土处理12d时的出苗率和对照相比未见增加,只有62.2%和72.4%;健株率分别比病原菌对照处理增加116.52%和133.48%(p<0.05);生防效果为33.6%和38.5%,分别比各自浸种处理低35.51%和35.73%(p<0.05);35d时的株高分别比病原菌对照处理高69.56%和92.00%(p<0.05);根长分别比病原菌对照处理长120.40%和56.86%(p<0.05);茎基粗分别比病原菌对照处理增粗131.58%和100.00%(p<0.05);茎叶干物重分别比病原菌对照处理增重53.68%和34.20%(p<0.05);根干重分别比病原菌对照处理增重128.53%和164.52%(p<0.05);35d时的土壤水稳性团聚体比例分别比病原菌对照处理增加42.87%(p<0.05)和降低31.88%(p<0.05)。
     PGPR处理土壤中青枯病菌依然存在,说明生防途径并非通过减少该菌在土壤中的数量实现的;此外,论文还对病原菌处理的一些特征条带进行了分析。这些结果说明,2株PGPR都具有防治番茄青枯病的作用,并能不同程度地促进番茄幼苗生长,浸种处理的促进效应明显优于拌土处理;PGPR处理还能在一定程度上提高土壤水稳性团聚体(>0.25mm)比例,WP8浸种处理尤为明显。根际微生物群落受番茄种植的影响最大,其次是青枯病菌,受PGPR的影响最小;PGPR处理土壤中青枯病菌依然存在,说明生防途径并非通过减少该菌在土壤中的数量实现的。
     通过本研究,明确了促生不同植物生长所需的最适PGPR,以及最佳的接种方式。PGPR对土壤土著微生物群落的影响等结论也为进一步应用提供理论基础;供试菌株中,WP8相对具有促生广适性,更具应用潜力。
High output, high quality and high efficiency are the objectives of modern agriculture. To achieve these goals, Chemical fertilizer, pesticide, hormones and other agricultural chemicals have been widely used. However such chemical-dependent agriculture inevitably results in environmental pollution and food safety issues. Therefore, scientific community is making great efforts to seek the ways to reduce chemical inputs but maintain high output and high quality of agricultural products. Improved cultural practices, breeding new varieties and application of plant growth promoting agents are the options.
     Plant growth promoting rhizobacteria (PGPR) are the bacteria living in rhizospheric soils that promote plant growth. Growth promotion has been believed to be due to production of antibiotics and toxins (IAA and signal compounds) against pathogens. PGPRs also interact with plants by regulating plant metabolisms so as to help plant resist to pathogenic bacteria, fungus, virus and nematodes. Because of diversified acting modes of PGPRs, it is possible to obtain pathogen-, soil-, or plant-specific strains by screening. However, good results obtained in vitro cannot always be reproduced under field conditions, limiting the wide use of plant growth promoting agents. Therefore, screening strains with wide spectrum of acting mechanisms and finding their most effective plants are the keys to develop biocontrol agents. The purpose of present work is to screen high efficient PGPRs and test their effects in pots. Results are summarized as follows.
     (1) Fourteen strains were isolated from rhizospheric soils sampled from Yangzhou and Yancheng, Jiangsu province, seven of which are Pseudomonas sps., three are Paenibacillus sps., two are Bacillus sps., one is Burkholderia sp., and one is Erwinia sp. according to their16S rDNA sequences. Assay in vitro showed these strains were all potential plant growth promoting agents.
     (2) Assay in vitro showed that Bacillus sp. WP8, Pseudomonas sp. RA6promoted the growth of cowpea, whereas Bacillus sp. RBB1、Bacillus sp. WP8and Pseudomonas sp. RBP1promoted rice seedling growth. Erwinia sp. RA2and Bacillus sp. WPS showed antigenic effects on biotic Ralstonia solanacearum.
     (3) PGPR effects of isolated strains on cowpea growth depended on inoculation methods and inoculation rates. By seed soaking with WP8and RA6, germination rate of cowpea seeds was increased by14.29%and9.52%respectively (p<0.05) as compared with control; plant height at15days after germination was increased by14.39%and10.40%(p<0.05) respectively; above-ground dry weight was increased by19.69%and17.71%(p<0.05) respectively. By soil drenching with WP8and RA6, plant height and above-ground dry weight were not significantly different from those of control when inoculation rate was low (104cfu/g soil). However when inoculation rate was increased to108cfu/g soil, seed germination rate was increased by9.52%and14.29%respectively (p<0.05); plant height at15days after germination was increased by6.37%and7.64%(p<0.05); above-ground dry weight was increased by27.37%and20.43%(p<0.05). These data suggested that the PGPR strains were potential bio-agents promoting cowpea growth. Seed soaking was better than soil drenching. Further analysis showed that above-ground dry weight was significantly correlated with germination rate, suggesting that above-ground dry weight was a sensitive indicator indicating growth promoting effects of strains.
     Denaturing gradient gel electrophoresis (DGGE) analysis based on16S rRNA sequences indicated that microbial communities in strain-treated soils were obviously different from those in control soil. Strain RA6-specific band became intensified as the time passed. However, strain WP8-specific band became weak as time passed.
     (4) Tested in rice seedling beds, it was found that strain RBP1and WP8promoted seedling growth to various extents. Seedlings treated with these strains showed short but strong growth and heavy dry weight. Soil drenching showed better results than seed soaking. Application of "ZYJ", a chemical that makes rice seedlings short and strong, overshadowed the effects of strain inoculation. Above-ground dry weight was a sensitive index to evaluate the effects of PGPR strains. Inoculation of PGPR strains insignificantly modified soil microbial community structure.
     (5) Germination rate treated with WP8and RA2by seed soaking was90.4%and92.5%respectively, significantly higher than that treated with pathogen Ralstonia solanacearum (71.8%) and that of control (60.2%). The percentage of number of healthy plants to total number of plants in WP8-and RA2-treatments was62.8%and68.9%respectively, significantly higher than that in Ralstonia solanacearum-treatment (22.4%). Plant height measured at35days after germination was increased by86.00%and81.56%(p<0.05) as compared to that of pathogen-and control-treatment respectively. Root length, stem thickness, above-ground dry weight and root dry weight were all better in PGPR treatments than in pathogen-or control-treatments. Soil water stable aggregates was increased by156.88%and55.56%(p<0.05) as compared to that of pathogen-and control-treatment respectively. When the strains were inoculated by soil drenching, all these parameters were either better or insignificantly different in PGPR-treatments than those in pathogen-or control-treatments.
     It was demonstrated that pathogen Ralstonia solanacearum was present in soils that were treated with PGPR strains, suggesting that bio-control effects were achieved not by reducing the abundance of pathogen, but by other yet-to-defined mechanisms.
     Present work defined the suitable PGPR strains with respect to different plants and inoculation methods. The fact that inoculation of PGPR strains modified native microbial community to certain extent needs to be further studied. Strain WP8showed wide spectrum of acting modes as a bio-control and or plant growth promoting agent and was thus proposed as a potential applicable strain.
引文
[1]Hiltner L. Uber neue Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Beruksichtigung der Grundungung und Brache [J]. Arbeiten der Deutschen Landwirtschaft Gesellschaft,1904,98:59-78.
    [2]Bottner P, Pansu M, Sallih Z. Modelling the effect of active roots on soil organic matter turnover [J]. Plant and Soil,1999,216(1-2):15-25.
    [3]Buchenauer H. Biological control of soil-borne diseases by rhizobacteria [J]. Zeitschrift fur Pflanzenkrankheiten und Pflanzenaschutz,1998,105(4):329-348.
    [4]Correa O S, Montecchia M S, Berti M F, et al. Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities [J]. Applied Soil Ecology,2009,41(2):185-194.
    [5]Marilley L, Aragno M. Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots [J]. Applied Soil Ecology,1999, 13(2):127-136.
    [6]Naureen Z, Price A H, Hafeez F Y, et al. Identification of rice blast disease-suppressing bacterial strains from the rhizosphere of rice grown in Pakistan [J]. Crop Protection,2009, 28(12):1052-1060.
    [7]Bulla L. An Index of Evenness and Its Associated Diversity Measure [J]. Oikos,1994,70(1): 167-171.
    [8]Tokeshi M. Species abundance patterns and community structure [J]. Advances in Ecological Research,1993,24:111-186.
    [9]Ekschmitt K, Griffiths B S. Soil biodiversity and its implications for ecosystem functioning in a heterogeneous and variable environment [J]. Applied Soil Ecology,1998,10(3): 201-215.
    [10]Pellet D M, Grunes D L, Kochian L V. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.) [J]. Planta,1995,196(4):788-795.
    [11]Ryan P R, Delhaize E, Randall P J. Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots [J]. Planta,1995,196(1):103-110.
    [12]Domenech J, Ramos-Solano B, Probanza A, et al. Bacillus spp. and Pisolithus tinctorius effects on Quercus ilex ssp. ballota:a study on tree growth, rhizosphere community structure and mycorrhizal infection [J]. Forest Ecology and Management,2004,194(1-3): 293-303.
    [13]Sandaa R A, Torsvik V, Enger (?), et al. Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution [J]. FEMS microbiology ecology, 1999,30(3):237-251.
    [14]Ogram A. Soil molecular microbial ecology at age 20:methodological challenges forthe future [J]. Soil Biology and Biochemistry,2000,32(11-12):1499-1504.
    [15]Prosser J I. Molecular and functional diversity in soil micro-organisms [J]. Plant and Soil, 2002,244(1-2):9-17.
    [16]Fray R G. Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing [J]. Annals of Botany,2002,89:245-253.
    [17]Quinones B, Pujol C J, Lindow S E. Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae [J]. Molecular Plant-Microbe Interactions,2004, 17(5):521-531.
    [18]Swift S, Throup J P, Williams P, et al. Quorum sensing:a population-density component in the determination of bacterial phenotype [J]. Trends in Biochemical Sciences,1996,21(6): 214-219.
    [19]Whitehead N A, Barnard A M, Slater H, et al. Quorum-sensing in Gram-negative bacteria [J]. FEMS Microbiology Reviews,2001,25(4):365-404.
    [20]Espinosa-Urgel M, Ramos J L. Cell density-dependent gene contributes to efficient seed colonization by Pseudomonas putida KT2440 [J]. Applied and Environmental and Microbiology.2004,70(9):5190-5198.
    [21]Schuhegger R,Ihring A, Gantner S, et al. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria [J]. Plant, Cell and Environment,2006.29(5):909-918.
    [22]Baatha E, Arnebranta K. Growth rate and response of bacterial communities to pH in limed and ash treated forest soils [J]. Soil Biology and Biochemistry,1994,26(8):995-1001.
    [23]Anderson J P E, Domsch K H. A physiological method for the quantitative measurement of microbial biomass in soils [J]. Soil Biology and Biochemistry,1978,10(3):215-221.
    [24]Schwyn B, Neilands J B. Universal chemical assay for the detection and determination of siderophores [J]. Analytical Biochemistry,1987,160(1):47-56.
    [25]Reichardt W, Briones A, de Jesus R, et al. Microbial population shifts in experimental rice systems [J]. Applied Soil Ecology,2004,17(2):151-163.
    [26]Hopkins D W, Macnaughtona S J, O'Donnell A G. A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil [J]. Soil Biology and Biochemistry,1991,23(3):217-225.
    [27]Vance E D, Brookesa P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biology and Biochemistry,1987,19(6):703-707.
    [28]Bakken L R, Olsen R A. DNA-content of soil bacteria of different cell size [J]. Soil Biology and Biochemistry,1989,21(6):789-793.
    [29]Probanza A, Garcia J A L, Palomino M R, et al. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105) [J]. Applied Soil Ecology,2002,20(2):75-84.
    [30]Ramos B, Garcia J A L, Probanza A, et al. Alterations in the rhizobacterial community associated with European alder growth when inoculated with PGPR strain Bacillus licheniformis [J]. Environmental and Experimental Botany,2003,49(1):61-68.
    [31]Grayston S J, Griffith G S, Mawdsley J L, et al. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems [J]. Soil Biology and Biochemistry, 2001,33(4-5):533-551.
    [32]Griffiths B S, Ritz K, Ebblewhite N, et al. Soil microbial community structure:Effects of substrate loading rates [J]. Soil Biology and Biochemistry,1998,31(1):145-153.
    [33]Liesack W, Stackebrandt E. Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment [J]. Journal of Bacteriology,1992,174(15):5072-5078.
    [34]Clegg C D, Ritz K, Griffiths B S. Broad-scale analysis of soil microbial community DNA from Upland grasslands [J]. Antonie van Leeuwenhoek,1998,73(1):9-14.
    [35]Head I M, Saunders J R, Pickup R W. Microbial evolution, diversity, and ecology:a decade of ribosomal RNA analysis of uncultivated microorganisms [J]. Microbial Ecology,1998, 35(1):1-21.
    [36]0vreas L, Torsvik V V. Microbial diversity and community structure in two different agricultural soil communities [J]. Microbial Ecology,1998,36(3):303-315.
    [37]Kozdroj J, van Elsas J D. Response of the bacterial community to root exudates in soil polluted withheavy metals assessed by molecular and cultural approaches [J]. Soil Biology and Biochemistry,2000,32(10):1405-1417.
    [38]Dunbar J, Takala S, Barns S M, et al. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning [J]. Applied and Environmental Microbiology,1999,65(4):1662-1669.
    [39]Jia S-R, Qu X-M, Feng L-X, et al. Expression of antibacterial peptide gene in transgenic potato confers resistance to bacterial wilt [M]. Beijing:1999.
    [40]Gray E J, Smith D L. Intracellular and extracellular PGPR:commonalities and distinctions in the plant-bacterium signaling processes [J]. Soil Biology & Biochemistry,2005,37(3): 395-412.
    [41]Schutte U M E. Abdo Z, Bent S J, et al. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities [J]. Applied Microbiology and Biotechnology,2008,80(3):365-380.
    [42]Kloepper J W, Ryu C-M, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus species [J]. Phytopathology,2004,94(11):1259-1266.
    [43]Morales S E, Mouser P J, Ward N, et al. Comparison of bacterial communities in New England Sphagnum bogs using terminal restriction fragment length polymorphism (T-RFLP) [J]. Microbial Ecology,2006,52(1):34-44.
    [44]Kloepper J W, Leong J, Teintze M, et al. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria [J]. Nature,1980,286:885-886.
    [45]Barriuso J, Pereyra M T, Garcia J A L, et al. Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus-pinus sp. [J]. Microbial Ecology,2005, 50(1):82-89.
    [46]Enebak S A, Wei G, Kloepper J W. Effects of plant growth-promoting rhizobacteria on loblolly and slash pine seedlings [J]. Forest Science,1998,44(1):139-144.
    [47]Bashan Y, Puente M E, Rodriguezmendoza M N, et al. Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types [J]. Applied and Environmental Microbiology,1995,61:1938-1945.
    [48]康贻军,程洁,梅丽娟,等.植物根际促生菌作用机制研究进展[J].应用生态学报,2010,21(1):232-238.
    [49]Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses:genetic, biochemical and ecological aspects [J]. FEMS Microbiology Ecology,2000,24(4):487-506.
    [50]Reinhold-Hurek B, Hurek T. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov [J]. International Journal of Systematic and Evolutionary Microbiology,2000, 50(2):649-659.
    [51]Vessey J K. Plant growth promoting rhizobacteria as biofertilizers [J]. Plant and Soil,2003, 255(2):571-586.
    [52]Garbeva P, van Veen J A, van Elsas J D. Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE [J]. Microbial Ecology,2003,45(3): 302-316.
    [53]Timmusk S, Wagner E G H. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression:a possible connection between biotic and abiotic stress responses [J]. Molecular plant-microbe interactions,1999, 12(11):951-959.
    [54]Kokalis-Burelle N, Kloepper J W, Reddy M S. Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms [J]. Applied Soil Ecology,2006,31(1-2):91-100.
    [55]Patten C L, Glick B R. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS [J]. Canadian Journal of Microbiology,2002,48(7):635-642.
    [56]Charest M H, Beauchamp C J, Antoun H. Effects of the humic substances of de-inking paper sludge on the antagonism between two compost bacteria and Pythium ultimum [J]. FEMS Microbiology Ecology,2005,52(2):219-227.
    [57]Antoun H, Beauchamp C J, Goussard N, et al. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes:Effect on radishes (Raphanus sativus L.) [J]. Plant and Soil,1998,204(1):57-67.
    [58]Yanni Y G, Rizk R Y, Corich V, et al. Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth [J]. Plant and Soil,1997,194(1-2):99-114.
    [59]Lupwayi N, Clayton G, Hanson K, et al. Endophytic rhizobia in barley, wheat and canola roots [J]. Canadian Journal of Plant Science,2004,84(1):37-45.
    [60]Brimecombe M J, De Leij F A, Lynch J M. Effect of introduced Pseuddmonas fluorescens strains on soil nematode and protozoan populations in the rhizosphere of wheat and pea [J]. MIcrob. Ecol,1999,38:387-397.
    [61]van Veen J A, van Overbeek L S, van Elsas J D. Fate and activity of microorganisms introduced into soil [J]. Microbiol. Mol. Biol. Rev.,1997,61:121-135.
    [62]Roszak D, Colwell R. Survival strategies of bacteria in the natural environment [J]. Microbiological Reviews,1987,51(3):365-379.
    [63]Kotlar E, Tartakovsky B, Argaman Y, et al. The nature of interaction between immobilized nitrification and denitrification bacteria [J]. Journal of Biotechnology,1996,51(3): 251-258.
    [64]Fang C, Radosevich M, Fuhrmann J J. Atrazine and phenanthrene degradation in grass rhizosphere soil [J]. Soil Biology and Biochemistry,2001,33(4-5):671-678.
    [65]Handelsman J, Rondon M R, Brady S F, et al. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products [J]. Chemistry and Biology, 1998,5(10):245-249.
    [66]Baath E, Pettersson M, Soderberg K H. Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria [J]. Soil Biology and Biochemistry,2001,33(11):1571-1574.
    [67]Lindahl V. Improved soil dispersion procedures for total bacterial counts, extraction of indigenous bacteria and cell survival [J]. Journal of Microbiological Methods,1996,25(3): 279-286.
    [68]Macdonald R M. Sampling soil microfloras:Optimization of density gradient centrifugation in percoll to separate microorganisms from soil suspensions [J]. Soil Biology and Biochemistry,1986,18(4):407-410.
    [69]Herron P R, Wellington E M H. New method for extraction of Streptomycete spores from soil and application to the study of lysogeny in sterile amended and nonsterile Soil [J]. Applied and Environmental and Microbiology,1990,56(5):1406-1412.
    [70]Schloter M, Wiehe W, Assmus B, et al. Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera [J]. Applied and Environmental and Microbiology,1997. 63(5):2038-2046.
    [71]Niepold F, Conrad R, Schlegel H G. Evaluation of the efficiency of extraction for the quantitative estimation of hydrogen bacteria in soil [J]. Antonie van Leeuwenhoek,1979, 45(3):485-497.
    [72]Baath E. Measurement of heavy metal tolerance of soil bacteria using thymidine incorporation into bacteria extracted after homogenization-centrifugation [J]. Soil Biology and Biochemistry,1992,24(11):1167-1172.
    [73]Turpin P E, Maycroft K A, Rowlands C L, et al. An ion-exchange based extraction method for the detection of salmonellas in soil [J]. Journal of Applied Bacteriology,1993,74(2): 181-190.
    [74]Ozawa T, Yamaguchi M. Fractionation and estimation of particle-attached and unattached Bradyrhizobium japonicum strains in soils [J]. Applied and Environmental Microbiology, 1986,52(4):911-914.
    [75]Founoune H, Duponnois R, Meyer J M, et al. Interactions between ectomycorrhizal symbiosis and fluorescent pseudomonads on Acacia holosericea:isolation of mycorrhiza helper bacteria (MHB) from a Soudano-Sahelian soil. [J]. FEMS Microbiology Ecology, 2002,41(1):37-46.
    [76]Cattelana A J, Hartela P G. Fuhrmann J J. Screening for plant growth-promoting rhizobacteria to promote early soybean growth [J]. Soil Science Society of America Journal, 1999,63(1670-1680):
    [77]Lucas J A, Solano B R, Montesb F, et al. Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain [J]. Field Crops Research,2009,114(3):404-410.
    [78]Glick B R, Penrose D M, Li J. A Model For the Lowering of Plant Ethylene Concentrations by Plant Growth-promoting Bacteria [J]. Journal of Theoretical Biology,1998,190(1): 63-68.
    [79]Richardson A E. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants [J]. Australian Journal of Plant Physiology,2001,28(9):897-906.
    [80]Ward E R, Uknes S J, Williams S C, et al. Coordinate gene activity in response to agents that induce systemic acquired resistance [J]. Plant Cell,1991,3:1085-1094.
    [81]van der Woude M W. Re-examining the role and random nature of phase variation [J]. FEMS Microbiology Letters,2006,254(2):190-197.
    [82]De Freitas J R, Banerjee M R, Germida J J. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.) [J]. Biology and Fertility of Soils,1997,24(4):358-364.
    [83]Gilbert G S, Parke J L, Clayton M K, et al. Effects of an introduced bacterium on bacterial' communities on roots [J]. Journal of Ecology,1993,74(3):840-854.
    [84]Ma Y, Rajkumar M, Freitas H. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria [J]. Journal of Hazardous Materials,2009, 166(2-3):1154-1161.
    [85]Jha B, Thakur M C, Gontia I, et al. Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars [J]. European Journal of Soil Biology,2009,45(1):62-72.
    [86]Ahmad F, Ahmad I, Khan M S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities [J]. Microbiological Research,2008,163(2): 173-181.
    [87]Robertson L A. Bacteria from the Beijerinck Collection [J]. Trends in Microbiology,1998, 6(9):353.
    [88]Nehl D B, Allen S J, Brown J F. Deleterious rhizosphere bacteria:an integrating perspective [J]. Appl Soil Ecol,1997,5:1-20.
    [89]龙伟文,王平,冯新梅,等.PGPR与AMF相互关系的研究进展[J].应用生态学报,2000,11(2):311-314.
    [90]胡江春,薛德林,马成新,等.植物根际促生菌(PGPR)的研究与应用前景[J].应用生态学报,2004,15(10):1963-1966.
    [91]Sturz A V, Christie B R, Nowak J. Bacterial Endophytes:Potential Role in Developing Sustainable Systems of Crop Production [J]. Critical Reviews in Plant Sciences,2000,19(1): 1-30.
    [92]Yang J, Kloepper J W, Ryu C-M. Rhizosphere bacteria help plants tolerate abiotic stress [J]. Trends in Plant Science,2009,14(1):1-4.
    [93]Loon L v, Bakker P, Pieterse C. Systemic resistance induced by rhizosphere bacteria [J]. Annual Review of Phytopathology,1998,36:453-483.
    [94]Ramamoorthy V, Viswanathan R, Raguchander T, et al. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases [J]. Crop Protection,2001,20(1):1-11.
    [95]Benhamou N, Belanger R R, Paulitz T C. Induction of Differential Host Responses by Pseudomonas fluorescens in Ri T-DNA-Transformed Pea Roots After Challenge with Fusarium oxysporum f. sp. pisi and Pythium ultimum [J]. Phytopathology 1996,86(11): 114-178.
    [96]Benhamou N, Kloepper J W, Quadthallman A. et al. Induction of Defense-Related Ultrastructural Modifications in Pea Root Tissues Inoculated with Endophytic Bacteria [J]. Plant physiology 1996,112(3):919-929.
    [97]Piga P M, Belanger R R, Paulitz T C, et al. Increased resistance to Fusarium oxysporum f.sp. radicis-lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 63-28 [J]. Physiological and Molecular Plant Pathology,1997,50(5): 301-320.
    [98]Anderson A J, Guerra D. Responses of Bean to Root Colonization With Pseudomonas putida in a Hydroponic System [J]. Phytopathology,1985,75:992-995.
    [99]Kessmann H, Staub T, Ligon J, et al. Activation of systemic acquired disease resistance in plants [J]. European Journal of Plant Pathology,1994,100(6):359-369.
    [100]Ryals J A, Neuenschwander U H, Willits M G, et al. Systemic acquired resistance [J]. Plant Cell,1996,8(18):9-19.
    [101]Sticher L, Mauch-Mani B, Metraux J P. Systemic acquired resistance [J]. Annual Review of Phytopathology,1997,35(2):35-70.
    [102]Uknes S, Mauch-Mani B, Moyer M, et al. Acquired resistance in Arabidopsis. [J]. Plant Cell,1992,4(6):645-656.
    [103]Peer R v, Niemann G J, Schippers B. Induced Resistance and Phytoalexin Accumulation in Biological Control of Fusarium Wilt of Carnation by Pseudomonas sp. Strain WCS 417r [J]. Phytopathology,1991,81:728-734.
    [104]Zdor R E, Anderson A J. Influence of root colonizing bacteria on the defense responses of bean [J]. Plant and Soil,1992,140(1):99-107.
    [105]Maurhofer M, Hase C, Meuwly P, et al. Induction of Systemic Resistance of Tobacco to Tobacco Necrosis Virus by the Root-Colonizing Pseudomonas fluorescens Strain CHAO: Influence of the gacA Gene and of Pyoverdine Production [J]. Phytopathology,1994,84: 139-146.
    [106]Hoffland E, Hakulinen J, Pelt J A v. Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species [J]. Phytopathology,1996,86: 757-762.
    [107]Hoffland E, Pieterse C M J, Bik L, et al. Induce systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins [J]. plant ecology evolutionary biology,1995,46(4):309-320.
    [108]Pieterse C M J, Wees S C M v, Hoffland E, et al. Systemic Resistance in Arabidopsis Induced by Biocontrol Bacteria Is Independent of Salicylic Acid Accumulation and Pathogenesis-Related Gene Expression [J]. Plant Cell,1996,8(8):1225-1237.
    [109]Wees S C M V, Pieterse C M J, Trijssenaar A, et al. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria [J]. Molecular Plant-Microbe Interactions, 1997,10(6):716-724.
    [110]Peer R V, Schippers B. Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt [J]. European Journal of Plant Pathology,1992,98(2):129-139.
    [111]Leeman M, Vanpelt J A, Ouden F M D, et al. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens [J]. Phytopathology,1995,85(9):1037-1043.
    [112]Leeman M, Ouden F M d, Pelt J A v, et al. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens [J]. Phytopathology, 1996,86(2):149-155.
    [113]White R F. Acetyl salicylic acid (aspirin) induces resistance in tobacco [J]. Virology,1979, 99:410-412.
    [114]Schneider M, Schweizer P, Meuwly P, et al. Systemic acquired resistance in plants [J]. International Journal of Cytology,1996,168:303-340.
    [115]Maurhofer M, Reimmann C, Schmidli P S, et al. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus [J]. Phytopathology,1998,88(7): 678-684.
    [116]Press C M, Wilson M, Tuzun S, et al. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco [J]. Molecular plant-microbe interactions,1997,10(6):761-768.
    [117]Knoester M, Pieterse C M J, Bol J F, et al. Systemic resistance in arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application [J]. Molecular plant-microbe interactions,1999,12(8):720-727.
    [118]Kramer P, Boyer J. Water relations of plants and soils [M].1995.
    [119]Mayak S, Tirosha T, Glickb B R. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers [J]. Plant Science,2004,166(2):525-530.
    [120]Glick B R, Todorovic B, Jennifer Czarny, et al. Promotion of Plant Growth by Bacterial ACC Deaminase [J]. Critical Reviews in Plant Sciences,2007,26(5-6):22-242.
    [121]Figueiredo M V B, Burity H A, Martinez C R, et al. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici [J]. Applied Soil Ecology,2008,40(1):182-188.
    [122]Josef K, Antonio H J, Fuensanta C, et al. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants [J]. Functional plant biology,2008,35(2):141-151.
    [123]Cowan A, Cairns A, Bartels-Rahm B. Regulation of abscisic acid metabolism:towards a metabolic basis for abscisic acid-cytokinin antagonism [J]. Journal of Experimental Botany,1999,50:595-603.
    [124]Mayak S, Tirosh T, Glick B R. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress [J]. European Journal of Medicinal Chemistry 2004,42(6): 565-572.
    [125]Ryu C-M, Farag M A, Hu C-H, et al. Bacterial Volatiles Induce Systemic Resistance in Arabidopsis [J]. Plant Physiology,2004,134(3):1017-1026.
    [126]Malakoff D. Death by Suffocation in the Gulf of Mexico [J]. Science,1998,281(5374): 190-192.
    [127]Gyaneshwar P, Kumar G N, Parekh L J, et al. Role of soil microorganisms in improving P nutrition of plants [J]. Plant and Soil,2002,245(1):83-93.
    [128]Mantelin S, Touraine B. Plant growth-promoting bacteria and nitrate availability:impacts on root development and nitrate uptake [J]. Journal of Experimental Botany,2004, 55(394):27-34.
    [129]Adesemoye A O, Torbert H A, Kloepper J W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system [J]. Can. J. Microbiol,2008, 54(10):876-886.
    [130]Kloepper J W, Gutierrez-Estrada A, Mclnroy J A. Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria [J]. Can. J. Microbiol,2007,53:159-167.
    [131]Shaharoona B, Naveed M, Arshad M, et al. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.) [J]. Applied Microbiology and Biotechnology,2008,79(1):147-155.
    [132]Nie L, Shah S, Rashid A, et al. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2 [J]. Plant Physiology and Biochemistry,2002,40(4):355-361.
    [133]Brookes P C, McGrath S P. Effect of metal toxicity on the size of the soil microbial biomass [J]. European Journal of Soil Science,1984,35(2):341-346.
    [134]Fliessbach A, Martens R, Reber H H. Soil microbial biomass and activity in soils treated with heavy metal contaminated sewage sludge [J]. Soil Biology and Biochemistry,1994, 26:1201-1205.
    [135]Chaudri A M, McGrath S P, Giller K E, et al. Enumeration of indigenous Rhizobium leguminosarum biovar trifolii in soils previously treated with metal-contaminated sewage sludge [J]. Soil Biology & Biochemistry,1993,25(3):301-309.
    [136]Koomen I, McGrath S P, Giller K E. Mycorrhizal infection of clover is delayed in soils contaminated with heavy metals from past sewage sludge applications [J]. Soil Biology & Biochemistry,1990,22:871-873.
    [137]Umrania V. Bioremediation of toxic heavy metals using acidothermophilic autotrophes [J]. Bioresource Technology,2004,97(10):1237-1242.
    [138]Kao P H, Huang C C, Hseu Z Y. Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid [J]. Chemosphere,2006,64(1):63-70.
    [139]Huang X D, El-Alawi Y, Gurska J, et al. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils [J]. Microchemical Journal,2005,81(1):139-147.
    [140]Wu S C, Cheung K C, Luo Y M, et al. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea [J]. Environmental Pollution,2006, 140(1):
    [141]Zaidi S, Usmani S, Singh B R, et al. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea [J]. Chemosphere,2006,64(6):991-997.
    [142]Robinson N J, Tommey A M, Kuske C, et al. Plant metallothioneins [J]. Biochem J.,1999, 295(1):1-10.
    [143]Burd G I, Dixon D G, Glick B R. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants [J]. Can JMicrobio,2000,46(3):237-245.
    [144]Sriprang R, Hayashi M, Ono H, et al. Enhanced Accumulation of Cd2+ by a Mesorhizobium sp. Transformed with a Gene from Arabidopsis thaliana Coding for Phytochelatin Synthase [J]. Applied and Environmental Microbiology,2003,69(3): 1791-1796.
    [145]Amico E D, Cavalca L, Andreoni V. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria [J]. Soil Biology & Biochemistry,2008, 40(1):74-84.
    [146]Cattelan A J, Hartel P G, Fuhrmann J J. Screening for plant growth-promoting rhizobacteria to promote early soybean growth [J]. Soil Science Society of America Journal,1999,63: 1670-1680.
    [147]Glick B R. The enhancement of plant growth by free-living bacteria [J]. Can J Microbiol, 1995.41(2):109-117.
    [148]Arshad M, Frankenberger Jr W T. Microbial production of plant hormones [J]. Plant and Soil 1991,133(1):1-8.
    [149]Boddey R M, Dobereiner J. Nitrogen fixation associated with grasses and cereals:Recent progress and perspectives for the future [J]. Nutrient Cycling in Agroecosystems,1995, 42(1-3):241-250.
    [150]Scher F M, Baker R. Effect of Pseudornonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens [J]. Phytopathology,1982, 72:1567-1573.
    [151]Shanahan P, O'Sullivan D J, Simpson P, et al. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production [J]. Applied and Environmental Microbiology.1992,58(1):353-358.
    [152]Flaishman M A, Eyal Z, Zilberstein A, et al. Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida [J]. Molecular plant-microbe interactions,1996,9(7):642-645.
    [153]Fuhrmann J, Wollum Ⅱ A G. Nodulation competition among Bradyrhizobium japonicum strains as influenced by rhizosphere bacteria and iron availability [J]. Biology and Fertility of Soils,1989,7(2):108-112.
    [154]Chanway C P, Holl F B. First year field performance of spruce seedlings inoculated with plant growth promoting rhizobacteria [J]. Can J Microbiol 1993,39(11):1084-1088.
    [155]Gruft H. Nalidixic acid as a decontaminant in Lowenstein-Jensen medium [J]. Journal of Bacteriology,1965,90(3):829.
    [156]King E O, Ward M K, Raney D E. Two simple media for the demonstration of pyocyanin and fluorescin [J]. J Lab Clin Med,1954,44(2):301-307.
    [157]杨慧,范丙全,龚明波,等.一株新的溶磷草生欧文氏菌的分离、鉴定及其溶磷效果的初步研究[J].微生物学报,2008,48(1):51-56.
    [158]李凤汀,郝正然,杨则瑗,等.硅酸盐细菌HM8841菌株解钾作用的研究[J].微生物学报,1997,37(1):79-81.
    [159]Idris H A, Labuschaghe N, Korsten L. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia [J]. Biological Control,2007,40(26): 97-106.
    [160]Paulitz T, Zhou T, Rankin L. Selection of rhizosphere bacteria for biological control of Pythium aphanidermatum on hydroponically grown cucumber [J]. Biological Control, 1992,2:226-237.
    [161]Landa B B, Hervas A, Bettiol W, et al. Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f.sp. ciceris [J]. Phytoparasitica,1997,25(4): 305-318.
    [162]Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria [J]. Applied and Environmental Microbiology,1995,61(2):793-796.
    [163]Lorck H. Production of hydrocyanic acid by bacteria [J]. Physiologia Plantarum,1948,1: 142-146.
    [164]康贻军,胡健,单君,等.两株高效解磷真菌的分离、筛选及其解磷特性的研究[J].微生物学通报,2006,33(10):22-27.
    [165]Miller J, Jenny A. Rhyan J, et al. Detection of Mycobacterium bovis in formalin-fixed, paraffin-embedded tissues of cattle and elk by PCR amplification of an IS6110 sequence specific for Mycobacterium tuberculosis complex organisms [J]. J Vet Diagn Invest,1997, 9:244-249.
    [166]Monis P T, Glglio S, Saint C P. Comparison of SYTO9 and SYBR Green Ⅰ for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis [J]. Analytical Biochemistry,2005,340(1): 24-34.
    [167]Felsenstein J. Confidence limits on phylogenies:an approach using the bootstrap [J]. Evolution,1985,39(4):783-791.
    [368]Widmer F. Shaffer B T, Porteous L A, et al. Analysis of nifH gene pool complexity in soil and litter at a douglas fir forest site in the Oregon Cascade Mountain Range [J]. Applied and Environmental Microbiology,1999,65(2):374-380.
    [169]Raaijmakers J M, Weller D M, Thomashow L S. Frequency of antibiotic-producing Pseudomonas spp. in natural environments [J]. Applied and Environmental Microbiology. 1997,63(3):881-887.
    [170]Lee F N, Rush M C. Rice sheath blight:a major rice disease [J]. Plant Dis,1983,67: 829-832.
    [171]Inam-ul-Haq M, Javed M, Ahmad R, et al. Evaluation of different strains of Pseudomonas fluorescense for the biocontrol of Fusarium wilt of chickpea [J]. Pakistan J Plant Pathol, 2003,2:65-74.
    [172]Recep K, Fikrettin S, Erkol D, et al. Biological control of the potato dry rot caused by Fusarium species using PGPR strains [J]. Biological Control,2009,50(2):194-198.
    [173]Wang H, Wen K, Zhao X, et al. The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect [J]. Crop Protection,2009,28(8):634-639.
    [174]Lindow S E, Brandl M T. Microbiology of the phyllosphere [J]. Appl Environ Microbiol, 2003,69:1875-1883.
    [175]Persello-Cartieaux F, Nussaume L, Robagiia C. Tales from the underground:molecular plant-rhizobacteria interactions [J]. Plant Cell Environ,2003,26:186-199.
    [176]Loper J E, Schroth M N. Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet [J]. Phytopathology,1986,76:386-389.
    [177]Sarwar M, Frankenberger Jr W T. Influence of L-tryptophan and auxins applied to the rhizosphere on the vegetative growth of Zea mays L. [J]. Plant and Soil,1994,160: 97-104.
    [178]Barazani O, Friedman J. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria [J].JChem Ecol,1999,25:2397-2406.
    [179]Schippers B, Bakker A W, Bakker P A H M, et al. Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions [J]. Plant and Soil.1990,129: 75-83.
    [180]Nijkamp K, van Luijk N, de Bont J A M, et al. The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose [J]. Applied Microbiology and Biotechnology,2005,69(2):170-177.
    [181]Mars A E, Gorissen J P, van d B I, et al. Bioconversion of limonene to increased concentrations of perillic acid by Pseudomonas putida GS1 in a fed-batch reactor [J]. Applied Microbiology and Biotechnology,2001,56(1-2):101-107.
    [182]Guemouri A S, Berge O, Bourrain M, et al. Diversity of Paenibacillus polymyxa populations in the rhizosphere of wheat (Triticum durum) in Algerian soils [J]. European Journal of Soil Biology,2000,36(3):149-159.
    [183]Lugtenberg B J J, Chin-A-Woeng T F C, Bloemberg G V. Microbe-plant interactions: principles and mechanisms [J]. Antonie Leeuwenhoek,2002,81:373-383.
    [184]Jagnow G, Hoflich G, Hoffmann K H. Inoculation of nonsymbiotic rhizosphere bacteria e possibilities of increasing and stabilizing yields [J]. Angew. Bot.,1991,65:97-126.
    [185]Paulitz T C. Biological control of root pathogens in soilless and hydroponic systems [J]. Hortscience,1997.32:193-196.
    [186]Paulitz T C, Belanger R R. Biological control in greenhouse systems [J]. Annu. Rev. Phytopathol,2001,39:103-133.
    [187]Pillay V K, Nowak J. Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) [M]. Mathematical Biology, New York:1997.313 pp.
    [188]Hojberg O, Schnider U, Winteler H V, et al. Oxygen-sensing reporter strain of pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil [J]. Applied and Environmental Microbiology,1999,65:4085-4093.
    [189]Mawdsley J L, Burns R G. Factors affecting the survival of a Flavobacterium species in non-planted and rhizosphere soil [J]. Soil Biology & Biochemistry,1994,26:849-859.
    [190]Horwath W R, Elliott L F, Lynch J M. Influence of soil quality on the function of inhibitory rhizobacteria [J]. Lett. Appl. Microbiol,1998,26:87-92.
    [191]Bashan Y, Vazquez P. Effect of calcium carbonate, sand, and organic matter levels on mortality of five species of Azospirillum in natural and artificial bulk soils [J]. Biol. Fertil. Soils,2000,30:450-459.
    [192]van der Hoeven N, van Elsas J D, Heijnen C E. A model based on soii structural aspects describing the fate of genetically modified bacteria in soil [J]. Ecol. Model,1996,89: 161-173.
    [193]Brussaard L. Soil fauna, guilds, functional groups and ecosystem processes [J]. Appl Soil Ecol,1998,9:123-135.
    [194]Ashelford K E, Norris S J, Fry J C, et al. Seasonal population dynamics and interactions of competing bacteriophages and their host in the rhizosphere [J]. Applied and Environmental Microbiology,2000,66:4193-4199.
    [195]Kravchenko L V, Makarova N M. Kinetics of cereal root surface colonization after introduction of associative bacteria [J]. Microbiology,1993,62:324-327.
    [196]van Elsas J D, Heijnen C E. Methods for the introduction of bacteria into soil:a review [J]. Biol. Fertil. Soils,1990,10:127-133.
    [197]Seong K Y, Hofte M, Verstraete W. Acclimatization of plant growth promoting Pseudomonas strain 7NSK2 in soil:effect on population dynamics and plant growth [J]. Soil Biol. Biochem.,1992,24:751-759.
    [198]Duquenne P, Chenu C, Richard G, et al. Effect of carbon source supply and its location on competition between inoculated and established bacterial strains in sterile soil microcosm [J]. FEMS Microbiol Ecol,1999,29:331-339.
    [199]Nishiyama M. Shiomi Y, Suzuki S, et al. Suppression of growth of Ralstonia solanacearum, tomato bacterial will agent, on/in tomato seedlings in a. suppressive soil in Japan [J]. Soil Science and Plant Nutrition,1999,45(1):79-87.
    [200]Stefan M, Mihasan M, Dunca S. Plant growth promoting rhizobacteria can inhibit the in vitro germination of Glycine Max L. seeds [J]. Sectiunea Genetica si Biologic Molecular a, 2008,6:105-110.
    [201]Belimov A A, Hontzeas N, Safronova Vl. et al. Cadmiurn-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) [J]. Soil Biology & Biochemistry,2005,37(2):241-250.
    [202]Guo J H, Qi H Y, Guo Y H, et al. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria [J]. Biological Control,2004.29(1):66-72.
    [203]Ahmad F, Ahmad I, Khan M. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities [J]. Microbiological Research,2008,163(2): 173-281.
    [204]Shankar A C U, Nayaka S C, Niranjan-Raj S, et al. Rhizobacteria-mediated resistance against the blackeye cowpea mosaic strain of bean common mosaic virus in cowpea (Vigna unguiculata) [J]. Pest Management Science,2009,65(10):1059-1064.
    [205]Babalola O O, Sanni A I, Odhiambo G D, et al. Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced [J]. World Journal of Microbiology and Biotechnology.2007,23(6):747-752.
    [206]Adesemoye A O, Torbert H A, Kloepper J W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system [J]. Canadian Journal of Microbiology,2008,54(10):876-886.
    [207]康贻军,程洁,梅丽娟,等.植物根际促生菌的筛选及鉴定[J].微生物学报,2010,50(7):853-861.
    [208]鲁如坤.土壤农业化学分析方法[M].北京:2000.
    [209]Muyzer G, Waal E C D, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology,1993,59(3): 695-700.
    [210]Ciccillo F, Fiore A, Bevivino A, et al. Effects of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity [J]. Environmental Microbiology,2002,4(4):238-245.
    [211]Holl F B, Chanway C P. Rhizosphere colonization and seedling growth promotion of lodgepole pine by Bacillus polymyxa [J]. Canadian Journal of Microbiology,1992,38(4): 303-308.
    [212]Hatzinger P B, Alexander M. Relationship between the number of bacteria added to soil or seeds and their abundance and distribution in the rhizosphere of alfalfa [J]. Plant and Soil, 1994,158(2):211-222.
    [213]Tilak K V B R, Ranganayaki N, Pal K K, et al. Diversity of plant growth and soil health supporting bacteria [J]. Current science,2005,89(1):136-150.
    [214]Cattelan A J, Hartel P G, Fuhrmann J J. Screening for plant growth-promoting rhizobacteria to promote early soybean growth [J]. Soil Science Society of America Journal,1999,63(6): 1670-1680.
    [215]Jeon J S, Lee S S, Kim H Y, et al. Plant growth promotion in soil by some inoculated microorganisms [J]. The Journal of Microbiology,2003,41(4):271-276.
    [216]Raaijmakers J M, Weller D M. Exploiting genotypic diversity of 2,4-Diacetylphloroglucinol-producing pseudomonas spp.:characterization of superior root-colonizing P. fluorescens strain Q8rl-96 [J]. Applied and Environmental Microbiology,2001,67(6):2545-2554.
    [217]Landa B B, Mavrodi D M, Thomashow L S, et al. Interactions between strains of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheat [J]. Phytopathology,2003,93(8):982-994.
    [218]Haas D, Defago G. Biological control of soil-borne pathogens by fluorescent pseudomonads [J]. Nature Reviews Microbiology,2005,3(4):307-319.
    [219]Baudoin E, Nazaret S, Mougel C, et al. Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize [J]. Soil Biology and Biochemistry,2009,41(2): 409-413.
    [220]Naiman A D, Latronico A, de Salamone I E G. Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens:Impact on the production and culturable rhizosphere microflora [J]. Soil Biology and Biochemistry,2009,45(1):44-51.
    [221]Cummings S P. The application of plant growth promoting rhizobacteria (PGPR) in low input and organic cultivation of graminaceous crops; potential and problems [J]. Environmental Biotechnology,2009,5(2):43-50.
    [222]Buddrus-Schiemann K, Schmid M, Schreiner K, et al. Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley [J]. Microbial Ecology,2010,60(2):381-393.
    [223]Ryu C-M, Farag M A, Hu C-H, et al. Bacterial volatiles promote growth in Arabidopsis [J]. Proceedings of the National Academy of Sciences,2003.100(8):4927-4932.
    [224]Muthukumarasamy R, Kang U G, Park K D, et al. Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants [J]. Journal of Applied Microbiology.2007,102(4):981-991.
    [225]Hodgkin E P. Hamilton B H. Fertilizers and eutrophication in southwestern Australia: Setting the scene [J]. Nutrient Cycling in Agroecosystems,1993,36(2):95-103.
    [226]Barak P, Jobe B O, Krueger A R, et al. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin [J]. Plant and Soil,1997,197(1):61-69.
    [227]Villa-Castorena M, Ulery A L, Catalan-Valencia E A, et al. Salinity and nitrogen rate effects on the growth and yield of chile pepper plants [J]. Soil Science Society of America, 2003,67(6):1781-1789.
    [228]Nandakumar R, Babu S, Viswanathan R, et al. Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens [J]. Soil Biology and Biochemistry,2001,33(4-5):603-612.
    [229]Cong P T, Dung T D, Hien T M, et al. Inoculant plant growth-promoting microorganisms enhance utilisation of urea-N and grain yield of paddy rice in southern Vietnam [J]. European Journal of Soil Biology,2009,45(1):52-61.
    [230]邹应斌.亚洲直播稻栽培的研究与应用[J].作物研究,2004,18(3):133-135.
    [231]沈建辉,曹卫星,朱庆森,等.不同育秧方式对水稻机插秧苗素质的影响[J].南京农业大学学报,2003,26(3):7-9.
    [232]Kumar H, Bajpai V K, Dubey R C, et al. Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer [J]. Crop Protection,2010,29(6):591-598.
    [233]Zemrany H E, Cortet J, Lutz M P, et al. Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilisation [J]. Soil Biology and Biochemistry,2006,38(7):1712-1726.
    [234]Naiman A D, Latronico A, Salamone I E G d. Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens:Impact on the production and culturable rhizosphere microflora [J]. European Journal of Soil Biology,2009,45(1):44-51.
    [235]Roesti D, Gaur R, Johri B N, et al. Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields [J]. Soil Biology and Biochemistry,2006,38(5):1111-1120.
    [236]Wenneker M, Verdel M S W, Groeneveld R M W, et al. Ralstonia (Pseudomonas) solanacearum race 3 (biovar 2) in surface water and natural weed hosts:first report on stinging nettle (Urtica dioica) [J]. European Journal of Plant Pathology,1999,105(3): 307-315.
    [237]Dalal N R, Dalal S R, Golliwar V G, et al. Studies on grading and pre-packaging of some bacterial wilt resistant brinjal (Solanum melongena L.) varieties [J]. Journal of Soils and Crops,1999,9(2):223-226.
    [238]Michel V V, Mew T W. Effect of a soil amendment on the survival of Ralstonia solanacearum in different soils [J]. Phytopathology,1998,88(4):300-305.
    [239]Halos P M, Zorilla R A. Vesicular-arbuscular mycorrhizae increase growth and yield of tomatoes and reduce infection by Pseudomonas solanacearum [J]. Philipp. Agric,1979,62: 309-315.
    [240]Frey P, Prior P, Marie C, et al. Hrp- mutants of Pseudomonas solanacearum as potential biocontrol agents of tomato bacterial wilt [J]. Applied and Environmental Microbiology, 1994,60(9):3175-3181.
    [241]Silveira E B, Da R, Mariano L R, et al. Antagonism of Bacillus spp. against Pseudomonas solanacearum and effect on tomato seedling growth [J]. Fitopatologia Brasileira,1995,20: 605-612.
    [242]el Abyad M S, el Saved M A, el Shanshoury A R, et al. Effect of culture conditions on the antibacterial activities of UV mutants of Streptomyces corchorusii and S. spiroverticillatus against bean and banana wilt pathogens [J]. Microbiological research,1996,151:201-211.
    [243]Lax A, Diaz E, Castillo V, et al. Reclamation of physical and chemical properties of a salinized soil by organic amendment [J]. Arid Land Research and Management,1993,8(1): 9-17.
    [244]Kang Y J, Cheng J, Mei L J, et al. Multiple copies of 16S rRNA gene affect the restriction patterns and DGGE profile revealed by analysis of Genome Database [J]. Microbiology, 2010,79(5):655-662.
    [245]Reysenbach A L, Giver L J, Wickham G S, et al. Differential amplification of rRNA genes by polymerase chain reaction [J]. Applied and Environmental Microbiology,1992,58(10): 3417-3418.
    [246]Suzuki M T, Giovannoni S J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR [J]. Applied and Environmental Microbiology,1996, 62(2):625-630.
    [247]Murray A E, Hollibaugh J T, Orrego C. Phytogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments [J]. Applied and Environmental Microbiology,1996,62(7):2676-2680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700