用户名: 密码: 验证码:
感应电机无速度传感器DTC参数辨识与控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着智能控制理论、微处理器技术、电力电子器件以及电机调速控制理论的不断发展,感应电机调速系统正朝着高性能和智能化的方向发展。其中感应电机无速度传感器直接转矩控带(?)(Direct Torque Control,简称DTC)调速系统已发展成为目前感应电机调速系统中最有发展前途的高性能调速系统。
     DTC是继矢量控制出现以后发展起来的电机高性能调速控制方式,它以其新颖的控制思想、系统结构简单、转矩控制直接、速度观测能有效提高系统的冗余、鲁棒性强、动态性能好等优良性能受到人们的广泛重视,己成为感应电机调速领域的研究热点。但目前感应电机无速度传感器DTC系统中仍有一些关键技术,如电机低速时电机定子磁链辨识困难和转矩脉动增大以及运行中电机参数受环境变化影响电机调速性能等问题有待解决。为此,本文以感应电机无速度传感器DTC系统中定子磁链、定子电阻、电机速度等重要参数的辨识方法和磁链与转矩的控制策略展开理论与实践研究。
     在DTC辨识定子磁链参数的研究方面,为了克服传统DTC系统积分累积误差问题,本文在对传统的基于低通滤波器的定子磁链开环辨识方法进行原理分析的基础上,研究了基于均值补偿的定子磁链开环辨识方法,研究结果证明该方法能有效地消去积分器直流偏置的积分累积误差。但开环辨识器不具有消去误差的自适应能力,为此,本文通过将均值补偿算法引入定子磁链参数闭环辨识器,提出了一种新型基于PI校正的定子磁链闭环辨识器。仿真与实验研究表明,这种定子磁链闭环辨识方法,不仅保留了均值补偿算法有效解决积分器的累积误差问题的优点,而且该定子磁链闭环辨识器对不确定干扰有一定的校正能力,改善了定子磁链参数辨识精度。
     在DTC辨识定子电阻参数的研究方面,由于定子磁链、速度和转矩等主要参数的辨识,依赖于控制对象电机模型的定子电阻参数,而DTC系统的定子电阻受环境温度等因素影响发生变化时,使得感应电机DTC控制性能会随之下降,尤其低速时更为明显。为了解决DTC系统定子电阻参数变化影响电机控制性能等问题,本文采用模糊逻辑理论研究了定子电阻变化与定子电流误差之间的关系,并提出了一种基于定子电流误差的模糊逻辑定子电阻参数辨识器。研究结果表明:这种新型定子电阻参数辨识器不仅具有算法简单、实时性好、鲁棒性强等优点,还有效地改善了电机定子磁链和速度等参数的辨识精度和提高了DTC系统的速度和转矩的动静态控制性能。
     感应电机无速度传感器DTC调速系统已成为高性能调速领域的热点研究课题。但速度观测存在算法复杂、低速精度受定子电阻变化影响严重等问题。近年来,在实现高性能感应电机无速度传感器DTC系统运行的研究中,人们广泛运用MRAS理论解决具有时变非线性特性的电机控制问题。在DTC速度参数观测的研究方面,本文在分析多种速度观测方法的基础上,运用MRAS理论提出了一种DTC交互式MRAS速度观测器。这种交互式MRAS速度观测方法,通过采用电机电压模型作为参考模型和电机电流模型作为可调模型构建了MRAS速度观测器,并将参考模型和可调模型进行实时互换的方法,在实现速度观测的同时在线辨识了定子电阻参数。仿真和实验结果表明:这种运用稳定性理论的交互式MRAS速度观测新方法,由于消去了定子电阻变化的影响,获得了稳定的、高性能的速度观测,改善了感应电机DTC系统低速时的动静态调速性能。
     传统的感应电机DTC系统采用磁链与转矩滞环式控制,在3600空间中仅用六个基本的电压空间矢量对电机磁链与转矩直接控制,因而存在固有转矩、磁链、电流脉动大和开关频率不固定等问题。针对传统控制方法存在开关频率不固定等问题,本文研究了细分的十二电压空间矢量的DTC-SVM控制方案。该方案将六个基本电压空间矢量增加到十二个并在SVM中合成任意大小和方向的控制电压矢量,使得DTC系统对定子磁链与转矩的控制更精细,有效地降低低速时的转矩脉动。为了进一步改善DTC系统磁链与转矩控制特性,本文将模糊PI自校正控制算法引入到磁链与转矩的调节控制环节。这种模糊PI自校正调节器,将磁链与转矩的误差和误差变化率作为模糊逻辑控制器的输入,由模糊逻辑规则实时在线调整PI调节器的控制参数,从而获得优良的磁链与转矩控制性能。仿真与实验研究表明:这种基于磁链与转矩模糊PI自校正控制的DTC-SVM控制方案,不仅提高了系统的鲁棒性和不同控制对象的适应性,而且保证了DTC系统具有良好的磁链与转矩跟踪控制动态品质,并使转矩脉动与电磁噪声得到了较好抑制。
     在Matlab7.8/Simulink仿真编程环境下,本文建立了传统的感应电机DTC系统仿真模型和改进的感应电机无速度传感器DTC系统仿真模型,并对这两种仿真模型进行了仿真研究。仿真研究结果验证了本文所提出的DTC参数辨识方法和磁链与转矩控制方法的正确性。通过采用美国Microchip公司的数字信号处理器dsPIC30F6010A和日本三菱公司的IPM智能功率模块PM50CLA120构建了感应电机无速度传感器DTC系统,并在搭建的实验平台上进行了实验研究。在软件设计方面,本文采用C语言和汇编语言混合编程的方法,成功地完成了DSP控制软件的研制工作,实现了对感应电机的高性能控制。大量的实验研究结果证明了本文所提出的感应电机无速度传感器DTC参数辨识方法和基于磁链与转矩模糊PI自校正控制方法的有效性和正确性。
In recent years, with the continuous development of intelligent control theory, microprocessor technology, power electronics devices and motor speed regulation control theory, the induction motor speed regulation control system is moving in the direction of high-performance and intelligent, of which the speed regulation control system of induction motor speed sensor-less DTC (Direct Torque Control, referred to as DTC) has grown into the most promising high-performance speed regulation control system.
     DTC is a high-performance control method of induction motor speed regulation after FOC, with its novel control thought, simple system structure, direct torque control means, the speed observer improving the system redundancy effectively, robustness, dynamic performance and good properties, receives widespread attention and has become a hot topic of induction motor speed regulation control research areas. There are still some key technologies to be resolved in induction motor speed sensor-less DTC system, such as identification of the motor stator flux and torque ripple increase at low speed, the motor parameters affected by environmental change. Therefore, this dissertation has finished the experimental and theoretic research on the control strategy of torque and flux of speed sensor-less DTC for induction motor and the identification method of stator flux, stator resistance, motor speed etc.
     But the open-loop identification does not have the adaptive ability to eliminate errors, by introducing a mean compensation algorithm into stator flux parameter closed-loop identifier, this dissertation put forward a new closed-loop stator flux estimator based on PI correction. Simulation and experimental results show that this closed-loop stator flux identification method not only preserves the advantages of the mean integrator compensation algorithm solving the problem of the accumulated error of integrator, but also the closed-loop stator flux estimator has a certain degree of correction ability to uncertain disturbance, improving the accuracy of the stator flux parameter identification.
     Identification of stator resistance parameter in the DTC, since the identification of the main parameters, such as the stator flux, speed and torque and so on, relies on the motor stator resistance of the control object model, When stator resistance of the DTC system influenced by environmental temperature changes, it will make the control performance of induction motor DTC falling, especially at low speed. In order to solve this problem effectively, this dissertation uses fuzzy logic theory to study the relationship between the change of stator resistance and the error of stator current amplitude, and proposed a fuzzy logic stator resistance parameter identifier based on the error of stator current amplitude. Simulation results show that this new parameter identification of stator resistance not only has the advantages of simple algorithm, good real-time control, robustness etc, but also improve the identification accuracy of the motor stator flux and speed etc, and improve the control performance of the speed and torque of DTC system both dynamic and static states.
     Speed sensor-less DTC speed regulation system of induction motor has become the hot research topic of high-performance speed regulation system. However, speed observer has the problems of complex algorithm, low-speed accuracy seriously affected by the change of stator resistance. In recent years, in the study of realizing the speed sensor-less DTC system running of high performance induction motor, people use MRAS theory widely to solve motor control problems with characteristics of nonlinear time-varied. In the DTC research of speed parameter observed, this dissertation analyses a kind of speed observation method, and presents a DTC interactive MRAS speed based on the MRAS theory. This interactive MRAS method of speed identification using motor voltage model as reference model and motor current mode as an adjustable model constructing MRAS speed observer exchanges adjustable model reference model and the method in real-time exchange, and in line adjusts the speed and the stator resistance parameters. Simulation and experimental results show that interactive new method of MRAS speed observer using the stability theory obtain a stable, high-speed identification and improves low-speed induction motor DTC system dynamic and static performance,and the elimination of the stator resistance changes.
     Conventional induction motor DTC system uses flux and torque hysterics control method, only six basic voltage space vectors in360°space are used in the motor flux and torque direct control, so many problems exists such as inherent torque, flux, current ripple and switching frequency is not fixed and so on. On account of traditional control method existing problems of not fixed switching frequency and so on, this dissertation studies on a twelve voltage space vector subdivision DTC-SVM control method, the control scheme increases stator voltage space vector from six to twelve, and synthesis of any size and direction of the control voltage vector in SVM, so it has more sophisticated voltage space vector and reduce the induction motor torque ripple at low speed effectively. To improve flux and torque control characteristics of DTC system, fuzzy PI self-tuning control is used in flux and torque control of DTC system. This fuzzy PI self-tuning controller uses flux and torque error and error change rate as input, PI controller parameters is in real-time online adjusted by fuzzy logic rules, so good flux and torque control performance are obtained. Simulation and experiment show this DTC-SVM control method based on flux and torque fuzzy PI self-tuning control not only improve the system robustness and adaptability of different control objects, but also ensure the DTC system has good flux and torque tracking control dynamic quality and cause torque pulse and electromagnetic noise suppressed better.
     Based on establishing the traditional induction motor DTC system simulation model and the improved induction motor speed sensor-less DTC system simulation model in Matlab7.8/Simulink simulation programming environment, this dissertation simulates the two models and simulation results show that the proposed DTC method of parameter identification and method of flux and torque control are correct. Speed sensor-less DTC induction motor system test platform is constructed by using dsPIC30F6010A produced by Microchip Corporation in USA and PM50CLA120produced by Mitsubishi Corporation in Japan and many experiments is done in this test platform. In software design, DSP control software successfully is developed by using mixed C and assembly language programming method, and achieves high performance control of induction motor. A large number of experimental results show that the proposed method of parameter identification of DTC induction motor speed sensor-less and fuzzy PI self-tuning control method based on flux and torque are effective and correct.
引文
[1]Depenbrock M. Direkte selbstregelung (DSR) fuhrhochdy-namische Drehfeld-antriebe mit Stromrichterspeisung ETZ Archiv,1985,7(7):211-218
    [2]Takahashi I, Noguchi T. A new quick response and high efficiency control strategy of an induction motor. IEEE Transactions on industry applications, 1986,22(5):820-827
    [3]胡崇岳.现代交流调速技术.北京:机械工业出版社,2001,256-308
    [4]许实章.电机学.北京:机械工业出版社,1998,1-3,48-104
    [5]陈伯时,陈敏逊.交流调速系统.北京:机械工业出版社,1998,1-40
    [6]Bose B K. High performance control and estimation in AC drives. In: Proceedings of the international conference on industrial electronics, control and instrumentation (IECON). USA,1997,2:377-385
    [7]Edward. Y.Y, Paresh.C.Sen. Decoupling control of induction motor drives. IEEE Transactions on industrial electronics,1988,35(2):253-262
    [8]Bimal K. Bose. Power electronic-an emerging technology. IEEE Transactions on industrial electronics,1989,36(3):403-412
    [9]Bin Wu. High-power converters and AC drivers. 北京:机械工业出版社,2008
    [10]陈坚.交流电机数学模型及调速系统.北京:国防工业出版社,1991
    [11]tohtani T, takada N, tanaka K. Vector control of induction motors without Shaft Encoder. IEEE Transactions on industry applications,1992,28(1):157-164
    [12]Shi K L, Chan T F, Wong Y K, et al, Speed estimation of an induction motor drive using an optimized extended Kalman filter, IEEE Transactions on industrial electronics,2002,49(1):124-133
    [13]Manfred Depenbrock, Christoph Evers. Model based speed identification for induction machines in the whole operating range. IEEE Transactions on industrial electronics,2006,53 (1):31-40
    [14]Marcetic D P, Vukosavic S N. Speed-sensorless AC drives with the rotor time constant parameter update. IEEE Transactions on industrial electronics,2007, 54(5):2618-2625
    [15]Isidori. Nonlinear control systems. an introduction:Springer-Verlag Press,1985, 320-343
    [16]Chiasson J. A new approach to dynamic feedback linearization control of an induction motor. IEEE Transactions automatic control,1998,43(3):391-397
    [17]Kwan C M, Lewis F L. Robust Back stepping Control of Induction Motors Using Neural Networks. IEEE Transactions on neural networks,2000,11(5): 1178-1187
    [18]Yemna Ben Salem, Lassaad Sbita. A nonlinear state feedback control for induction motors. In:IEEE International Conference.India,2006,2067-2072
    [19]Bimal K Bose交流传动调速系统.北京:中国铁道出版社,1986,1-23
    [20]Kreisselmeier G, Anderson B D O. Robust model reference adaptive control. IEEE Transactions on automatic control,1986,31(2):127-133
    [21]Narendra K S, Annaswamy A M. A new adaptive law for robust adaptation without persistent excitation. In:American Control Conference. American,1986, 1067-1072
    [22]Cirrincione M, Pucci M. An MRAS based sensorless high-performance induction motor drive with a predictive adaptive model. IEEE Transactions on industrial electronics,2005,52(2):532-551
    [23]Thomas Hessburg, Masayoshi Tomizukao. Model reference adaptive fuzzy logic control for vehicle guidance. In:Proceeding of the America Control Conference. Washington, June,1995,2287-2291
    [24]Comanescu M, Xu L. Sliding mode MRAS speed estimators for sensorless vector control of induction machine. IEEE Transactions on Industrial Electronics,2006,53(1):146-153.
    [25]Wang K, Chiasson J, Bodson M, et al. An online rotor time constant estimator for the induction machine. IEEE Transactions on Control System Technolgy, 2007,15(2):339-347
    [26]Yu-Chao Lin, Li-Chen Fu, Chin-Yu Tsai. Nonlinear sensorless indirect adaptive speed control of induction motor with unknown rotor resistance and load. In:Processing of control conference, San, Diego,california, June,1999, 2168-2172
    [27]John Cort'es-Romero, Alberto Luviano-Ju'arez, Hebertt Sira-Ram'(?)rez. Robust generalized PI sliding mode control for the induction motor. In:18th IEEE International Conference on Control Applications Part of 2009 IEEE Multi-conf-erence on Systems and Control Saint Petersburg, Russia,2009,1732-1737
    [28]李鹏波,胡德文.系统辨识基础.北京:中国水利水电出版社,2006,1-13
    [29]张成乾,张国强.系统辨识与参数估计.北京:机械工业出版社,1986,1-52
    [30]张洪钺,胡干耀.现代控制理论(第四册)一系统辨识.北京:北京航空学院 出版社,1987,1-38
    [31]Robert Babuska, Henk Verbruggen. Neuro-fuzzy methods for nonlinear system identification. In:Annual Review in control,Netherlands,2003,27:73-85
    [32]曹承志,鲁木平,王楠,等.基于小波模糊神经网络的DTC系统参数的辨识.电工技术学报,2004,19(6):18-22
    [33]Kristinn Kristinsson, Guy A. Dumont. System identification and control using genetic algorithms. IEEE Transactions on Systems, Man and cybernetics,1992, 22(5):1033-1046
    [34]胡刚,胡育文,许越,等.直接力矩控制系统的模糊在线观察器设计.电气传动,1997,27(1):21-25
    [35]Chatterjee D, Ganguli A K, Chakraborti R N. A Fuzzy-Logic based stator resistance compensated simplified speed sensorless vector control of induction motor in the low speed region. power electronics. In:International Symposium on Electrical Drives, Automation and Motion, Taormina,2006,979-983
    [36]Gang Feng. A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on fuzzy systems,2006,14(5):676-697
    [37]应浩.关于模糊控制理论与应用的若干问题.自动化学报,2001,27(4):591-593
    [38]谢振华,程江涛,耿昌茂.自适应模糊控制几个基本问题的研究进展.电光与控制,2005,20(1):18-24.
    [39]Kubota H, Matsuse K, Sunwoo H. Sensorless vector control scheme for induction motors based on a stator flux estimator with quadrant error compensation rule. IEEE Transactions on industry applications,2003,39(2): 492-503
    [40]Marko. Hinkkanen, Jorma Luomi. Parameter sensitivity of full-order flux observers for induction motors. IEEE Transactions on industry applications, 2003,39(4):1127-1135
    [41]Toufouti R, Meziane S, Benalla H. Direct torque control for induction motor using intelligent techniques. Journal of theoretical and applied information technology,2007,35-44
    [42]Bachir Abdelhadi, Azeddine Benoudjit, Nasreddine Nait-Said. Application of genetic algorithm with a novel adaptive scheme for the identification of induction machine parameters. IEEE Transactions On Energy Conversion,2005, 20(2):284-288
    [43]Vasudevan M, Arumgam R. High performance adaptive intelligent direct torque control schemes for induction motors. KMITL Science Technology Journal, 2005,5(3):559-579
    [44]Milan Zalman, Ivica Kuric. Direct torque and flux control of induction machine and fuzzy controller. Journal of Electrical Engineering,2005,56(9-10):278-280
    [45]Jia-Qiang Yang, Jin Huang. Direct torque control system for induction motors with fuzzy speed PI regulator. In:Proceedings of the fourth international conference on machine learning and cybernetics. Guangzhou,2005,778-783
    [46]Sobczuk D L. Application of ANN for control of PWM inverter fed induction motor drives:[dissertation]. Poland:Warsaw University of Technology,1999
    [47]程明,束亚刚,孔祥新.定子双馈电双凸极电机的模糊自适应PI控制.电机与控制学报,2008,12(6):691-695
    [48]陆华才,徐月同,杨伟民,等.永磁直线同步电机进给系统模糊PID控制.电工技术学报,2007,22(4):59-63
    [49]王立强,卢琴芬,叶云岳,等.城轨交通用直线感应电机模糊PI矢量控制.控制理论与应用,2009,26(7):734-738
    [50]MirI S, Elbuluk M. Fuzzy implementation of direct self control of induction machines. IEEE Transactions on industry applications,1994,30(3):729-735
    [51]Cerruto E, Consoli A, Raciti A. Fuzzy adaptive vector control of induction motor drives. IEEE Transactions on power electronics.1997,12(6):1028-1040
    [52]Tang Y F, Xu L Y. Vector control and fuzzy logic control of doubly fed variable speed drives with DSP implementation. IEEE Transactionson energy conversion, 1995,10(4):661-668
    [53]金海.三相异步电动机磁链观测器与参数辨识技术研究:[浙江大学博士学位论文].浙江:浙江大学电气工程学院,2006,2-8,38-41
    [54]李永东.交流电机数字控制系统.北京:机械工业出版社,2002,177-303
    [55]Uwe Baader, Manfred Depenbrock, Georg Gierse. Direct self control (DSC) of inverter-fed induction machine:A basis for speed control without speed measurement. IEEE Transactions on industry applications,1992,28(3):581-588
    [56]Liu Xing-qiao, Zhao DE-an, Sun Yu-kun, et al. Speed sensorless direct torque control system of induction motor. In:Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, P.R. China, June,2002, 2849-2853
    [57]汤蕴缪,张弈黄,范瑜.交流电机动态分析.北京:机械工业出版社,2005,350-382
    [58]Ramon Blasco Gimenez. High performance sensorless vector control of induction motor:[dissertation]. English:The university of Nottingham,1995, 27-47
    [59]Doncker D, Novotny R W, Pastirelli F, et al. Comparision of universal field oriented controllers in different reference frames. IEEE Transactions on power electronics,1995,10(2):205-213
    [60]冯垛生,曾岳南.无速度传感器矢量控制原理与实践.北京:机械工业出版社,2006,10-28
    [61]Depenbrock M. Direct self-control(DSC) of inverter-fed induction machine. IEEE Transactions on power electronics,1988,3(4):420-429
    [62]Xu X, Novotny D W. Implementation of direct stator flux orientation control on a versatile DSP based system. IEEE Transactions on industry applications,1991, 27(4):694-700
    [63]李夙.感应电动机直接转矩控制.北京:机械工业出版社,1998
    [64]韦立祥,刘丛伟,孙旭东,等.一种消除电压型磁链观测器中直流偏置误差的新方法.清华大学学报,2001,41(9):51-54
    [65]Holtz J, Quan J. Drift and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motor. IEEE Transactions on industry applications,2003,39(4):1052-1060
    [66]万宇宾,胡婵娟,万淑芸.基于电压模型的定子磁链观测器及参数设计方法.电气传动,2006,36(3):15-18.
    [67]Myoung-Ho Shin, Dong-Seok Hyun, Soon-Bong Cho, et al. An Improved stator flux estimation for speed sensorless stator flux orientation control of induction motors. IEEE Transactions on power electronics,2000,15(2):312-318
    [68]俞红祥,吕广强,纪延超.一种基于新型积分算法感应电机定子磁链估算方法的研究.电机与控制学报,2005,9(1):68-71.
    [69]Yang G, Chin T H. Adaptive speed identification scheme for a vector-controlled speed sensorless inverter-invertion motor drive. IEEE Transactions on industry applications,1993,29(4):820-825
    [70]佘致廷,胡超.基于直接转矩控制的定子磁链及速度辨识的研究.微计算机信息,2008,24(31):284-285,272
    [71]陈其工.具有连续输出值的高精度模糊电阻观察器的研究.电工技术学报,1999,14(4):10-13
    [72]Bim E. Fuzzy optimization for rotor constant identification of an indirect FOC induction motor drive. IEEE Transactions on industrial electronics,2001,48(6): 1293-1295
    [73]Brandstetter Pavel, Cajka Radim, Skuta Ondrej. Rotor time constant adaptation with ANN application Power Electronics and Applications. In:2007 European Conference,2007,1-10.
    [74]Bohtani T. A new method of torque control free from motor parameter variation in induction motor drives. In:IEEE Industry Applications Soc. Conf. Rec.,1986, 203-209
    [75]Mir S, Elbuluk M e, Zinger D S. PI and fuzzy estimators for tuning the stator resistance in direct torque control of induction machines. IEEE Transactions on power electronics,1998,13(2):279-287
    [76]Cabrera L A, Elbuluk M E, Husain I. Tuning the stator resistance of induction motors using artificial neural network. IEEE Transactions on power electronics, 1997,12(5):779-787
    [77]Zidani F F, Diallo D, Benbouzid M E H, et al. Direct torque control of induction motor with fuzzy stator resistance adaptation. IEEE Transactions on energy conversion,2006,2(21):619-621
    [78]Bose B K, Patel N R. Quasi-fuzzy estimation of stator resistance of induction motor. IEEE Transactions on power electronics,1998,13(3):401-409
    [79]Saejia M, Sangwongwanich S. Averaging analysis approach for stability analysis of speed-sensorless induction motor drives with stator resistance estimation. IEEE Transactions on industrial electronics,2006,53(1):162-177
    [80]Luenberger D G. Canonical forms for linear multivariable systems. IEEE Transactions on automatic control,1967, AC-12(3):290-293
    [81]Tae-Sung Kwon, Myoung-Ho Shin, Dong-Seok Hyun. Speed sensorless stator flux-oriented control of induction motor in the field weakening region using luenberger observer. IEEE Transactions on power electronics,2005,20(4): 864-869
    [82]Bose B K. Neural network applications in power electronics and motor drives-An introduction and perspective. IEEE Transactions on industrial electronics,2007,54(1):14-33
    [83]Barut M, Bogosyan S, Gokasan M. Speed-sensorless estimation for induction motors using extended Kalman filters. IEEE Transactions on industrial electronics,2007,54(1):272-280
    [84]Nishibata K, Ishida M, Doki S, et al, Fujitsuna M. Sensorless control method for ultra high speed drive of induction machine utilizing rotor slot harmonics. In: The Papers of Joint Technical Meeting on SPC and IEA. Japan,2006,81-84
    [85]Gao Q, Asher G, Sumner M. Sensorless position and speed control of induction motors using high-frequency injection and without offline precommissioning. IEEE Transactions on industrial electronics,2007,54(5):2474-2481
    [86]ID朗道.自适应控制模型参考法.北京:国防工业出版社,1985,52-80
    [87]Teresa Orlowska-Kowalska, Senior Member. Stator-current-based MRAS estimator for a wide range speed-sensorless induction motor drive. IEEE Transactions on industrial electronics,2010,57(4):1296-1308
    [88]Oualha, S.Feki, M.Benmessoud, et al. MRAS speed observer for direct torque control of sensorless induction motor drives sensitivity study. International Journal of Electrical and Power Engineering,2008,2(6):377-383
    [89]Rashed M, Stronac A. A stable back-EMF MRAS-based sensorless low speed induction motor drive insensitive to stator resistance variation. IEE Proceedings of Electric Power Applications,2004,151(6):685-693.
    [90]毛明平,陶生桂,袁登科,等.基于Matlab的无速度传感器直接转矩控制策略比较.同济大学学报,2002,30(11):1383-1387
    [91]Ide K, Ha J I, Sawamura M. A hybrid speed estimator of flux observer for induction motor drives. IEEE Transactions on industrial electronics,2006,53(1): 130-137
    [92]Arias A, Romeral J L, Aldabas E, Jayne M G. Fuzzy logic direct torque control. In:Proc of IEEE Int. Symp. Ind. Electron,2000,253-258
    [93]Yen Shin Lai, Juo-Chiun Lin. New hybrid fuzzy controller for direct torque control induction motor drives. IEEE Transactions on power electronics,2003, 18(5):1211-1219
    [94]Moghaddasian M, Nategh Sh, Kianinezhad R. A direct torque control (DTC) method for dual three phase induction motors using a fuzzy inference system. In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Iran,2008,1088-1092.
    [95]奚国华,胡卫华,喻寿益,等.异步电机直接转矩控制模糊DSVM控制策略.电机与控制学报,2007,11(5):435-439
    [96]Elbuluk M S, Precision torque control in inverter-fed induction machines using fuzzy logic. In:Proc of IEEE PESC'95, USA,1995,396-401.
    [97]Kang J, Sul S. New direct torque control of induction motor for minimum torque ripple and constant switching frequency. IEEE Transactions on industry applications,1999,35(5):1076-1082
    [98]Habetler T G, Profumo F. Direct torque control of inductionmachines using space vector modulation. IEEE Transactions on industry applications,1992, 28(5):1045-1052
    [99]Bird I G, Zelaya H. De La Parra. Fuzzy logic torque ripple reduction for DTC based ac drives. IEE Electron. Lett.,1997,33(17):1501-1502
    [100]Luis Romeral, Antoni Arias, Emiliano Aldabas, et al. Novel direct torque control (DTC) scheme with fuzzy adaptive torque-ripple reduction. IEEE Transactions on power electronics,2003,50(3):487-492.
    [101]Jafar Soltanil, Gholam Reza Arab Markadeh, N. R. Abjadi. A new adaptive direct torque control (DTC) scheme based-on SVM for adjustable speed sensorless induction motor drive. In:Proceeding of International Conference on Electrical Machines and Systems, Seoul, Korea,2007,Oct.8-11,497-502
    [102]Kyo-Beum Lee, Frede Blaabjerg. Sensorless DTC-SVM for induction motor driven by a matrix converter using a parameter estimation strategy. IEEE Transactions on industrial electronics,2008,55(2):512-521
    [103]Zhifeng Zhang, Renyuan Tang, Baodong Bai, et al. Novel direct torque control based on space vector modulation with adaptive stator flux observer for induction motors. IEEE Transactions on industrial electronics magnetics,2010, 46(8):3133-3136
    [104]薛定宇.基于Matlab/Simulink的系统仿真技术与应用.北京:清华大学出版社,2002.
    [105]陈桂明,张明照,等.应用Matlab的建模与仿真.北京:科学出版社,2001.
    [106]She Zhi-Ting, Yuan Jun-Bo, Zheng Yong, et al. Rotor speed and stator resistance identification of direct torque control for induction motor based on mutual MRAS. In:IEEE2010 International Conference on Electrical Engineering and Automatic Control (ICEEAC2010).Zibo,China,26-28,Nov,2010, (5):21-25
    [107]王晓明,王玲.电动机的DSP控制—TI公司DSP应用.北京:北京航空航天大学出版社,2005,120-126
    [108]谢宝昌,任永德.电机的DSP控制技术及其应用.北京:北京航空航天大学出版社,2005,11-229
    [109]佘致廷,陈文科,刘娟,等.一种新的全桥软开关变换器PWM实现方法.仪器仪表学报,2010,31(9):2010-2015
    [110]佘致廷,陈文科,潘岱灿,等.新型半桥高频软开关PWM DC-DC气保逆变焊机.仪器仪表学报,2010,31(11):2568-2573
    [111]Shady M G, Damian G, John W F. Sensorless control of induction motor drives at very low and zero speeds using neural network flux observers,2009,56(8): 3029-3039
    [112]Habibur R, Derdiyuk A, Guven M K, et al. A new current model flux observer for wide speed range sensorless control of an induction machine.IEEE Trans. Power Electron,2002,17(6):1041-1048
    [113]Vas P. Sensorless vector and direct torque control. Monographs in electrical and electronic engineering series 42, oxford university press, oxford,1998
    [114]Jehudi Maes, Jan A. Melkebeek. Speed sensorless direct torque control of induction motors using an adaptive flux observer.IEEE Trsaction on industrial application,2000,36(3):778-785.
    [115]Kuo Kai Shyu, Li Jen Shang, Hwang Zhi Chen, et al. Flux compensated direct torque control of induction motor drives for low speed operation.IEEE Trsaction on power electronics,2004,19(6):1608-1613.
    [116]Cristian Lascu, Gheorghe Daniel Andreescu.Sliding mode observer and improved integrator with DC-offset compensation for flux estimation in sensorless controlled induction motors. IEEE Trsaction on industrial electronics, 2006,53(3):785-794.
    [117]Hurst KD, Habetler T G, Griva G, et al. Zero speed tacholess IM torque control: simply a matter of stator voltage integration.IEEE Transactions on industry applications,1998,34(4):790-795.
    [118]Nik Rumzi Nik Idris.An improved stator flux estimation in steady state operation for direct torque control of induction machines.IEEE Trsaction on industrial application,2002,38(1):110-116
    [119]Bimal K Bose, Nitin R, et al, A Programmable Cascaded low-pass filter-based flux synthesis for a stator flux-oriented vector-controlled induction motor drive, IEEE Transactions on power electronics,1997,44(1):140-143.
    [120]Youn Ok Choi, Kang Yeon Lee, Kang Sung Seo, et al. Performance analysis of the DTC using a closed loop stator flux observer for induction motor in the low speed range.In:Proceedings of the Fifth International Conference on Electrical Machines and Systems, ICEMS 2001,2001, (1):89-93.
    [121]Jun Hu, Bin Wu. New integration algorithms for estimating motor flux over a wide speed range.IEEE Trsaction on power electronics,1998,13(5):969-977.
    [122]Salmas i F R, Najafabadi T A, Maralani P J. An adaptive flux observer with online estimation of DC-link voltage and rotor resistance for VSI based induction motors.IEEE Trsaction on power electronics,2010,25(5):1310-1319.
    [123]Garcia Soto G, Mendes E, Razek A. Reduced-order observers for rotor flux, rotor resistance and speed estimation for vector controlled induction motor drives using the extended Kalman filter technique. IEE Proceedings-electric power applications,1999,146(3):282-288
    [124]陈其工.一种新型的模糊神经网络电阻检测器.仪器仪表学报,1999,20(6):589-592
    [125]曹承志,曲红梅,路战红,等.利用模糊神经网络对定子电阻进行在线检测的研究.仪器仪表学报,2002,23(3):291-294
    [126]Mustafa AKTAS, H. Ibrahim OKUMUS. Stator resistance estimation using ANN in DTC IM drives. J Electronics Energy Competition Science,2010,18(2): 197-210
    [127]Emre OZKOP; Halil Ibrahim OKUMUS.Direct Torque Controlled Induction machine with MRAS based stator resistance estimation. In:4th International Conference On Electrical and Electronics Engineering, Bursa, Turkey,2005, 7-11
    [128]Yi Zeng, Yongdong Li, Hu Hu. Indirect torque control method of induction motor with stator resistance identification.In:The Fifth International Conference on Electronics and Power Drive Systems,2003, (1):445-449
    [129]Mohamed S. Zaky, Mahmoud M. Khater, Shokry S. Shokralla,et al. Wide-Speed-Range estimation with online parameter identification schemes of sensorless Induction Motor drives. IEEE Transactions on Industrial Electronics, 2009,56(5):1699-1707
    [130]Lin Liu, Songhua Shen, Shengping Liu, Qiang Liu, et al. Stator Resistance Proceeding of IEEE Intelligent Control and Automation, China,2006,1(2): 6411-6415
    [131]Tang L, Rahman M F. A novel PI stator resistance estimator for direct torque controlled Permanent Magnet Synchronous Machine drive. In:Electric Machines and Drives Conference,2003, (1):382-388
    [132]Byeong-Seok Lee and R. Krishnm. Adaptive stator resistance compensator for high performance direct torque controlled Induction Motor drives.In: Thirty-Third IAS Annual Meeting on Industry Applications,1998. St. Louis, MO,1998,1:423-430
    [133]Zhong L, Rahman M F, Lim KW, et al. A fuzzy observer for induction motor stator resistance for application in direct torque control. In:Power Electronics and Drive Systems,1997, (1):91-96
    [134]Sayeed A, Donald S. Zinger, Malik E. Elbuluk. Fuzzy controller for inverter fed Induction Machines. IEEE Transactions on Industry Applications,1997,30(1): 78-84
    [135]佘致廷,任三民,胡超.异步电机定子电阻模糊控制辨识器的研究.微计算机信息,2009,25(1):14-15,22
    [136]Bimal K.Bose, Modern power electronics and AC drivers. USA:Prentice Hall PTR,2002,311-321
    [137]Patricl L Jansen, Robert D. Lorenz. Transducerless position and velocity estimation in induction and salient AC machines. IEEE Transactions on industry applications,1995,31(2):240-247
    [138]佘致廷,肖岸文,孙炜等.基于MRAS理论的无速度传感器直接转矩控制调速系统.电工技术学报,2006,21(4):98-101,67
    [139]She Zhiting, Zheng Yong, Peng Yongjing. Rotor Speed Adaptive Identification of Direct Torque Control for Induction Motor. Advanced Materials Research, Trans Tech Publications, Switzerland,2010,139-141:1785-1788
    [140]Giuseppe S Buja, Marian P. Kazmierkowski. Direct torque control of PWM inverter-fed AC motors-A Survey. IEEE Transactions on industrial electronics, 2004,51(4):744-757
    [141]Srinivasa Y. Kishore Babu, G.Tulasi Ram Das. Improvement in direct torque control of induction motor using fuzzy logic duty ratio controller. ARPN Journal of Engineering and Applied Sciences,2010,5(4):68-74
    [142]Toufouti R, Meziane S, Benalla H. Direct torque control for induction motor using fuzzy logic. ACSE Journal,2006,6(2):19-26
    [143]Domenico Casadei, Francesco Profumo, Giovanni Serra, et al. FOC and DTC two viable schemes for induction motors torque control. IEEE Transaction on power electronics,2002,17(5):779-786
    [144]Xue X, Xu X, Habetler T G, etal. A low cost stator flux oriented voltage source variable speed drive, in Conf.Rec.IEEE-IAS Annu. Meeting,vol 1,1990, 410-415
    [145]Lai Y S, Hen J H C. A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction. IEEE Transactions Energy Conversion,2001,16(3):220-227
    [146]Domenico Casadei, Giovanni Serra, Angelo Tani, et al. Performance analysis of a speed sensorless induction motor drive based on a constant switching frequency DTC scheme. IEEE Transactions on industry applications,2003,39 (2):476-484
    [147]肖岸文,佘致廷.模糊控制技术在异步电机直接转矩控制中的应用.长沙交通学院学报,2005,21(2):50-54
    [148]Qiang Sun, Zhou, E. New self-tuning fuzzy PI control of a novel doubly salient permanent-magnet motor drive. IEEETransactions on Industrial Electronics, June 2006,53 (3):814-821.
    [149]Chitra V, Prabhakar R S. Induction motor speed control using fuzzy logic controller. In:World Academy of Science, Engineering and Technology,2006, 23:17-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700