用户名: 密码: 验证码:
钢板—混凝土组合加固方法试验研究及实桥应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国上个世纪80年代前修建的众多公路桥梁由于设计荷载等级较低或其运营过程中受各种因素的影响出现了不同程度的病害,导致桥梁承载能力下降,已不能满足交通发展的需要,对这些在役桥梁进行旨在提高其承载能力的加固改造已迫在眉睫。因此,桥梁维修、加固及改造技术研究已成为桥梁科技发展的重要方向。随着材料科学的发展,新型实用加固改造技术不断出现。钢板-混凝土组合加固技术通过合理地运用钢板与混凝土两种材料以及结合界面连接件的合理构造布置,形成一种可显著提高桥梁承载力与结构刚度的新型实用加固技术。但国内外对此方面的研究尚不够深入。由此可见,开展钢板-混凝土组合加固混凝土桥梁的研究,具有重要的理论意义和工程实用价值。
     论文主要针对钢板-混凝土组合加固混凝土桥梁方法与工程应用中的关键技术问题,通过模型梁试验、理论及数值模拟分析、实桥应用,对钢板—混凝土组合加固梁的受力性能进行了系统研究并提出相应的理论计算公式;完善钢板—混凝土组合加固技术设计计算方法并结合依托工程,提出实用的结构连接方式,采用钢板—混凝土组合加固和粘贴钢板两种方法完成了两座桥梁的加固设计,通过桥梁荷载试验将两种加固方法的加固效果进行比较研究,最后通过加固前后、运营后测试验证组合加固混凝土桥梁的效果。本文的研究工作为钢板—混凝土组合加固技术在桥梁加固工程应用提供了技术支持。研究成果包括:
     本文开展了钢板—混凝土组合加固T形钢筋混凝土梁的抗弯性能试验研究、数值分析,观察试验梁从加载到破坏的各阶段现象以及破坏形式,对试验得到的抗弯承载能力、变形和应变结果进行详细的分析。试验结果表明:钢板-混凝土组合加固可使混凝土T梁极限抗弯承载力提高约2倍;植筋间距、原梁弯曲损伤程度对组合加固T梁的极限抗弯承载力影响仅为4%左右;植筋间距越大,新老混凝土界面纵向相对滑移越大。基于使用有限元软件Ansys采用塑性方法对钢筋混凝土T形梁组合加固后的受力性能进行分析,并与试验结果对比,表明试验梁加固后极限抗弯承载力的数值计算结果与试验结果相差最大为9%。最后建立了钢板—混凝土组合加固钢筋混凝土T形梁极限抗弯承载力理论计算公式。
     本文进行了钢板—混凝土组合加固钢筋混凝土T形梁的抗剪性能试验研究和数值分析。对损伤后的混凝土T形梁进行了组合加固抗剪承载力试验,得到了试验梁剪切破坏时的受力特性以及极限承载力,揭示了钢板-混凝土组合加固钢筋混凝土T梁的剪压破坏机理。钢板-混凝土组合加固钢筋混凝土T梁的有限元计算结果与试验结果吻合较好,并由此提出了组合加固钢筋混凝土T形梁的抗剪承载力计算公式,极限抗剪承载力计算结果与试验结果吻合较好。
     本文将钢板-混凝土组合加固技术应用于火灾受损的混凝土连续箱梁桥和空心板桥的加固抢修;加固设计提出了两种连接构造措施,能够确保原结构和新混凝土、钢板形成整体共同工作,结构安全耐久,性能可靠。
     本文将钢板-混凝土组合加固技术与粘贴钢板加固加固技术同时运用于实桥主梁加固,并将采用两种加固技术加固后的主梁受力性能进行了分析对比,在荷载作用下采用组合加固的主梁应变理论计算值及实测值均明显小于采用粘钢加固的主梁,采用组合加固主梁底板应变校验系数均小于1且相对均匀。数据结果表明采用组合加固方法加固能够保证新旧结构整体受力性能较好。组合加固方法对主梁刚度和整体工作性能提高效果优于粘钢加固方法。
     本文的研究成果已纳入陕西省地方标准《钢板-混凝土组合加固混凝土桥梁设计与施工技术规程》,也可为其他钢板—混凝土组合加固混凝土桥梁提供借鉴。
At present, due to the design of the lower grade or a variety of diseases affected byvarious kind of factor, tens of thousands of highway bridges built before the1980s in Chinahas got a lower bearing capacity and couldn’t satisfy the needs of the transportation. Toincrease the carrying capacity for the purpose of maintenance and reinforcement of thesebridges’ structures is becoming increasingly imminent. Therefore, the bridge’s maintenance,reinforcement and reconstruction technique research has become an important direction in thebridge engineering. With the development of material, new types of practical reinforcementand reconstruction techniques appear constantly. By using two materials of steel and concrete,and dealing with a reasonable structure interface, the steel and concrete compositereinforcement technique has become a new practical technology which can obviously increasethe bearing capacity and the structural rigidity of bridge. Therefore, it has important theorysignificance and practical value to carry out a study of the steel-concrete compositestrengthening concrete bridge.
     This paper mainly aims at the key technical problems of the steel plate-concretecombined strengthening concrete bridge's method and the project's application. Through themodel beam experiments, theory and numerical simulation analysis and the application of areal bridge, it carries out a systematic study of the mechanical properties of steel-concretecomposite strengthening beam as well as puts forward the corresponding theoreticalcalculation formula. By the use of improving the calculation method of compositesteel-concrete strengthening technique and combined with the project, it proposes thepractical way of structure’s connection. And with the steel plate-concrete compositereinforcement and pasting steel plate method, it completes the reinforcement design of twobridges. Based on bridge loading test, it makes a comparison between the two results affectedby the two kinds of reinforcement methods, and finally confirms the effect of compositestrengthening concrete bridge through one year's service. This paper provides a support forthe technology of steel plate-concrete composite reinforcement in the application of bridges'reinforcement project.The research results include the following items:
     This paper, carries out the studies and numerical analysis of the composite steel-concretereinforced T shape beams, observes the experimental beams' phenomenon and the destroyforms of the different stages from first loading to the ultimate loading, and it carries out adetailed analysis of bending capacity, deformation and strain results during the experiment.The test results indicate that: the steel and concrete composite reinforcement can enhance theultimate bending capacity of the concrete-T beams approximately2times; The influence ofthe bar spacing and original beam deflection's damage on the ultimate bending capacity of theconcrete-T beams is only about4%; The bigger bar spacing, the greater relative longitudinalslipping of the new and old concrete's interface. Based on the finite element software Ansys,it carries on analysis of mechanical behavior of the combination of reinforced concrete Tshape beams with the plasticity method, and compares with the test results. The caparisonindicates that the error of ultimate bending capacity between the numerical calculation results and the test results of the concrete-T beams' is no more than9%. Finally it derives theoreticalultimate bending capacity formula of the steel and concrete composite strengthening concreteT beams for the first time.
     This paper, makes a study and numerical analysis of shear performance of the steel andconcrete composite T RC beams. With the shear capacity test for the typical damage ofconcrete RC T beams with composite strengthening, it obtains the constructional element'sshear damage features and ultimate bending capacity, and reveals the shear and pressuredamage mechanism of RC T beams with the steel-concrete composite strengthening method.At the same time, the paper establishes finite element model of reinforced concrete T beams,the calculation agrees well with experimental results when considering the material nonlinearcharacteristic. And then it proposes the shear capacity calculation formula of T beams withthe composite strengthening method, and the calculation results and test’s results of the shearcapacity matches well.
     This paper,applies the steel-concrete composite strengthening technology to thedamaged continuous box beam concrete bridge and the hollow slab bridges' reinforcementexposing to fire; The reinforcement design proposes for the first time two connectingstructural measures, which could ensure the original structure and the new concrete workingtogether, then the structural safety, durability, performance can be reliable.
     This paper puts both the steel-concrete strengthening technique and pasting steel platetechnique into usage of superstructure reinforcement of bridge engineering, and carries out ananalysis and contrast between the superstructure mechanical behaviors after the two differentway's reinforcement, both the girder's strain theoretical calculation value and measured datawith composite reinforcement are significantly less than with the steel-reinforced results, theeffect of the composite reinforcement is superior to the steel reinforcement method's, and allthe coefficients of strain under using composite reinforcement girder's are less than1andhave a relatively uniform distribution. The results show that using the compositereinforcement method can ensure that the new and old structures can work well. Theperformance and the beam's rigidity by using composite reinforcement method are superior topasting steel plate reinforcement method.
     The results of this paper have been put into the standards of Shaanxi province-"thedesign and construction technical regulations of steel-concrete composite strengtheningconcrete bridge", it can also give reference for other steel-concrete composite strengtheningconcrete bridges.
引文
[1]聂建国,余志武.钢-混凝土组合梁在我国的研究以及应用[J]:土木工程学报,1999,32(2):3-8.
    [2]聂建国,樊健生.广义组合结构及其发展展望[J]:建筑结构学报,2006,27(6):1-8
    [3]聂建国,朱林森,任明星,陈林.北京某地下人行通道的加固处理[J]:建筑结构,2001,31(9):56-57.
    [4]聂建国,王寒冰,任明星,陈林.钢-混凝土叠合板组合梁在苇沟桥改造加固中的应用[J]:建筑结构,2001,31(12):24-26.
    [5]聂建国,田春雨,何萌.混凝土叠合加固技术在桥梁中的应用[J]:建筑结构,2004,34(3):19-20.
    [6]李砚波,方超,刘洪立.钢-混凝土组合结构在加固工程中的应用[J]:建筑结构,2007,37(1):71-74.
    [7]聂建国,赵洁.钢板_混凝土组合抗弯加固中滑移分布分析[J]:清华大学学报(自然科学版),2007,47(12):2085-2088.
    [8]中国工程建设标准化协会标准CECS25:90混凝土结构加固技术规范[S]:北京:中国计划出版社,1991.
    [9]交通部公布的全国公路桥梁情况统计[J]:特种结构,2002,19(1):57-59.
    [10] Jonh O.Halquist,LS-DYNA Theoretical Manual[J]:May,1998.
    [11] A.Bicley and RLiscio, Repair and Protection Systems for Parking Structures[J]: ConcreteInternational,April1998.:29-37.
    [12] Christophe Demand,J.J. Roger Cheng,Shear behavior of reinforced concrete T-beams with externallybonded Fiber-Reinforced Polymer sheets[J]:ACI Structural Journal,Vol.98,No.3,May-June2001.
    [13] Swamy R N,Jones R,Bloxham J W,Structural behavior of reinforced concrete beams strengthenedby epoxy bonded steel plates[J]:Structural Engineer,1987,65A (2). P:143-15.
    [14] L INOT,OTA KAWA K,Application of epoxy resins in strengthening of concrete structures[C],Proceedings,Third International Congresson Polymers in Concrete:Kiriyama,Japan,1981.
    [15]赵豫生.“粘贴碳纤维布”与“粘贴钢板”技术在郑州黄河公路大桥及金洼干沟桥加固中的应用[J]:交通标准化,2004(12):57-61.
    [16]欧新新,金崇正.钢筋混凝土梁粘钢加固抗裂及截面刚度研究[J]:工程力学,2000(A01).:23-26.
    [17]宋一凡,贺拴海.锚栓钢板法加固RC梁桥的计算方法[J]:西安公路交通大学学报,2000(03):47-48.
    [18]湛润水,胡钊芳,帅长斌.公路旧桥加固技术与实例[J]:北京:人民交通出版,2002.
    [19]贺拴海,赵小星,宋一凡,袁旭斌.具有初荷载的钢筋混凝土梁桥粘贴碳纤维布加固试验研究[J]:土木工程学报,2005(3):70-76.
    [20]王少波.新老混凝土粘结面抗剪强度试验研究[D].郑州:郑州大学,2000.
    [21]张雷顺,王二花,闫国新.植筋法新老混凝土粘结面剪切性能试验研究[D].郑州:郑州大学,2006.
    [22]谌润水,胡钊芳,帅长斌.公路旧桥加固技术与实例[M]北京:人民交通出版社,2002
    [23]郭永深,叶见曙.桥梁技术改造[M].北京:人民交通出版社,1991.
    [24]杨文源,徐彝.桥梁维修与加固[M].北京:人民交通出版社,1994
    [25]蒙云.桥梁加固与改造[M].重庆:重庆大学出版社,1989
    [26]张澎曾,殷宁骏,杨梦蛟.混凝土旧桥的评估与加固[M].铁道建筑,1994(11):9-13
    [27]曹双寅,孙永新,朱海峰等.粘贴钢板加固梁粘结锚固性能的试验研究[J].工业建筑,2000,VOL.30,NO.2:4-7
    [28]杨庆国,李祖伟等.粘贴钢板加固钢筋混凝土结构的几个问题[J].中国公路学会2001年全国公路桥梁维修与加固技术研讨会论文集.昆明,2001:145-148.
    [29] Y. J. Jeong,H. Y. Kim,J. W. Lee and J. H. Kim.Partial-Interaction Behavior of Steel-ConcreteComposite Bridge Deck,Proceedings of the5th International Conference of Composite Constructionin Steel and Concrete,ASCE,2006:35-46.
    [30] K. Baskar,N. E. Shanmugam,FASCE and V. Thevendran. Finite-Element Analysis of Steel–ConcreteComposite Plate Girder,Journal of Structural Engineering,Sep.2002:1158-1168.
    [31] M. Fragiacomo,C. Amadio,M.ASCE and L. Macorini. Finite-Element Model for Collapse andLong-Term Analysis of Steel–Concrete Composite Beams. Journal of Structural Engineering,ASCE,Mar.2004:489-497.
    [32] Rudolf Seracino. Partial-Interaction Fatigue Assessment of Continuous Composite Steel-Concrete,Proceedings of the5th International Conference of Composite Construction in Steel and Concrete,ASCE,2006:93-104.
    [33] N. E. Shanmugam,F.ASCE and K. Baskar. Steel-Concrete Composite Plate Girders Subject to ShearLoading,Journal of Structural Engineering,ASCE,Sep.2003:1230-1242.
    [34] Yong-Lin Pi, Mark Andrew Bradford, Brian Uy and M.ASCE. Second Order Nonlinear InelasticAnalysis of Composite Steel-Concrete Members I: Theory,Journal of Structural Engineering,ASCE,May.2006:751-761.
    [35]公路工程质量检验评定标准(JTJ071-98).北京:人民交通出版社,1997.
    [36] G.C.Mays and J.J.Dakers. open sandwich bridge deck construction-20years on[J].Proceedings of theInstitution of civil engineers:Bridge engineering,Vol.158,2:81-89.
    [37] K.C.G.Ong,G.C.Mays and A.R.Gusens. Flexural tests of steel-concrete open sandwiches [J].Magazineof concrete research,Vol.34,120:130-138.
    [38] O. T. Thomsen and Y. Frostig. Localized bending effects in sandwich panels: photoelastic investigationversus high-order sandwich theory results. Composite Structures, Volume37,Issue1,January1997:97-108.
    [39] G. C. Papanicolaou and D Bakos. Interlaminar fracture behaviour of sandwich structures. CompositesPart A: Applied Science and Manufacturing,Volume27,Issue3,1996:165-173.
    [40] H. D. Wright,T. O. S. Oduyemi and H. R. Evans. The Experimental Behaviourof Double SkinComposite Elements. J. Constr. Steel Res.,1991(19):97-110.
    [41] H. D. Wright,T. O. S. Oduyemi and H. R. Evans. The design of double skin composite elements.[J].Journal of Constructional Steel Research,Volume19,Issue2,1991:111-132.
    [42] H. D. Wright and T. O. S. Oduyemi. Partial interaction analysis of double skin composite beams.[J].Journal of Constructional Steel Research,Volume19,Issue4,1991:253-283.
    [43] Subedi and N.K. Double skin steel/concrete composite beam elements: Experimental testing,[J].Structural Engineer, V81,n21,Nov4,2003,Structural steel:30-35.
    [44] Subedi,N.K.,Coyle and N.R. Improving the strength of fully composite steel-concrete-steel beamelements by increased surface roughness-An experimental study.[J].Engineering Structures,v24,n10,October,2002:1349-1355.
    [45] RobertsTM,EdwardsDN and NarayananR.Testing and Analysis of Steel_Concrete_Steel SandwichBeams[J]:Constr. Steel Res.,1996,38(3):257-279.
    [46]曾菁,樊健生.双钢板型组合结构[J]:工业建筑,2007,37(4):77-80.
    [47]王祖恩,王永喜.钢板与混凝土组合构件的试验分析[J]:上海铁道学院学报,1995,16(2).
    [48]聂建国,赵杰,唐亮.钢板-混凝土组合在钢筋混凝土梁加固中的应用[J]:桥梁建设,2007,(3):76-79.
    [49]彭兴坤,蔡晟.钢板—混凝土组合技术在桥梁加固中的应用[J]:市政技术,2003,21(3):140-144.
    [50]中华人民共和国国家标准.混凝土结构加固设计规范(GB500367-2006)[S].北京:人民交通出版社,2006.
    [51]中华人民共和国国家标准.钢结构设计规范(GB50017-2003)[S].北京:中国计划出版社,2003.
    [52]公路钢筋混凝土及预应力混凝土桥涵设计规范(JTGD62一2004)[S].北京:人民交通出版社,2004
    [53]混凝土设计规范(GB50010一02)[S].北京:中国计划出版社,2002.
    [54]黄侨.桥梁钢—混凝土组合结构设计原理[M].北京:人民交通出版社2003.12.
    [55]聂建国,谭英,王洪全.钢—高强混凝土组合梁栓钉剪力连接件的设计计算[J]:清华大学学报,1999,39(12):94-97
    [56]王振领.新老混凝土粘结理论与试验及在桥梁加固工程中的应用研究[D].成都:西南交通大学,2006.
    [57]聂建国,刘明,叶列平.钢-混凝土组合结构[M].北京:中国建筑工业出版社,2005.
    [58]聂建国.钢-混凝土组合梁结构——试验、理论与应用[M].北京:科学出版社,2005.
    [59]聂建国,赵洁.钢板—混凝土组合加固钢筋混凝土简支梁实验研究[J]:建筑结构学报,2008,29(5):50-56
    [60] S. T. Smith,G. J. Teng. FRP-strengthenedRCbeams.I: rewiew of debonding strength models[J].Engineering Structures,2002,24:385-395.
    [61] S. T. Smith, G. J. Teng. FRP-strengthenedRCbeams.II: assessment of debonding strength models[J].Engineering Structures,2002,24:397-417.
    [62] T.O.S.Oduyemi,H.D.Wright (1989).An experimental investigation into the behaviour of double-skinsandwich beams[J].Journal of construction steel research,14:197-220.
    [63]任伟.钢筋混凝土T梁桥的片材加固机理、设计方法及其应用[D].西安:长安大学,2006.
    [64]王少波.新老混凝土粘结面抗剪强度试验研究[D].郑州:郑州大学,2000.
    [65]张雷顺,王二花,闫国新.植筋法新老混凝土粘结面剪切性能试验研究[D].郑州:郑州大学,2006.
    [66]赵志方,周厚贵等.新老混凝土粘结机理研究与工程应用[M].北京:中国水利水电出版社,2003
    [67]张雷顺,韩菊红,郭进军等.新老混凝土粘结补强在某钢筋混凝土桥面板加固整修中的应用[J]:土木工程学报,2003,36(4):82一85
    [68]高剑平,潘景龙,王雨光.不同界面剂对新旧混凝土粘结强度影响的试验研究.哈尔滨建筑大学学报,2001,34(5):25-29.
    [69]赵志方,赵国藩,刘健,于跃海.新老混凝土粘结抗拉性能的试验研究[J]:建筑结构学报2001,(22):52-56
    [70]敖进涛,谢慧刁,熊光晶,陈肇元.影响新老混凝土界面粘结强度的主要因素[J]:工程力学(增刊第二卷),1997:328-333.
    [71]高剑平,霍静思,李硕,田玉滨.影响新旧混凝土粘结强度的因素分析[D].西南交通大学,2004.
    [72]张建荣,石丽忠等.植筋锚固拉拔试验及破坏机理研究[J].结构工程师,2004,20(5):47-51
    [73]熊学玉,许立新,胡家智.化学植筋的拉拔试验研究[J].建筑技术,2001,(6)
    [74]赵志方,赵国藩,黄承逢.新老混凝土粘结的拉剪性能研究[J].建筑结构学报,1999,Vo.20:26-31
    [75]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [76]左成平,左明汉.混凝土结构粘结加固设计与算例[M].中国建筑工业出版社,2007.
    [77]单程林,旧桥加固设计原理及计算示例[M].北京:人民交通出版社,2006.
    [78]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [79]王新敏. ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [80]龚曙光,谢桂兰. ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004.
    [81]江见鲸.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [82]姚晓飞,徐岳,付迎春.混凝土铰接T梁桥结构体系损伤评价试验[J].长安大学学报,2009,29(2):65-69.
    [83]聂建国,唐亮.密实截面组合梁的竖向抗剪强度I:受正弯矩作用的组合梁[J].土木工程学报,2008,41(3):8-14.
    [84]王春生,袁卓亚,郭晓宇,高珊,任腾先.钢板-混凝土组合加固混凝土T梁的抗弯性能试验[J].交通运输工程学报,2010,10(6):32-40.
    [85]王春生,高珊,任腾先,徐岳.钢板—混凝土组合加固带损伤混凝土T梁的抗弯性能试验[J].建筑科学与工程学报,2010,27(3):94-101.
    [86]高珊.钢板—混凝土组合加固钢筋混凝土T梁抗弯性能实验研究[D].长安大学,2009.
    [87]任腾先.钢板-混凝土组合加固钢筋混凝土T梁抗剪性能试验研究[D].长安大学,2009.
    [88]郭晓宇.钢板—混凝土组合加固混凝土梁抗弯性能试验研究[D].长安大学,2010.
    [89]王春生,袁卓亚,高珊,郭晓宇,冯林军.钢板—混凝土组合加固矩形梁抗弯性能试验研究[J].中国公路学报
    [90]《公路桥梁加固设计规范》(JTG/T J22-2008)[S].北京:人民交通出版社2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700