用户名: 密码: 验证码:
现代直线电机关键控制技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直线电机将电能直接转化为直线运动的机械能,不仅省略了中间传动机构,而且降低了系统损耗,非常适用于直线直驱式系统,其研究发展的主要方向是电机本体优化设计和驱动控制技术,后者主要涉及电力电子和自动控制领域,是提高电机调速性能的必要手段,也是现代直线电机研究的重点内容。
     论文围绕直线电机驱动控制技术进行以下几方面研究:
     1.介绍了直线电机的原理、结构、分类、发展历程及其在军事、民用、工业自动化、交通运输等领域中的应用,然后讲述了直线电机的v/f控制、矢量控制和直接推力控制策略,并由此引出课题的研究背景和主要研究内容。
     2.建立了永磁直线电机数学模型,并在此基础上总结了永磁直线电机常用的矢量控制方法。基于TI公司的浮点DSP处理器TMS320F28335给出了空间矢量脉宽调制的数字化实现方法。根据逆变器电路结构详细分析了死区效应的产生及其对系统的不良影响,并推导得到死区误差电压矢量。由于直线电机大多应用在短行程直驱系统中,运行频率较低,死区效应对其运行状态影响明显。实验研究了电压矢量补偿法和时间补偿法两种死区补偿方法,结果表明这两种死区补偿算法均可有效降低直线电机低速运行时的电流畸变和推力脉动。
     3.设计了永磁直线电机伺服控制系统,通过试验比较了位置-速度-电流三环位置伺服控制系统和位置-电流双环位置伺服控制系统的控制性能。建立了基于id=0矢量控制策略的改进型三环位置伺服控制系统,设计了模糊自适应速度PI调节器代替常规速度PI调节器,详细分析了PI调节器参数设计对定位过程中位置误差的影响,并在伺服控制系统中增加了速度、加速度、负载阻力和粘滞摩擦前馈补偿校正环节。以圆筒型永磁直线电机作为研究对象进行了实验验证,测得的速度与位置结果显示,模糊自适应PI调节器有效降低了速度超调,而前馈校正环节则减小了位置跟踪误差。研究表明永磁直线电机采用改进的控制方法可有效提高系统的动态性能与控制精度。
     4.研究了永磁直线电机的初始位置检测方法。对于具有饱和凸极效应的表贴式永磁直线电机,基于电感变化的动子位置检测方法可以实现静止状态下的动子初始位置获取。研究中采用脉振高频信号注入法检测直线电机动子初始位置,提出的改进型极值法可有效提取高频电流信号中的动子位置信息。实验结果表明,与脉冲电压法相比改进型高频信号注入法可以有效提取永磁直线电机的动子初始位置,结果稳定、精度较高。
     5.研究了永磁直线电机无位置传感器矢量控制系统,系统采用反电势积分法作为无位置传感器控制算法。实验结果表明,通过死区补偿与磁链中值法可有效消除磁链零漂,提高动子位置估算精度。并在此基础上详细分析了电机参数变化对位置估测结果的影响。由于反电势积分法无法在零速下估算动子位置,系统采用开环启动的方法,待电机运行到一定速度后切换到速度闭环控制。提出的q轴电流控制方法实现了速度开环和速度闭环之间的平稳过渡。
     6.设计了城市轨道试验线动态无线控制系统,重点探讨了车载变频器驱动电路、检测电路和多重硬件保护电路设计思路,给出了变频器控制程序设计方案和实现流程。基于LabVIEW设计上位机控制程序,实现了系统各组成部分的高效控制。最后对城市轨道试验线系统通讯过程进行测试,提出的指令双校验法解决了通讯中存在的指令传输错误问题,保证了试验线的可靠运行。
The linear motor can directly transform electrical energy into linear moving mechanical energy, the mechanical friction and losses can be reduced in this system without transmission mechanisms. Therefore, it is much suitable for direct drive system. Optimal motor design and driving technology are two main developing directions of the linear motor. The latter involves power electronics and automatic control, and it is the key to improve the adjusting speed performance for motor. It also becomes the focus of the study for modern linear motor.
     The dissertation has researched following several areas around the driving technology of linear motor:
     1. The principle, structure, classification, development and the applications of linear motor in the fields of military, civil, industrial automation and transportation are introduced. Then, the vlf control, field oriented control (FOC) and direct thrust control (DTC) for linear motor are described, after that the research background and the main contents are pointed out.
     2. The mathematic model of the permanent magnet synchronous linear motor (PMLSM) is built, and then several types of FOC for PMLSM are introduced based on this model. Space vector pulse width modulation (SVPWM) is realized by using TI's floating-point digital signal processor (DSP) TMS320F28335. Generation and adverse effects of dead-time effect are analyzed based on the structure of the inverter, and the dead-time error voltage vector is deduced to describe the dead-time effect. Since the linear motor is mostly used in short-stroke direct drive system, dead-time effect has great effect on control performance due to its relative low operation frequency. The voltage vector compensation and time compensation methods used to eliminate the dead-time effect are investigated by the experiment. The results indicate that the dead-time compensation methods can reduce the current distortion and thrust ripple.
     3. The servo control system is built with air-cored PMLSM, and the performance of position-speed-current closed-loop system and position-current closed-loop system are discussed by experiment. Improved position-speed-current closed-loop servo control system which built with id=0FOC is proposed. Fuzzy adaptive PI controller is used in servo control system instead of the conventional speed regulator, and position error caused by the parameters of PI controller is analyzed in orientation process. Feedforward compensation correction devices of speed, acceleration, load damping and viscous friction are designed. It is validated by the experiment on tubular air-cored PMLSM. The speed and position are measured, and the measured results of speed and position indicate that the speed overshoot is reduced by fuzzy adaptive PI controller and position tracking error is significantly reduced by feedforward control. The research indicates that the dynamic performance and control accuracy of PMLSM can be improved by adopting the improved control methods combined with fuzzy adaptive PI control and feedforward control.
     4. Initial mover position estimation of PMLSM is discussed in the research. Due to the saturation saliency effect of PMLSM, initial mover position can be estimated in stationary state based on inductance variation. Fluctuating high-frequency signal injection is used in this research. Mover position information can be extracted effectively by the improved extreme value method. The experimental results show that the improved high-frequency injection method is more accurate and reliable than available pulse-voltage injection method for the initial mover position estimation.
     5. The sensorless FOC system for PMLSM based on back electromotive force (back-EMF) method is built in the research. The dead-time compensation and mean value of flux linkage method are validated to eliminate the flux linkage drift effectively, so the accuracy of mover position estimation is improved significantly. The influence of estimation position due to parameter variation is analyzed by experimental results. Due to Back-EMF sensorless method can'no"t get the mover position of PMLSM at zero-speed, method of current closed-loop and speed open-loop is adopted in startup state, and system is switched to speed-current closed-loop control model when the linear motor speed reached the threshold. By adjusting the q-axis current, a smooth and stable transition between speed open-loop control and speed closed-loop control is realized.
     6. A dynamic operation wireless control system in urban rail test line is designed. Drive circuit, signal detection circuit and protection circuit of vehicle inverter are researched in order to meet the high reliability requirements for this system, and control program design and implementation process for inverter are also proposed. In order to contact each part of system efficiently, host computer control system is built with LabVIEW. Finally, the communication of the urban rail test line is tested. By analyzing the experimental results, the method of double-examination is proposed to solve the command transmission error, and reliable operation of the test line is guaranteed at last.
引文
[1].叶云岳.直线电机原理与应用[M].北京:机械工业出版社,2000:1-28.
    [2].叶云岳.直线驱动装置与系统[M].北京:冶金工业出版社,2000:4-24.
    [3]. Laithwaite E. R. Linear electric machines-a personal view [J]. Proceedings of the IEEE,1975,63(2): 250-290.
    [4].山田一(著),薄荣志(译).工业用直线电动机[M].北京:新时代出版社,J986:5-12.
    [5]. Doyle M. R., Samuel D. J., Conway T., et al. Electromagnetic aircraft launch system-EMALS [J]. IEEE Transactions on Magnetics,1995,31(1):528-533.
    [6]. Lim H. S., Krishnan R. Ropeless elevator with linear switched reluctance motor drive actuation systems [J]. IEEE Transactions on Industrial Electronics,2007,54 [4]:2209-2218.
    [7].夏永明.新型双定子直线振荡电机的研究[D].杭州:浙江大学,2007:1-29.
    [8].吴南星,孙庆鸿.直线电机与高速精密数控机床进给系统的研究[J].制造业自动化,2003,25(1 0):46-48.
    [9].李绪成.直线电机在数控机床中的应用及发展趋势[J].世界制造技术与装备市场,2005,(6):71-74.
    [10].潘超.数控机床直线电驱进给系统控制技术及动态特性研究[D].镇江:江苏大学,2011:1-10.
    [11].张春良,陈子辰,梅德庆.直线电机伺服进给系统及其关键技术问题[J].2001,(11):37-40.
    [12].毛丽青.直线电机在机床领域的应用及发展[J].机械工程师,2006,(10):22-23.
    [13].邓英剑.直线电机及其在高速机床中的应用[J].机械设计与制造,2004,(4):42-43.
    [14].张宏韬,冯同建,曹洪涛,等.高速机床的关键技术和发展趋势[J].机械制造,2006,44(499):12-14.
    [15].陈循介.21届JIMTOF展出的用直线电机驱动的展品41台[J].世界制造技术与装备市场,2003,(1):29.
    [16].遇立基,杨春林.米兰EMO2003国际机床展综述[J].世界制造技术与装备市场,2003,69(6):27-28.
    [17]. McLean G. W. Review of recent progress in linear motors [J]. Electric Power Applications, IEE Proceedings B,1988,135(6):380-416.
    [18].Gustafsson J. Vectus—intelligent transport [J]. Proceedings of the IEEE,2009,97(11):1856-1863.
    [19].Gurol H. General Atomics linear motor applications:moving towards deployment [J]. Proceedings of the IEEE,2009,97(11):1864-1871.
    [20].Fang J., Montgomery D. B., Roderick L. A Novel MagPipe pipeline transportation system using linear motor drives [J]. Proceedings of the IEEE,2009,97(11):1848-1855.
    [21].Hellinger R., Mnich P. Linear motor-powered transportation:history, present status, and future outlook [J]. Proceedings of the IEEE,2009,97(11):1892-1900.
    [22]. Thornton R. D. Efficient and affordable maglev opportunities in the United States [J]. Proceedings of the IEEE,2009,97(11):1901-1921.
    [23].Weh H. Linear synchronous motor development for urban and rapid transit systems [J]. IEEE Transactions on Magnetics,1979,15(6):1422-1427.
    [24].范瑜,李国国,吕刚.直线电机及其在城市轨道交通中的应用[J].都市快轨交通,2006,19(1):1-6.
    [25].范瑜,李文球,杨中平,等.国外直线电机轮轨交通[M].北京:中国科学技术出版社,2010:1-11.
    [26].翁梦熊,张全福.城市轨道交通高架化小型化的研究[J].上海铁道学院学报,1994,15(4):90-103.
    [27].施翃,魏庆朝.新型城市轨道交通模式-直线电机地铁系统[J].地铁与轻轨,2003,(4):18-22.
    [28].郑琼林,赵佳,樊嘉峰.直线电机轮轨交通牵引传动系统[M].北京:中国科学技术出版社,2010: 1-11.
    [29].夏禾.郭微微,陶毕莲.直线电机轮轨交通高架结构[M].北京:中国科学技术出版社,2010:1-11.
    [30].魏庆朝,蔡昌俊,龙许友.直线电机轮轨交通概论[M].北京:中国科学技术出版社,2010:1-32.
    [31].杨中平,柳拥军,单雷.日本直线电机地铁车辆技术[J].都市快轨交通,2006,19(2):63-67.
    [32].杨中平.日本直线电机地铁的发展[J].都市快轨交通,2006,19(1):11-15.
    [33].李娜.直线电机城市轨道交通系统的特点及应用[J].电力机车与城轨车辆,2005,28(3):52-54.
    [34].胡引娥.线性电机的特点及其在广州地铁4号线的应用考虑[J].机车电传动,2003,(6):40-43.
    [35].庞绍煌.广州地铁4号线直线电机车辆[J].都市快轨交通,2006,19(1):77-79.
    [36].冯爱军.关于如何发挥直线电机系统优势的思考[J].都市快轨交通,2006,19(1):16-19.
    [37].卢桂英,薛波,牛淑霞.北京机场线直线电机车辆基地设计创新与应用[J].铁道工程学报,2008,(11):77-81.
    [38].陈伯时.电力拖动自动控制系统:运动控制系统[J].北京:机械工业出版社,2003:242-255.
    [39].Casadei D., Profumo F., Serra G., et al. FOC and DTC:two viable schemes for induction motors torque control [J]. IEEE Transactions on Power Electronics,2002,17(5):779-784.
    [40].Nabae A., Otsuka K., Uchino H., et al. An approach to flux control of induction motors operated with variable-frequency power supply [J]. IEEE Transactions on Industry Applications,1980,IA-16(3): 342-350.
    [41].Sathikumar S., Vithayathil J. Digital simulation of field-oriented control of induction motor [J]. IEEE Transactions on Industrial Electronics,1984,IE-31(2):141-148.
    [42].Sathikumar S., Biswas S. K., Vithayathil J. Microprocessor-based field-oriented control of a CSI-fed induction motor drive [J]. IEEE Transactions on Industrial Electronics,1986, IE-33(1):39-43.
    [43].Lorenz R. D., Lawson D. B. Performance of feedforward current regulators for field-oriented induction machine controllers [J]. IEEE Transactions on Industry Applications,1987, IA-23(4):597-602.
    [44].Lorenz R. D. A simplified approach to continuous on-line tuning of field-oriented induction machine drives [J]. IEEE Transactions on Industry Applications,1990,26(3):420-424.
    [45].Daboussi Z., Mohan, N. Digital simulation of field-oriented control of induction motor drives using EMTP [J]. IEEE Transactions on Energy Conversion,1988,3(3):667-673.
    [46].Diana G., Harley R. G. An aid for teaching field oriented control applied to induction machines [J]. IEEE Transactions on Power Systems,1989,4(3):1258-1262.
    [47].Holtz J., Bube E. Field-oriented asynchronous pulse-width modulation for high-performance AC machine drives operating at low switching frequency [J]. IEEE Transactions on Industry Applications, 1991,27(3):574-581.
    [48].Fodor D., Katona Z., Szesztay E. Field-oriented control of induction motors using DSP [J]. Computing & Control Engineering Journal,1994,5(2):61-65.
    [49].Becn M. M., Pedersen J. K., Blaabjerg F. Field-oriented control of an induction motor using random pulsewidth modulation [J]. IEEE Transactions on Industry Applications,2001,37(6):1777-1785.
    [50].Barambones O., Garrido A. J., Maseda F. J. Integral sliding-mode controller for induction motor based on field-oriented control theory [J]. IET Control Theory & Applications,2007,1(3):786-794.
    [51].Gulez K., Adam A. A., Pastaci H. Torque ripple and EMI noise minimization in PMSM using active filter topology and field-oriented control [J]. IEEE Transactions on Industrial Electronics,2008,55(1): 251-257.
    [52].Bascetta L., Magnani G., Rocco P., et al. Performance limitations in field-oriented control for asynchronous machines with low resolution position sensing [J]. IEEE Transactions on Control Systems Technology,2010,18(3):559-573.
    [53].Bazzi A. M., Dominguez-Garcia A., Krein P. T. Markov reliability modeling for induction motor drives under field-oriented control [J]. IEEE Transactions on Power Electronics,2012,27(2):534-546.
    [54].Nait Said M. S.. Benbouzid M. E. H. Induction motors direct field oriented control with robust on-line tuning of rotor resistance [J]. IEEE Transactions on Energy Conversion.1999,14(4):1038-1042.
    [55].Singh G. K.. Singh D. K. P.. Nam K., et al. A simple indirect field-oriented control scheme for multiconverter-fed induction motor [J]. IEEE Transactions on Industrial Electronics,2005,52(6): 1653-1659.
    [56].Takahashi 1., Noguchi T. A new quick-response and high-efficiency control strategy of an induction motor [J]. IEEE Transactions on Industry Applications,1986, IA-22(5):820-827.
    [57].Takahashi I., Ohmori Y. High-performance direct torque control of an induction motor [J]. IEEE Transactions on Industry Applications,1989,22(2):257-264.
    [58].Depenbrock M. Direct self-control (DSC) of inverter-fed induction machine [J]. IEEE Transactions on Power Electronics,1988,3(4):420-429.
    [59].Nash J. N. Direct torque control, induction motor vector control without an encoder [J]. IEEE Transactions on Industry Applications,1997,33(2):333-341.
    [60].Khoucha F.. Lagoun S. M., Marouani K., et al. Hybrid cascaded H-bridge multilevel-inverter induction-motor-drive direct torque control for automotive applications [J]. IEEE Transactions on Industrial Electronics.2010,57(3):892-899.
    [61].Zhong L.. Rahman M. F., Hu W. Y., et al. Analysis of direct torque control in permanent magnet synchronous motor drives [J]. IEEE Transactions on Power Electronics,1997,12(3):528-536.
    [62].Bojoi R., Farina F., Griva G, et al. Direct torque control for dual three-phase induction motor drives [J]. IEEE Transactions on Industry Applications,2005,41(6):1627-1636.
    [63].Sorchini Z., Krein P. T. Formal derivation of direct torque control for induction machines [J]. IEEE Transactions on Power Electronics,2006,21(5):1428-1436.
    [64].Gulez K., Adam A. A., Pastaci H. A novel direct torque control algorithm for IPMSM with minimum harmonics and torque ripples [J]. IEEE/ASME Transactions on Mechatronics,2007,12(2):223-227.
    [65].Habetler T. G., Profumo F, Pastorelli M., et al. Direct torque control of induction machines using space vector modulation [J]. IEEE Transactions on Industry Applications,1992,28(5):1045-1053.
    [66].Idris N. R. N., Yatim A. H. M. Direct torque control of induction machines with constant switching frequency and reduced torque ripple [J]. IEEE Transactions on Industrial Electronics,2004,51(4): 758-767.
    [67].Zhang Z., Tang R., Bai B., et al. Novel direct torque control based on space vector modulation with adaptive stator flux observer for induction motors [J]. IEEE Transactions on Magnetics,2010,46(8): 3133-3136.
    [68].Kang J., Sul S. New direct torque control of induction motor for minimum torque ripple and constant switching frequency [J]. IEEE Transactions on Industry Applications,1999,35(5):1076-1082.
    [69]. Maes J., Melkebeek J. A. Speed-sensorless direct torque control of induction motors using an adaptive flux observer [J]. IEEE Transactions on Industry Applications,2000,36(3):778-785.
    [70].Lascu C, Boldea I.. Blaabjerg F. Variable-structure direct torque control-a class of fast and robust controllers for induction machine drives [J]. IEEE Transactions on Industrial Electronics,2004,51(4): 785-792.
    [71].Abad G., Rodriguez M. A., Poza J. Two-level VSC based predictive direct torque control of the doubly fed induction machine with reduced torque and flux ripples at low constant switching frequency [J]. IEEE Transactions on Power Electronics,2008,23(3):1050-1061.
    [72].Beerten J., Verveckken J., Driesen J. Predictive direct torque control for flux and torque ripple reduction [J]. IEEE Transactions on Industrial Electronics,2010,57(1):404-412.
    [73].唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997:244-264.
    [74].Liu T., Lee Y.. Crang Y. Adaptive controller design for a linear motor control system [J]. IEEE Transactions on Aerospace and Electronic Systems,2004,40(2):601-616.
    [75]. Lin F., Shen P. Robust fuzzy neural network sliding-mode control for two-axis motion control system [J]. IEEE Transactions on Industrial Electronics,2006,53(4):1209-1225.
    [76].Kung Y. Design and implementation of a high-Performance PMLSM drives using DSP chip [J]. IEEE Transactions on Industrial Electronics,2008,55(3):1341-1351.
    [77].刘晓.空心式永磁直线伺服电机及其驱动控制系统研究[D].杭州:浙江大学,2008:106-110.
    [78].王成元,夏加宽,孙宜标.现代电机控制技术[M].北京:机械工业出版社,2008:104-138.
    [79]. Van Scoyoc J. N., Bull R. W. Pulse-width control of transistors [J]. IRE Transactions on Industrial Electronics,1958, PGIE-6:95-100.
    [80].Gilbert E. M. Time ratio regulation-a new inverter design technique [J]. IRE Transactions on Vehicular Communications,1959,12(1):60-70.
    [81].Kubler E. F. The armature current form factor of a D-C motor connected to a controlled rectifier [J]. Transactions of the American Institute of Electrical Engineers:Power Apparatus and Systems, Part Ⅲ, 1959,78(3):764-770.
    [82]. Weber H. F. Pulse-width modulation DC motor control [J]. IEEE Transactions on Industrial Electronics and Control Instrumentation,1965, IECI-12(1):24-28.
    [83].Mokrytzki B. Pulse width modulated inverters for AC motor drives [J]. IEEE Transactions on Industry and General Applications,1967, IGA-3(6):493-503.
    [84]. Vutz N. PWM inverter induction motor transit car drives [J]. IEEE Transactions on Industry Applications, 1972,IA-8(1):89-91.
    [85].Murai Y., Ohashi K., Hosono I. New PWM method for fully digitized inverters [J]. IEEE Transactions on Industry Applications,1987, IA-23(5):887-893.
    [86].Profumo F.. Boglietti A., Griva G., et al. Space vector and sinusoidal PWM techniques comparison keeping in account the secondary effects [C]// 3rd AFRICON Conference, September 22-24,1992, Ezulwini Valley, Swaziland.1992:394-399.
    [87].许大中,贺益康.电机控制[M].杭州:浙江大学出版社,2002:93-98.
    [88].王晓明.电动机的DSP控制:TI公司DSP应用[M].北京:北京航空航天大学出版社,2009:128-165.
    [89].Texas Instruments. TMS320F28335, TMS320F28334, TMS320F28332 digital signal controllers (DSCs) data manual [DB/OL]. Literature "Number:SPRS439F, June 2007-Revised April 2009.
    [90].苏奎峰,吕强,邓志东,等.TMS320x28xxx原理与开发[M].北京:电子工业出版社,2009:1-41.
    [91].Texas Instruments. TMS320x2833x,2823x enhanced pulse width modulator (ePWM) module reference guide [DB/OL]. Literature Number:SPRUG04A, October 2008-Revised July 2009.
    [92]Jeong S. G., Park M. H. The analysis and compensation of dead-time effects in PWM inverters [J]. IEEE Transactions on Industrial Electronics,1991,38(2):108-114.
    [93].Munoz A. R., Lipo T. A. On-line dead-time compensation technique for open-loop PWM-VSI drives [J]. IEEE Transactions on Power Electronics,1999,14(4):683-689.
    [94]. Lin J. L. A new approach of dead-time compensation for PWM voltage inverters [J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2002,49(4):476-483.
    [95].Cichowski A., Nieznanski J. Self-tuning dead-time compensation method for voltage-source inverters [J]. IEEE Power Electronics Letters,2005,3(2):72-75.
    [96].Urasaki N., Senjyu T.. Uezato K.. et al. Adaptive dead-time compensation strategy for permanent magnet synchronous motor drive [J]. IEEE Transactions on Energy Conversion,2007,22(2):271-280.
    [97].阮毅.陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2009:253-273.
    [98].胡寿松.自动控制原理(第四版)[M].北京:科学出版社,2001:219-226.
    [99].程鹏.自动控制原理[M].北京:高等教育出版社,2003:234-244.
    [100].陶永华.新型P1D控制及其应用[M].北京:机械工业出版社,1998:1-26.
    [101]. Alonge F., D'Ippolito F., Raimondi, F. M.. et al. Method for designing Pl-type fuzzy controllers for induction motor drives [J]. IEE Proceedings of Control Theory and Applications,2001,148(1):61-69.
    [102]. Lai Y., Lin J. New hybrid fuzzy controller for direct torque control induction motor drives [J]. IEEE Transactions on Power Electronics,2003,18(5):1211-1219.
    [103]. Wang S., Liu Y. A Modified PI-like fuzzy logic controller for switched reluctance motor drives [J]. IEEE Transactions on Industrial Electronics,2011,58(5):1812-1825.
    [104]. Jung J., Choi Y., Leu V. et al. Fuzzy PI-type current controllers for permanent magnet synchronous motors [J].IET Electric Power Application,2011,5(1):143-152.
    [105]. Rebeiro R. S.. Uddin M. N. Performance analysis of an FLC-based online adaptation of both hysteresis and PI controllers for IPMSM drive [J]. IEEE Transactions on Industry Applications,2012,48(1): 12-19.
    [106]. Zadeh L. A. Fuzzy Sets [J]. Information and Control,1965,8(3):338-353.
    [107].张增科.模糊数学在自动化技术中的应用[M].北京:清华大学出版社,1997:169-219.
    [108].诸静.模糊控制原理与应用[M].北京:机械工业出版社,1995:315-404.
    [109].吴晓莉,林哲辉.MATLAB辅助模糊系统设计[M].西安:西安电子科技大学出版社,2002:50-55.
    [110]. Nakashima S., Inagaki Y., Miki I. Sensorless initial rotor position estimation of surface permanent-magnet synchronous motor [J]. IEEE Transactions on Industry Applications,2000,36(6): 1598-1603.
    [111].韦鲲,金辛海.表面式永磁同步电机初始转子位置估计技术[J].中国电机工程学报,2006,26(22):104-109.
    [112].陆华才,徐月同,杨伟民,等.表面式永磁直线同步电机初始位置检测方法[J].浙江大学学报:工学版,2008,42(5):835-838.
    [113]. Wang C., Xu L. A novel approach for sensorless control of PM machines down to zero speed without signal injection or special PWM technique [J]. IEEE Transactions on Industrial Electronics,2004,19(6): 1601-1607.
    [114]. Corley M. J., Lorenz R. D. Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds [J]. IEEE Transactions on Industry Applications, 1998,34(4):784-789.
    [115].万山明,吴芳,黄声华.基于高频电压信号注入的永磁同步电机转子初始位置估计[J].中国电机工程学报,2008,28(33):82-86.
    [116].廖勇,沈朗,姚骏,等.改进的面贴式永磁同步电机转子初始位置检测[J].电机与控制学报,2009,13(2):203-207.
    [117].周元钧,蔡名飞.改进的永磁同步电机转子初始位置检测方法[J].电机与控制学报,2010,14(3):68-72.
    [118]. Noguchi T., Yamada K., Kondo S., et al. Initial rotor position estimation method of sensorless PM synchronous motor with no sensitivity to armature resistance [J]. IEEE Transactions on Industrial Electronics,1998,45(1):118-125.
    [119]. Kim H., Huh K... Lorenz R. D.. et al. A novel method for initial rotor position estimation for IPM synchronous machine drives [J]. IEEE Transactions on Industry Applications,2004,40(5):1369-1378.
    [120].秦峰,贺益康,刘毅.等.两种高频信号注入法的无传感器运行研究[J].中国电机工程学报,2005,25(5):116-121.
    [121].郭庆鼎,孙宜标,王丽梅.现代永磁电动机交流伺服系统[M].北京:中国电力出版社,2006:30-59.
    [122].刘晓,叶云岳,郑灼,等.一种低成本的线性霍尔位置检测方法研究[J].浙江大学学报:工学版,2008,42(7):1204-1207.
    [123]. Iizuka K., Uzuhashi H., Kano M., et al. Microcomputer control for sensorless brushless motor [J]. IEEE Transactions on Industry Applications,1985,IA-21(3):595-601.
    [124]. Shouse K. R., Taylor D. G. Sensorless velocity control of permanent-magnet synchronous motors [J]. IEEE Transactions on Control Systems Technology,1998,6(3):313-324.
    [125]. Genduso F., Miceli R., Rando C., et al. Back EMF sensorless-control algorithm for high-dynamic performance PMSM [J]. IEEE Transactions on Industrial Electronics,2010,57(6):2092-2100.
    [126]. Lai Y., Lin Y. Novel back-EMF detection technique of brushless DC motor drives for wide range control without using current and position sensors [J]. IEEE Transactions on Power Electronics,2008, 23(2):934-940.
    [127]. Damodharan P., Vasudevan K. Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference [J]. IEEE Transactions on Energy Conversion,2010.25(3):661-668.
    [128]. Acarnley P. P., Watson J. F. Review of position-sensorless operation of brushless permanent-magnet machines [J]. IEEE Transactions on Industrial Electronics,2006,53(2):352-362.
    [129]. Aihara T., Toba A., Yanase T., et al. Sensorless torque control of salient-pole synchronous motor at zero-speed operation [J]. IEEE Transactions on Power Electronics,1999,14(1):202-208.
    [130]. Ha J., Sul S. Sensorless field-orientation control of an induction machine by high-frequency signal injection [J]. IEEE Transactions on Industry Applications,1999,35(1):45-51.
    [131]. Jang J., Sul S., Ha J., et al. Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency [J]. IEEE Transactions on Industry Applications,2003,39(4):1031-1039.
    [132]. Shinnaka S. New "mirror-phase vector control" for sensorless drive of permanent-magnet synchronous motor with pole saliency [J]. IEEE Transactions on Industry Applications,2004,40(2):599-606.
    [133]. Foo G., Rahman M.F. Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection [J]. IEEE Transactions on Industrial Electronics,2010, 57(4):1270-1278.
    [134]. Leidhold R., Mutschler P. Speed sensorless control of a long-stator linear synchronous motor arranged in multiple segments [J]. IEEE Transactions on Industrial Electronics,2007,54(6):3246-3254.
    [135]. Wang X., Ge Q. Speed sensorless control of a linear synchronous motor using state observer on d-q reference frame [C]// Proceedings of the 11th International Conference on Electrical Machines and Systems, October 17-20,2008, Wuhan, China.2008:1553-1557.
    [136].陆华才.无位置传感器永磁直线同步电机进给系统初始位置估计及控制研究[D].杭州:浙江大学,2008:46-59.
    [137]. Hu J., Wu B. New integration algorithms for estimating motor flux over a wide speed range [J]. IEEE Transactions on Power Electronics,1998,13(5):969-977.
    [138]. Harnefors L., Nee H. P. A general algorithm for speed and position estimation of AC motors [J]. IEEE Transactions on Industrial Electronics.2000.47(1):77-83.
    [139]. Chen Z., Tomita M., Doki S., et al. An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors [J]. IEEE Transactions on Industrial Electronics,2003. 50(2):288-295.
    [140]. Morimoto S., Kawamoto K., Takeda Y. Position and speed sensorless control for IPMSM based on estimation of position error [J]. Electrical Engineering in Japan,2003,144(2):43-52.
    [141]. lchikawa S., Chen Z., Tomita M. Position and speed sensorless control for IPMSM based on estimation of position error [J]. Electrical Engineering in Japan,2004,146(3):46-54.
    [142]. Liu T. H., Cheng C. P. Adaptive control for a sensorless permanent-magnet synchronous motor drive [J]. 1994,30(3):900-909.
    [143]. Nahid-Mobarakeh B., Meibody-Tabar F., Sargos F.-M. Mechanical sensorless control of PMSM with online estimation of stator resistance [J]. IEEE Transactions on Industry Applications,2004,40(2): 457-471.
    [144].范蟠果,杨耕.感应电机无速度传感器控制自适应速度观测器[J].电机与控制学报,2008,12(6):621-628.
    [145]. Piippo A., Hinkkanen M., Luomi J. Analysis of an Adaptive Observer for Sensorless Control of Interior Permanent Magnet Synchronous Motors [J]. IEEE Transactions on Industry Applications,2008. 45(2):570-576.
    [146]. Piippo A., Hinkkanen M., Luomi J. Adaptation of motor parameters in sensorless PMSM drives [J]. IEEE Transactions on Industry Applications,2009,45(1):203-212.
    [147]. Kalman R. E. A new approach to linear filtering and prediction problems [J]. Transactions of the ASME-Journal of Basic Engineering,1960,82(Series D):35-45.
    [148]. Bolognani S., Oboe R., Zigliotto M, Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position [J]. IEEE Transactions on Industrial Electronics,1999,46(1):184-191.
    [149]. Bolognani S., Tubiana L., Zigliotto M. Extended Kalman filter tuning in sensorless PMSM drives [J]. 2003,39(6):1741-1747.
    [150]. Terzic B., Jadric M. Design and implementation of the extended Kalman filter for the speed and rotor position estimation of brushless DC motor [J]. IEEE Transactions on Industrial Electronics.2001,48(6): 1065-1073.
    [151]. Aydogmus O., Talu M. F. Comparison of extended-Kalman-and particle-filter-based sensorless speed control [J]. IEEE Transactions on Instrumentation and Measurement,2012,61(2):402-410.
    [152]. Kim Y., Kook Y. High performance IPMSM drives without rotational position sensors using reduced-order EKF [J]. IEEE Transactions on Energy Conversion,1999,14(4):868-873.
    [153].张猛,肖曦,李永东.基于扩展卡尔曼滤波器的永磁同步电机转速和磁链观测器[J].中国电机工程学报,2007,27(36):36-40.
    [154]. Cheok A. D., Ertugrul N. High robustness and reliability of fuzzy logic based position estimation for sensorless switched reluctance motor drives [J]. IEEE Transactions on Power Electronics,2000,15(2): 319-334.
    [155]. Daya J. L. F., Subbiah V. Robust control of sensorless permanent magnet synchronous motor drive using fuzzy logic [C]// Proceedings-2nd IEEE International Conference on Advanced Computer Control, March 27-29,2010, Shenyang, China.2010:14-18.
    [156]. Mese E., Torrey D. A. An approach for sensorless position estimation for switched reluctance motors using artifical neural networks [J]. IEEE Transactions on Power Electronics,2002,17(1):66-75.
    [157]. Guo H., Sagawa S., Watanabe T., et al. Sensorless driving method of permanent-magnet synchronous motors based on neural networks [J]. IEEE Transactions on Magnetics,2003,39(5):3247-3249.
    [158]. Cirrincione M, Pucci M., Cirrincione G., et al. Sensorless control of induction machines by a new neural algorithm:the TLS EXIN neuron [J]. IEEE Transactions on Industrial Electronics,2007,54(1): 127-149.
    [159]. Garcia P., Briz F., Raca D., et al. Saliency-tracking-based sensorless control of AC machines using structured neural networks [J]. IEEE Transactions on Industry Applications,2007,43(1):77-86.
    [160].汤蕴璆,张奕黄,范瑜.交流电机动态分析[M].北京:机械工业出版社,2004:91-172.
    [161]. Wang L., Ye Y., Lu Q. Dead-time compensation in metro linear motor drive system [C]// Proceedings of the 2011 Chinese Control and Decision Conference, May 23-25,2011, Mianyang, China.2011: 1230-1234.
    [162].熊才伟.直线电机城轨交通试验线牵引供电系统研究[D],杭州:浙江大学,2008:38-44.
    [163].林渭勋.现代电力电子电路[M].杭州:浙江大学出版社,2002:122-130.
    [164]. Travis J., KringJ.(著),乔瑞萍(译).LabVIEW大学实用教程(第三版)[M].北京:电子工业出版社,2008:1-10.
    [165].殷福亮,宋爱军.数字信号处理C语言程序集[M].沈阳:辽宁科学技术出版社,1997:39-101.
    [166].姚天任,江太辉.数字信号处理(第三版)[M].武汉:华中科技大学出版社,2007:95-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700