用户名: 密码: 验证码:
低扬程立式泵装置优化水力设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水资源的时、空分布很不均衡。南水北调东线工程是解决北方地区水资源严重短缺的一项跨流域、跨省市的大型调水工程,其主体工程是泵站,泵装置是泵站的核心。随着我国城市化进程的加速,区域性经济的发展,围绕着城市水环境改善已建设或规划即将建设一批大型泵站。这些泵站的共同特点是扬程较低。
     立式轴流泵装置作为一种成熟的泵型已在数百座大型泵站中得到了广泛应用。与其它泵装置型式相比,立式轴流泵装置具有运行稳定、可靠性高、安装检修方便和投资省、维护费用少等优点,并且在设计、制造及运行、管理等方面已积累了丰富的经验。低扬程泵装置中的进、出水流道水力损失在其扬程中占有较大比重,扬程愈低,这种比重愈大;同时,由于立式泵装置中的水流方向要经过两次90°转向过程,低扬程泵站上、下游的水位差较小,使得进出水流道在立面方向的尺寸布置显得比较局促,导致流道水力损失比较大。这两个因素共同起作用,导致提高低扬程立式泵装置效率的困难较大。
     泵装置效率决定于水泵效率与流道效率,为提高低扬程立式泵装置的水力性能,本文围绕进、出水流道的优化水力设计及水泵选型所做的工作及主要结论包括:
     (1)为了定量研究大型泵装置导叶出口水流速度环量对出水流道水力性能的影响,提出了泵装置导叶出口断面水流的速度环量定量表示方法和平均角速度的实验测量方法,分别运用数值计算和模型试验的方法研究了导叶出口水流的剩余环量对虹吸式出水流道和直管式出水流道水力损失的影响。结果表明:导叶出口水流的环量对出水流道水力损失的影响较为明显,虹吸式出水流道和直管式出水流道最优环量时的水力损失计算值较零环量时的水力损失计算值分别小0.126m和0.180m;存在使得出水流道水力损失最小的最优环量,虹吸式和直管式出水流道的最优环量分别为0.97m2/s和1.31m2/s。
     (2)设计制作了不同片数的环量匀化器以改变导叶出口环量的匀化程度,运用模型试验的方法定量研究了不同轴流泵导叶出口环量匀化程度时的出水流道水力损失。结果表明:随着匀化器叶片片数的增加,流道水力损失的变动范围愈来愈小,说明匀化器的片数对导叶出口水流环量的分布有影响,同时也说明环量的分布对出水流道水力损失也有影响,但影响都较小;虹吸式出水流道、低驼峰式出水流道在匀化器叶片数12片时的水力损失与自然状态(叶片数为0片)时相差较小,分别为3.85%、3.73%,说明正常状态下的导叶出口水流的环量己接近于均匀分布。根据这一研究结果,在对出水流道正问题进行分析研究时,其进口的边界条件可预置一定用平均角速度表示的平均环量,平均角速度的大小可通过相关的模型试验测出。
     (3)讨论了降低nD值的低扬程泵装置水泵选型设计思路;从理论上推导了降低nD值与增径降速的一致关系;从低扬程泵装置的水泵选型、能量性能及汽蚀性能等3个方面讨论了降低nD值对大型低扬程泵装置水力性能的影响;同时还讨论了泵装置汽蚀性能的考核指标和增径降速对流道控制尺寸及设备投资的影响等问题。结果表明:在设计流量一定的条件下,适当降低nD值可在较低扬程下选用到更为优秀的轴流泵水力模型、同时可提高低扬程泵装置的能量性能、改善泵装置的汽蚀性能;增径降速对流道控制尺寸及机组中心距影响不大,对设备投资的影响需进一步综合比较分析。
     (4)采用三维湍流数值计算方法分别研究了中隔墩对肘形进水流道、虹吸式出水流道和直管式出水流道水力性能的影响,并采用流道模型试验的方法对数值计算结果进行了验证。结果表明:模型试验中所观察到的进、出水流道内的流态与数值计算的结果基本相同;中隔墩对肘形进水流道内的水流流态基本无影响,设置中隔墩会使设计流量时的肘形进水流道水力损失数值计算结果增加0.005m;当进水流道进口水流偏斜时,中隔墩对改善水泵入流条件是有利的;由于水泵导叶出口水流具有环量,出水流道内的流态存在偏流现象,出水流道的水力性能受中隔墩的影响较为明显;设置中隔墩会使设计流量时的虹吸式和直管式两种出水流道水力损失数值计算结果分别增加0.024m和0.033m;设计流量时,肘形进水流道、虹吸出水流道和直管出水流道水力损失的模型试验结果分别增加了0.006m、0.023m和0.023m。因此,中隔墩无益于进出水流道的水力性能,在结构允许的条件下大型泵站的进出水流道可取消中隔墩。
     (5)长沟站和邓楼站的平均扬程和设计扬程都低于4m,这两座泵站均采用了立式轴流泵装置。为了在低扬程条件下实现较好的水力性能,采用三维湍流数值计算方法分别对长沟站和邓楼站的进、出水流道进行了优化水力设计,用模型试验的方法对优化结果进行了验证:在水泵模型同台测试试验数据和流道优化水力设计基础上对泵装置效率进行了预测,即:泵装置效率由泵段效率和流道效率的乘积得到,其中,泵装置中的泵段效率由同台测试结果修正后得到,流道效率由流道水力损失及泵装置扬程计算得到。进行了泵装置模型试验。研究结果表明:经过优化水力设计的长沟站和邓楼站立式泵装置在4m以下的低扬程条件下得到了优异的水力性能,设计扬程和平均扬程工况点的泵装置效率均达到78%、临界空化余量均小于6m;立式轴流泵装置在低扬程泵站同样具有广阔的应用前景。
The water resources in our country are distributed very unevenly in both time and space. The East Route Project of South to North Water Diversion Project is an inter-basin and across province large water diversion project to resolve the serious shortage of water resources of the north areas in China, the main project of which is pumping station, and the pump system is the core of the pumping station. With the accelerating of China's urbanization, developing of regional economic, a number of large pumping stations will be or plan to be built to improve the water enviorment of the city. The common feature of these pumping stations is lower head.
     Vertical axial-flow pump system, as a mature type, has been applied widely by hundreds of large pumping stations. Compared with other types of pump system, it has many advantages, such as running stably, high dependability, installing and maintaining easily, low capital investment, less maintenance charge, etc. Furthermore, a wealth of experience has been accumulated in designing, manufacturing, running, managing, etc. The hydraulic losses of the inlet and outlet conduits for a low head pump system account for a larger proportion in its head, the lower the head, the larger the proportion. At the same time, the flow in a vertical pump need to turn90degrees twice, while the water-head between the upper and lower reaches for a low head pumping station is smaller. This leads to the arrangement of inlet and outlet conduits in elevation of the direction more haste, which leads to a bigger conduit hydraulic loss. So, it is difficult to improve the pumping system efficiency for a low head vertical pumping station when the two factors act together.
     The pump system efficiency depends on pump efficiency and conduit efficiency. To increase the hydraulic performance of low head vertical pump system, focus on the optimal hydraulic design of inlet and outlet conduit and pump type selection, the main works and main conclusions including:
     (1) In order to study influence of the velocity circulation at the guide vane outlet on the hydraulic performance of outlet conduit for a large pump system quantitatively, it was put forward that the method to calculate velocity circulation and the method to measure the average angular velocity for the flow at the guide vane outlet of the pump system. The methods of both numerical simulation and model test were applied to research the circulation influence of circulation on the hydraulic losses for both siphon and straight outlet conduits. The results indicate that the hydraulic losses of the outlet conduits were obviously influenced by the circulation at the guide vane outlet, the hydraulic losses of the siphon and straight conduit under the condition of the optimal circulation were0.126m and0.180m lower than those under the condition of zero circulation, respectively; there is optimal circulation for the hydraulic loss of the outlet conduit to be minimized, the optimal circulations for siphon and straight outlet conduit are0.97m2/s and1.31m2/s respectively. The research results above could be helpful to optimal hydraulic design both for outlet conduit and guide vane of a axial-flow pump.
     (2) The uniformity devices with different vane numbers are designed to change the uniformity degree of velocity circulation at the guide vane, the model test method is applied to study the influence of the distributing of velocity circulation at the guide vane outlet on the hydraulic loss of outlet conduit for axial-flow pump quantitatively. The results indicate that with the vane number increasing, the changing range of hydraulic loss for outlet conduit becomes smaller and smaller. This account for that the vane number has effect on the distributing of flow velocity circulation and the distributing of flow velocity circulation has effect on the outlet conduit hydraulic loss, the influence degree are both small. The hydraulic loss discrepancy between uniformity device with12vanes and natural state (uniformity device with0vanes) for siphon and low-hump outlet conduits are3.85%and3.73%respectively. This account for that the flow velocity circulation obtained under normal state is close to even distribution. According to the research result, it is feasible to preset an average circulation at the inlet of outlet conduit when numerically simulating the outlet conduit, and the average circulation could be expressed by an average angular velocity. The angular speed could be measured by relevant model test.
     (3) In order to improve the hydraulic performance of a low head pump system, the design thinking of reducing nD value for the pump system was discussed. The consistency between reducing nD value and increasing impeller diameter while reducing pump speed was derived. The influence of reducing nD value on pump type selection, energy performance and cavitation performance for the pump system was discussed. Meanwhile, examination index for.the cavitation performance of the pump system and the influence of increasing impeller diameter while reducing pump speed on conduit control size and equipment investment was also discussed. The research results indicate that under the condition of a certain design discharge to decrease nD value suitably is beneficial for pump type selection and improvement of both energy and cavitation performance for the pump system. Therefore it is more suitable for a large low head pumping station with long running operation time to adopt a lower nD value.
     (4) The method of3D turbulent numerical calculation is applied to study the influence of the middle division pier on hydraulic performance for elbow inlet conduit, siphon outlet conduit and straight outlet conduit respectively, and the calculation results were verified by conduit model experiments. The research results indicate that the flow patterns in both inlet and outlet conduits observed by the model test are consistent with those by the numerical simulation method; the middle division pier almost has no influence on the flow patterns for the elbow inlet conduit, and the hydraulic losses obtained by numerical calculation will be increased by0.005m under the condition of design discharge; the middle pier is helpful to improve the flow patterns at the outlet of inlet conduit when the flow direction is defluxion at the inlet; due to the flow circulation at the outlet of the pump guide vane, the flow patterns in the outlet conduit are obviously asymmetrical and easily affected by the middle division pier, as a result, the hydraulic losses obtained by numerical calculation will be increased by0.024m and0.033m respectively under the condition of design discharge. The model test results are0.006m,0.023m and0.023m for elbow inlet conduit, siphon outlet conduit and straight outlet conduit respectively, under the condition of design discharge. Therefore, the middle division pier is not conducive to the hydraulic performance of the inlet and outlet conduits. The middle division pier for a large pumping station with low head could be cancelled if its structural design condition may be satisfied.
     (5) The design head and average head of Changgou and Denglou pumping stations are both lower than4m, the vertical pump system has been adopted by the two pumping stations. To obtain better hydraulic performance under the condition of low head, numerical simulation method is applied to optimal hydraulic design the inlet and outlet conduits for the two pumping stations. The conduit model test method was applied to verify the optimal result. The pump system efficiency was forecasted based on the test data for pump models on the same test bed and research results of the optimum hydraulic design for conduits. The pump system efficiency may be obtained by multiplying pump segment efficiency with conduit efficiency, where the pump segment efficiency in the pump system may be modified according to the results obtained through the pump model tests on the same test bed, and the conduit efficiency may be calculated according to the conduit hydraulic loss and pump system head. The model test of pump system was carried out. The research results indicate that the excellent hydraulic performance are obtained for the vertical pump systems of Changgou and Denglou pumping station under the condition of low head of less than4m. The efficiencies of the two pump systems reach78%and the NPSHc are lower than6m at both design head and average head working points. The vertical pump system also has a wide application prospect in low head pumping stations.
引文
[1]刘国纬.关于中国南水北调的思考[J].水科学进展,2000(3):345-350
    [2]黄红虎,谢伟东,张娟.南水北调东线工程简介[J].能源研究与利用,2004,4:28-30
    [3]沈继华,张少华,马东亮,等.南水北调东线第一期工程泵站设计[J].水利规划与设计,2005,1:40-44
    [4]严登丰.泵站工程[M].北京:中国水利水电出版社,2005
    [5]陆林广,张仁田.泵站进水流道优化水力设计[M].北京:中国水利水电出版社,1997
    [6]皮积瑞,丘传忻,余碧辉.大型立式轴流泵站进出水流道形式的实验研究[J].水泵技术,1982,(3):1-7
    [7]中华人民共和国国家标准.泵站设计规范(GB 50265-2010)[S].北京:中国计划出版社,2010:30-31
    [8]严登丰.泵站过流设施与截流闭锁装置[M].北京:中国水利水电出版社,2005:174-175
    [9]皮积瑞.农田水利与泵站工程[M].北京:水利电力出版社,1990:198-200
    [10]伍杰,秦钟建,陆林广,等.低扬程泵站直管式出水流道优化设计计算及模型试验研究[J].南水北调及水利科技,2005,3(6):16-18
    [11]张仁田.南水北调工程中大型泵站泵型选择的若干问题[J].水力发电学报,2003,22(4):119-127
    [12]张仁田.贯流式机组在南水北调工程中的应用研究[J].排灌机械,2003,22(5):1-6
    [13]谢伟东,卜舸,魏军.南水北调东线第一期工程江苏段低扬程泵站的机组选型研究[J].南水北调与水利科技,2005,3(1):4-7
    [14]罗洪.南水北调东线工程大型低扬程轴伸式轴流泵开发研究综述[J].水力机械,1995(2):10~21
    [15]陆林广,黄金军,陈坚,等.灯泡贯流泵装置三维流动数值模拟[J].排灌机械,2007,25(3):15-20
    [16]魏光新,张爱霞,孟凡有.南水北调东线工程贯流泵机组选型与结构初探[J].水泵技术,2005,2:5-7
    [17]郑源,张德虎,刘益民,等.贯流泵装置能量特性试验研究[J].流体机械,2003,31(2):1-4
    [18]岳永起,高峰,徐瑞兰.南水北调二级坝泵站泵型研究[J].排灌机械,2004,22(5):15-16
    [19]孙洪斌,鲁靖华,郑源,等.淮安三站大型贯流机组运行存在问题及分析[J].水泵技术,2007,5:36-40
    [20]谢伟东,蒋小欣,刘铭峰,等.竖井式贯流泵装置设计[J].排灌机械,2005,23(1): 10-12
    [21]陈松山,葛强,严登丰,等.大型泵站竖井贯流泵装置能量特性试验[J].中国农村水利水电,2006,3:54-56
    [22]陈容新,陈建良,易锡玲,等.竖井双向贯流泵站机组设备选型设计与研究[J].中国农村水利水电,2007,7:69-71
    [23]陈阿萍.卧式前轴伸泵装置的数值模拟及模型试验研究[D].扬州:扬州大学,2007
    [24]杨洪群.卧(斜)式水泵水导轴承存在的问题及其选型[J].水利水电科技进展2004(1):57-59
    [25]高盘林.南水北调与斜式轴流泵[J].通用机械,2003(2):51-53
    [26]阮复兴,许跃华.大型低扬程轴流泵的述评[J].排灌机械,2002(2):13-14
    [27]汤方平,刘超,成立,等.低扬程水泵选型新方法[J].水利水电科技进展,2002(6):41-43
    [28]鄢碧鹏,汤方平,刘超.水泵选型方法的研究[J].扬州大学学报(自然科学版),1999,2(3):59-61
    [29]黄金军.叶轮直径对低扬程立式轴流泵装置水力性能的影响[D].扬州:扬州大学,2008
    [30]刘家春,张子贤,张慕飞,等.轴流泵站经济运行方案的确定[J].排灌机械,2006,6:20-23
    [31]关醒凡,商明华.以南水北调工程为鉴提高低扬程泵站的技术水平[J].通用机械,2010,3:62-65
    [32]王业明,魏海.泵站进水流道三维造型系统的研究[J].扬州大学学报,2000,3(1):58-61
    [33]陆林广,刘成云,陈玉明.泵站进水流道的两种基本流态[J].水泵技术,1997,4:25-28
    [34]陆林广.泵站进水流道设计理论的新进展[J].河海大学学报,2001,29(1):40-45
    [35]陆林广,冷豫,吴开平,等.泵站进水流道内部流态模型试验方法研究[J].排灌机械,2005,23(3):17-19,49
    [36]陆林广,周济人.泵站进水流道三维紊流数值模拟及水力优化设计[J].水利学报,1995,12(12):67-75
    [37]陆林广,冯汉民.大型斜式轴流泵站进水流道的优化设计[J].江苏农学院学报,1990,3:63-69
    [38]Lu Linguang, et al. The finite element solution of quasi 3-Dcross problems for inlet passage of a large pumping station[C]. The 3rd Japan-China Joint Conference on Fluid machinery Osaka April 23-25,1990, P.11-123
    [39]Lu Linguang, etal. Optimum hydraulic design for inlet passage of large pumping station[C]. International Conference on Pumps and Systems,19-21 May 1992 Beijing, China, P.572
    [40]刘为民.泵站进水流道对水泵性能影响的数值模拟研究[D].扬州:扬州大学,2005
    [41]成立,刘超,周济人,等.大型立式泵站簸箕型进水流道三维紊流数值模拟[J].水力发电学报,2004,23(4):65-68
    [42]成立,刘超,周济人,等.大型立式泵站双向进水流道三维紊流数值模拟[J].农业机械学报,2004,35(3):61-64
    [43]成立,刘超,谢伟东,等.大型泵站肘形弯管进水流道数值优化研究[J].排灌机械,2002,20(6):19-22
    [44]朱红耕,袁寿其.大型泵站肘形进水流道三维紊流仿真计算[J].中国农村水利水电,2005,4:42-43,48
    [45]朱红耕,袁寿其,刘厚林,等.肘形进水流道对立式轴流泵水力性能影响的数值模拟[J].农业工程学报,2006,22(2):6-9
    [46]陈松山,葛强,严登丰,等.泵站竖井进水流道数值模拟与装置特性试验[J].农业机械学报,2006,37(10):58-61
    [47]陈松山,周正富,潘光星,等.泵站簸箕型进水流道水力特性试验研究及数值模拟[J].扬州大学学报,2006,9(4):73-77
    [48]郑亚军,王凯,雷兴春,等.基于RNG湍流模型的泵站进水流道三维数值模拟[J].水电能源科学,2008,26(6):123-125
    [49]陈松山,周正富,屈磊飞,等.泵站箱涵式出水流道三维湍流数值分析[J].江苏大学学报(自然科学板),2005,26(6):468-471
    [50]何钟宁,陈松山,周正富,等.泵站箱涵式出水流道三维湍流数值模拟[J].扬州大学学报(自然科学版),2007,10(3):69-73
    [51]果东彦,陆林广.基于RNG模型的虹吸式出水流道三维紊流数值模拟[J].南京工程学院学报(自然科学版),2008,6(2):22-25
    [52]朱红耕,袁寿其,刘厚林,等.大型泵站虹吸式出水流道三维紊流数值计算[J].扬州大学学报(自然科学版),2005,8(2):74-78
    [53]朱红耕,袁寿其,施卫东,等.大型泵站虹吸式出水流道水力特性分析[J].中国农村水利水电,2005,7:71-74
    [54]朱红耕.虹吸式出水流道内流数值计算与水力设计优化[J].山东理工大学学报,2006,1:24-27
    [55]成立,刘超,周济人,等.基于RNG湍流模型的双向泵站出水流道流动计算[J].水科学进展,2004,15(1):109-112
    [56]刘小龙,施卫东,潘中永,等.泵站出水流道三维不可压缩湍流流场数值模拟[J].中国农村水利水电,2003,6:25-27
    [57]钱静仁.大型轴流泵箱室式(钟型)进水流道的研究[J].河海大学学报(自然科学版),1980,8(4):86-94
    [58]钱静仁.轴流式水泵进口水流流态的研究[J].排灌机械,1981,5(3):8-12
    [59]钱义达,严登丰,刘超,等.泵站开敞式进水流道试验研究[J].江苏农学院学报,1989,10(2):47-52
    [60]陈松山,何钟宁,屈磊飞,等.泵站钟型出水流道水力特性试验及内流场分析[J].水泵技术,2006,3:37-40
    [61]陈松山,葛强,杨国平,等.箱涵式进水泵站喇叭管悬空高度的试验研究[J].扬州大学学报,2004,7(3):59-62
    [62]李大亮.低扬程泵装置性能的决定因素[J].排灌机械,1997,15(1):12-15.
    [63]陆林广,刘成云,陈玉明.进水流道对轴流泵装置水力性能的影响[J].水泵技术,1997,3:25-26
    [64]陆林广,祝婕,冷豫,等.泵站进水流道模型水力损失的测试[J].排灌机械,2005,23(4):14-17
    [65]陆林广,吴昌新,纪建中,等.灯泡贯流泵流道模型水力损失的测试[J].南水北调与水利科技,2007,5(1):82-84
    [66]汤方平,周济人.低扬程泵装置性能的决定因素[J].排灌机械,1997,1:12-15
    [67]汤方平,袁家博,周济人.轴流泵站进出水流道水力损失的试验研究[J].排灌机械,1995,13(3):13-14
    [68]陆林广,吴开平,冷豫,等.泵站出水流道模型水力损失的测试[J].排灌机械,2005,23(5):23-26
    [69]陆林广,陈阿萍,黄金军,等.低扬程立式轴流泵出水流道基本流态及水力性能的比较[J].南水北调与水利科技,2007,5(2):72-74
    [70]陆林广,杲东彦,祝婕.大型泵站虹吸式出水流道优化水力设计[J].农业机械学报,2005,36(4):60-63
    [71]陆林广,吴开平,冷豫,等.大型低扬程泵站直管式出水流道优化水力设计[J].农业机械学报,2007,38(8):196-198
    [72]陆林广,刘荣华,梁金栋,等.虹吸式出水流道与直管式出水流道的比较[J].南水北调与水利科技,2010,8(1):91-94
    [73]A.A.洛马金.离心泵与轴流泵[M].北京:机械工业出版社,1978
    [74]A.H.格梁科.叶片泵[M].北京:国防工业出版社,1978
    [75]关醒凡,郭鹏,刘厚林,等.大型轴流泵汽蚀与选型的关系[J].通用机械,2002,11: 32-34
    [76]储训.大中型泵站汽蚀破坏原因探讨[J].水泵技术,1994,4:40-45,13
    [77]储训.大中型泵站汽蚀破坏调研分析[J].水泵技术,1994,4:33-39,48
    [78]储训,钱钧,邵正荣.南水北调东线工程现代化大型泵站的设计与研究[J].水泵技术,2003,2:36-40,35
    [79]杜选震,储训,杨淮.南水北调东线工程大型泵站设计研究[J].水利水电科技进展,2003,23(5):38-40
    [80]杜选震,储训,杨淮.南水北调东线大型泵站设计与研究[J].水利规划与设计,2003,1:47-49
    [81]何希杰,段志荣,王丽梅,等.轴流泵汽蚀性能与nD值的研究[J].通用机械,2003,1:25-27
    [82]颜红勤.梅梁湖泵站竖井贯流泵装置主要参数的确定[J].水利水电科技进展,2005,25(6):91-94
    [83]Durmus Kaya. Experimental study on regaining the tangential velocity energy of axial flow pump[J]. Energy Conversion and Management,44 (2003):1817-1829
    [84]仇宝云,袁伟声.轴流泵出水流道水力损失分析与无出流环量后导叶设计[J].水利学报,1993,4:70-75
    [85]仇宝云,刘超,袁伟声.大型水泵轴向后导叶叶片出口角对出水流道性能的影响[J].机械工程学报,2000,7:74-77
    [86]程良骏.水轮机[M].北京:机械工业出版社,1981
    [87]Qiu Baoyun, Wan Yong, Yan Kuanlin. Analysis of axial-flow pump discharge flow and its influence on measurement of head and hydraulic losses[C]. In:Proc of second international Conference on Pumps and fans. Tsinghua University,1995:613-618
    [88]仇宝云.轴流泵出口环量及其对泵装置效率影响的研究[D].扬州:江苏农学院,1989
    [89]仇宝云,冯晓莉,黄季艳.立式轴流泵等圆出水管内流场试验[J].排灌机械,2008,26(3):1-5
    [90]仇宝云,袁伟声,刘超.轴流泵出口能量分布特性与测定[J].农业机械学报,1994,25(4):44-48
    [91]汤方平,周济人,鄢碧朋.轴流泵后导叶回收能量分析[J].水泵技术,1995,3:19-22
    [92]周艳霞,徐海峰.论导叶对泵段性能的影响[J].水利电力机械,2007,9:28-29
    [93]李龙,王泽,胡荣霞等.双向贯流泵装置水力性能的数值分析[J].农业机械学报,2007,38(1)76-79
    [94]赵泽民,丁佳英,谷红兵.导叶对轴流泵负荷的影响[J].科技情报开发与经济,2003,7:107-108
    [95]蔡金来.轴流泵出口环量对出水流道损失影响的数值模拟研究[D].扬州:扬州大学.2009
    [96]仇宝云,冯晓莉,袁寿其,等.大型泵站双孔出水流道偏流分析[J].水力发电学报,2005,24(6):110-114,120
    [97]L. Lu and R. Booij.1994:Numerical determination of a hydraulically optimized suction box of a large pumping station[C]. IAHR Symposium, Beijing China
    [98]Li Yaojun, Wang Fujun. Numerical investigation of performance of an axial-flow pump with inducer[J]. Journal of Hydrodynamics (Ser. B) [J].2007,19 (6):705-711
    [99]Gao Hong, Lin Wanlai, Du Zhaohui. Numerical flow and performance analysis of a water-jet axial flow pump[J]. Ocean Engineering, doi:10.1016/j. oceaneng.2008.08.001
    [100]刘小龙,施卫东,潘中永等.泵站出水流道三维不可压缩湍流流场数值模拟[J].中国农村水利水电,2003,6:25-28
    [101]朱红耕,骆国强.隔墩对虹吸式出水流道水力损失影响的数值模拟[J].灌溉排水学报,2004,23(3B):170-172
    [102]朱红耕,袁寿其,刘厚林等.大型泵站虹吸式出水流道三维紊流数值计算[J].扬州大学学报(自然科学版),2005,8(2):74-78
    [103]朱红耕.非设计工况下虹吸式出水流道内流数值分析[J].水力发电学报,2006,25(6):139-144,148
    [104]陈松山,何钟宁,周正富,等.泵站钟型出水流道水力特性试验及内流场分析[J].水泵技术,2006,3:37-39,44
    [105]Kitano Majidi. Numerical study of unsteady flow in a centrifugal pump[J]. Journal of Turbomachinery,2005,127 (4):363-371
    [106]陈松山,葛强,严登丰等.低扬程泵站进出水流道匹配与装置特性试验[J].中国农村水利水电,2005,4:39-41
    [107]朱红耕,袁寿其,刘厚林等.大型泵站虹吸式出水流道三维紊流数值计算[J].扬州大学学报(自然科学版),2005,8(2):74-78
    [108]成立,刘超,周济人等.大型立式泵站双向进水流道三维紊流数值模拟[J].农业机械学报2004,35(3):61-64
    [109]Wang Fujun, LI Yaojun, Cong Guohui, etal. CFD simulation of 3D flow in large-bore axial-flow pump with half-elbow suction sump[J]. Journal of Hydrodynamics. Ser. B,2006, 18 (2):243-247
    [110]刘为民,刘超.泵站进水流道对泵性能影响的研究[J].江苏科技大学学报(自然科学版),2007,21(2):75-79
    [111]Dai Jiang, Wu Yulin, Cao Shuliang. Study on flows through centrifugal pump impeller by turbulent simulation[J]. Journal of Hydrodynamics, Ser. B,1997,9(1):11-23
    [112]任静,吴玉林,杨建明等.水力机械叶轮内的CFD分析及优化设计[J].工程热物理学报,2000,21(5):315-320
    [113]徐宇,唐学林,吴玉林.水泵水轮机叶轮内水泵工况紊流分析[J].水力发电学报,2000,19(3):74-83
    [114]Chen Hongxun. Research on turbulent flow within the vortex pump[J]. Journal of Hydrodynamics, Ser. B,2004,16 (6):701-707
    [115]齐学义.流体机械设计理论与方法[M].北京:中国水利水电出版社,2008:2-4
    [116]杨军虎,张炜,王春龙等.潜水轴流泵全流道三维湍流数值模拟及性能预估[J].排灌机械,2006,26(4):5-9
    [117]李庆刚,宋文武.ZWX系列轴流泵水力设计与流动模拟[J].水泵技术,2008,1:16-19
    [118]Shyy W, Braaten E. Three-dimensional analysis of the flow in curved hydraulic turbine draft tube[J]. In:Jnm Meth in Fluid,1986,6:861-882
    [119]Vu TC, Shyy W. Navier-stokes flow analysis for hydraulic turbine draft tubes[J]. ASME J Fluids Engineering,1990, Vol:112,199-204
    [120]Vu T C, Shyy W. A comparative study of three dimensional viscous flows in semi and full spiral casings [J]. In:IAHR Symposium Belgrade, Yugoslavia.1990,12:1-12
    [121]Song C C S. He J M and Chen X Y. Calculation of turbulence flow through afraucis turbine runner and an elbow draft tube[J]. In:Proceedings of international Power Generation Conference San Diego CA:ASME,1991
    [123]Ventikeos Y. Modeling complex draft-tube flows using near-wall turbulence closures hydraulic machinery and cavititation[J]. Netherlands:Kluwer Academic publisher,1996, 140-149
    [124]Sabourin M et al. From components to complete turbine numerical simulation hydraulic machinery and cavitiation[M]. Netherlands:Kluwer Academic Publisher,1996,248-225
    [125]Ruprecht A et al. Numerical analysis of three-dimensional flow through turbine spiral case, stay vanes and wicket Gates[C]. In:Proceeding of ⅩⅦ IAHR Symposium section Hydraulic Machinery and cavitation. Beijing:1994,71-82
    [126]G S Constantinescu and V C Patel. Numerical model for simulation of pump-intake flow and vortices [J]. Journal of Hydraulic Engineering. Vol:124, Issue:2, February,1998, 123-124
    [127]Hermod Brekke. State of the art in turbine design [J]. ⅩⅩⅨ, IAHR,2001. Beijing, China
    [128]Maji P K and Biswas G. Three-dimensional analysis of flow in the spiral casing of a reaction turbine using a differently weighted Petrov Galerkin method[J]. Computer Methods in Applied Mechanics and Engineering, Issue:1-2, Decemberl,1998,167-190
    [129]杨建明,刘文俊,吴玉林.用大涡模拟方法计算尾水管内非定常周期性湍流[J].水利学报,2001,18(8):79-84
    [130]Robert Rey, Ricardo Noguera. Numerical turbulent simulation of the two-phase flow (liquid/gas) through a cascade of an axial pump[J]. Journal of Fluids Engineering,2002, 6:371-376
    [131]Yu. A. Landau and G. T. Zavalinlch. Features of low-head pumping stations with horizontal-shaft sets[J]. Power Technology and Engineering (formerly Hydrotechnical Construction),1975,5:513-515
    [132]Launder B E, Spalding D B. The numerical calculation of turbulence flows[J]. Computer Methods in Applied Mechanics and Engineering,1974,3:269-289
    [133]J. Blazek. Computational fluid dynamics:Principles and applications (Second Edition) [M],2005:227-270
    [134]Rodi W. Turbulence models and their application in hydraulics experimental and mathematical fluid dynamics[M]. Delft:IAHR Section on Fundamentals of Division II,1980: 44-46
    [135]诸葛伟林,刘光临等.弯肘型尾水管非定常涡旋流动数值模拟[J].水动力学研究与进展,A辑,2003,18(2):164-167
    [136]郭鹏程,罗兴,郑小波等.混流式水轮机内三维定常湍流数值研究[J].水动力学研究与进展,A辑,2006,21(2):181-189
    [137]R. Friedrich et al. Direct numerical simulation of incompressible turbulent flows[J]. Computers & Fluids, Volume 30, Issue 5, June 2001:555-579
    [138]Thakker A, Dhanasekaran T S. Experimental and computational analysis on guide vane losses of impulse turbine for wave energy conversion[J]. Renewable Energy,2005,30(9): 1359-1372
    [139]Matahel Ansar, Tatsuaki Nakato. Experimental study of 3D oump-intake flows with and without cross flow. Journal of Hydraulic Engineering [J].2001 (10):825-834
    [140]Anagnostopoulos JS. A fast numerical method for flow analysis and blade design in centrifugal pump impellers. Computers & Fluids[J].2008 (2):1-6
    [141]Shao-Yi Hsia, Shih-Ming Chiu, Jyin-Wen Cheng. Sound field analysis and simulation for fluid machines. Advances in Engineering Software[J].2009 (2):15-22
    [142]丘传忻.泵站[M].北京:中国水利水电出版社,2003:23-27
    [143]张仁田,张平易,阎文立.大型泵站系统性能参数的换算方法[J].农业机械学报,1999,30(2):49-53
    [144]潘光星,何萍,陈松山,等.泵段与泵装置能量特性曲线关系探讨[J].扬州大学学报(自然科学版),2007,10(4):75-78
    [145]田家山,仲付维.国内外大型排溉泵站的建设动态及发展趋势[J].水利水电科技进展,1981,1(4):15-27
    [146]刘宁,汪易森,张纲.南水北调工程水泵模型同台测试[M].北京:中国水利水电出版社,2006:31-87
    [147]皮积瑞,丘传忻,余碧辉.大型立式轴流泵站进出水流道形式的实验研究[J].水泵技术,1982,3:1-7
    [148]张庆范,吴桐林,靳子清,等.贯流泵装置模型的初步试验研究[J].排灌机械,1984,2(4):18-22
    [149]陈毓陵,华明,曹光华.30°斜式轴流泵站的水力模型试验[J].水利水运科学研究,2000,2:55-58
    [150]李彦军,施伟,严登丰,等.大型轴流泵站技术改造试验研究与效果预测[J].中国农村水利水电,2007,8:119~122
    [151]施卫东.浙江盐官下河泵站轴流泵装置模型的研究[J].农业工程学报,1999,15(2):85-89
    [152]施卫东.新夏港泵站轴流泵装置模型装置的研究[J].佳木斯工学院学报,1997,25(3):202-206
    [153]施卫东,张德胜,关醒凡,等.后置灯泡式贯流泵装置模型的优化与试验研究[J].水利学报,2010,41(10):1248-1253
    [154]何钟宁,周正富,陈松山,等.泵站钟形进水流道三维湍流数值模拟与试验研究[J].灌溉排水学报,2007,26(5):79-81
    [155]陈伟.轴流泵叶轮及泵站进水设计对叶轮室进口流态的影响[D].硕士学位论文,扬州大学,2011
    [156]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004,9
    [157]周雪漪.计算水力学[M].北京:清华大学出版社,1995
    [158]Ferziger J H. High-level simulation of turbulent flows. In:Essers J A, ed. Computational methods for turbulent flows, transonic and viscous flows[M]. Washington DC:hemisphere, 1983.93-182
    [159]Orszag S A. Numerical simulation of turbulence flows. In:Frost W, Moulden T H, eds. Handbook of turbulence [M]. New York:Plenum Press,1977,281-313
    [160]Marzio Piller, Enrieo Nobile, Thomas J. DNS study of turbulent transport at low prandtl numbers in a channel flow[J]. Journal of Fluid Mechanics,2002,458:419-441
    [161]Wissink J G. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes[J]. International Journal of Heat and Fluid Flow,24 (4):626-635,2003
    [162]Lakshminarayana B. Turbulence modeling for complex flow[J]. AIA A Journal,1986, 24:1900-1917
    [163]Speziale C G. Discussion of turbulence modeling:present and future[J]. Proc. Whither Workshop, Ithaca, N. Y. Lect. NotesPhys., ed. J. L. Lumley,1990,490-512
    [164]Feiz A A, Ould-Rouis M, Lauriat G. Large eddy simulation of turbulent flow in a rotating pipe[J]. Inter. J. Heat Fluid Flow,2003,24 (3):412-420
    [165]郭照立,郑楚光,柳朝晖.基于Lattice Boltzmann方法的圆柱绕流大涡模拟[J].工程热物理学报,2002,23(4):479-481
    [166]Mary Ivan, Sagaut Pierre. Large eddy simulation of flow around an airfoil near stall[J]. AIAA Journal,2002,40 (6):1139-1145
    [167]Grigoriadis D G E, GBartzis J, Goulas A. Efficient treatment of complex geometries for large eddy simulations of turbulent flows[J]. Computers and Fluids,2004,3 (2):201-222
    [168]Shen L, YueDKP. Large-eddy simulation of free-surface turbulence[Jl. Journal of Fluid Mechanics,2001,440:75-116
    [169]Julian R E, Smolarkiewiez K. Eddy resolving simulations of turbulent solar convection[J]. International Journal for Numerical Methods in Fluids,2002,39(9):855-864
    [170]Li J C. Large eddy simulation of complex turbulent flows:Physical aspects and research trends[J]. Acta Mechanica Siniea,2001,17 (4):289-301
    [171]李筱芳.混流式水轮机内部流动的计算[J].水利水电技术,1996,27(12):22-25
    [172]Sotiropoulos F. Progress in modeling 3D shear flows using RANS equations and advanced turbulence models[J]. Calculation of Complex Turbulent Flows, WIT Press,2001,31-53
    [173]Markatos N C. The mathematical modeling of turbulence flows[J]. Appl Math Modeling, 1986.10:190-220
    [174]Moin P, Kim J. Numerical investigations of turbulent channel flow[J]. J Fluid Mech., 1982,118:341-377
    [175]Chapman D R. Computational aerodynamics development and outlook[J]. AIAAJ.,1979, 17:1293-1313
    [176]Shumann U. Subgrid scale model for finite difference simulation of turbulent flow in Plane channels and annuli[J]. J Compute Phys.,1975,18:376-404
    [177]张昌兵,杨永全.混流式叶轮中流场的大涡模拟[J].水科学进展,2002,13(6): 675-681
    [178]杨建明,吴玉林,曹树良.流体机械中高雷诺数流动的大涡模拟[J].工程热物理学报,1998,19(2):184-188
    [179]熊鳌魁.湍流模式理论综述[J].武汉理工大学学报.2001,12:452-455
    [180]Speziale C G. Analytical methods for the development of Reynolds-stress closures in turbulence [J]. Annu. Rev. Fluid Mech.,1991,23:107-157
    [181]Kogaki T, Kobayashi T, Taniguehi N. Large eddy simulation of flow around a rectangular eylinder[J]. Fluid Dynamics Res.,1997,20:11-24
    [182]Jordan S A, Ragab S A. A large eddy simulation near wake of a circular cylinder[J]. ASME J Fluids Engineering,1998,120:243-252
    [183]Yang Z Y. Large eddy simulation of fully developed turbulent flow in a rotating pipe[J]. Int J Number Methods Fluids,2000,33:681-694
    [184]Smagorinsky J. General Circulation Experiments with the Primitive Equations:Part 1, the Basic Experiment[J]. Monthly Weather Review,1963,91 (3):99-164
    [185]Deardorff J W. A Numerical Study of Three-dimensional Turbulent Channel Flow at Large Reynolds Numbers[J]. J. Fluid Mech.,1970,41 (2):453-480
    [186]Moin P. etal. Numerical Investigation of Turbulent Channel Flow[J]. J. Fluid Mech. 1982,118:341-377
    [187]苑明顺.高雷诺数圆柱绕流的二维大涡模拟[J].水动力学研究与进展(A辑),1992,7(9):614-622
    [188]何子干,倪汉根.大涡模拟法的二维形式[J].水动力学研究与进展(A辑),1994,9(1):30-36
    [189]Charles C S. Song. A Weakly Compressible Flow Model & Rapid Convergence Methods[J]. Journal of Fluid Engineering,1988,110:441-445
    [190]刘建瑞,施卫东,孔繁余,等.导叶涡壳组合式双级泵的研究[J].农业工程学报,2005,21(9):80-84
    [191]胡健,黄胜,王培生.加导叶轴流泵水动力特性研究[J].水力发电学报,2008,27(1):32-36
    [192]关醒凡.轴流泵和斜流泵[M].北京:中国宇航出版社,2009:32-36.
    [193]冯汉民.水泵学[M].北京:水利电水出版社,1991:193-194
    [194]李忠,杨敏官,王晓坤.导叶对轴流泵性能影响的试验[J].排灌机械,2009,27(1):15-18.
    [195]吴望一.流体力学[M].北京:北京大学出版社,2006:124-125
    [196]同济大学.高等数学[M].北京:高等教育出版社(下),2002:143-145
    [197]American hydraulic institute, ANSI/Ⅲ 9.8-1998, American national standard for pump intake design[S].1998
    [198]陆林广,刘军,梁金栋,等.大型泵站出水流道三维流动及水力损失数值计算[J].排灌机械,2008,26(3):51-54
    [199]赵斌娟,袁寿其,陈汇龙.基于滑移网格研究双流道泵内非定常流动特性[J].农业工程学报,2009,25(6):115-120
    [200]Muggii F A, Eisele K, Casey M V. Flow analysis in a pump diffuser—Part 2:validation and limitations of CFD for diffuser flows[J]. Journal of Fluids Engineering,1997,119(12): 978-984
    [201]Muggli F A, Holbein P. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow[J]. Journal of Fluids Engineering,2002,124 (9):798-802
    [202]周岭,施卫东,陆伟刚.基于数值模拟的深井离心泵导叶性能分析[J].农业工程学报,2011,27(9):38-42
    [203]沈阳水泵研究所,中国农业机械化科学研究院主编.叶片泵设计手册[M].北京:机械工业出版社,1983:300-302
    [204]吴持恭.水力学[M].北京:高等教育出版社,2003:143-148
    [205]左东启.模型试验的理论和方法[M].北京:水利电力出版社,1984:124-125
    [206]闵京声,于永海,杨天生.南水北调工程低扬程水泵选型关键技术及应用研究[J].水利水电工程设计,2009,28(2):26-28
    [207]伍杰,胡兆球,秦钟建.南水北调东线台儿庄泵站水泵装置优化选型设计[J].南水北调与水利科技,2008,6(1):256-259
    [208]关醒凡,伍杰,朱泉荣.南水北调东线已招标泵站模型装置试验成果及分析[J].排灌机械,2006,24(1):1-7
    [209]Tomoyuki H, Mitsuo W, Takeshi K, et al.System for reducing pump cavitation:US 6834493 B2[P]. Dec.28,2004
    [210]Walter G. P, Gary P. P. Cavitation control for swash-plate hydraulic pumps:US 5890877[P]. Apr.6,1999
    [211]Budris A. R. Improved pump hydraulic selection reduces cavitation risk[J]. Hydrocarbon Processing.2004,8:39-42
    [212]陈坚,杨树雄,朱丽楠.水泵nD值的意义及其合理取值范围[J].水泵技术,2002,1:9-11
    [213]刘竹溪,刘景植.水泵及水泵站[M].北京:中国水利水电出版社,2006:105
    [214]蔡金来.轴流泵出口环量对出水流道损失影响的数值模拟研究[D].扬州:扬州大学.2009
    [215]SL140-2006,水泵模型及装置模型验收试验规程[S]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700