用户名: 密码: 验证码:
加力燃油泵隔舌空化机理及抑制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加力燃油泵是军用航空发动机燃油控制系统的主要部件,其性能及可靠性对提高战斗机的生存能力及作战性能十分关键。现役某型发动机加力燃油泵为高速离心泵,长期运行于非设计工况,出现了罕见的隔舌空蚀破坏及小流量工作不稳定等问题。针对上述问题,探索加力燃油泵非设计工况内流场特征及隔舌空化原因、机理与有效抑制方法,所得结论对完善高速离心泵设计理论、提高水力性能及可靠性、促进高推比航空发动机的发展具有重要意义。
     首先,针对径向直叶片开式叶轮与环形蜗壳间流道复杂的几何结构,构建了全流道分块拓扑及块结构化网格模型。采用雷诺平均方法(RANS)及相变空化模型,对泵内复杂湍流场进行了系统的数值模拟。非定常计算能得到与试验外特性相符的流量扬程特性,可以较为准确地模拟内流场特征:大流量工况,叶片前缘及轮盘底部存在小范围旋转空化,会导致当地空蚀破坏,环形腔室隔舌处流动存在轻微分离;小流量工况,叶轮表面未发生空化,而隔舌处存在严重的高速分离流,可由此诱发剪切湍流漩涡空化。
     进而,针对某简单结构的单孔燃油喷嘴内高速分离流空化,分别采用RANS湍流/转捩模式和大涡模拟(LES)动态亚格子应力模型,揭示出分离转捩对燃油分离流空化初生的主导作用。分离转捩区Kelvin-Helmholtz(K-H)涡翻滚扭曲伴随的瞬时负压脉动会促发空化初生,瞬时空泡随K-H涡运动形成可观测空泡群,同时分离线处也伴随有空化初生。基于LES单相瞬态流场的时间统计平均,得出了高速分离流空化初生的判据,计算发现网格尺度变大将无法正确捕捉分离转捩特征,而分离线空化仍可用于判定分离转捩区空化初生。喷嘴入口倒圆采用较小的半径即可明显抑制分离转捩过程,并降低大尺度脉动负压。
     最后,采用动态亚格子应力模型对加力燃油泵非设计工况隔舌分离流进行模拟,计算捕捉到隔舌分离剪切层失稳及涡脱落变形的非定常过程:小流量工况,隔舌处会产生分离转捩空化,导致壁面空蚀破坏,倒圆半径较大时可抑制隔舌分离流并避免空化。兼顾结构强度及设计尺寸限制,研究了环形腔室径向宽度缩小以及矩形截面腔室设计对改善泵水力性能及抑制空化的效果,并发展了主回流性能分析法,为加力燃油泵的优化设计提供了理论支持和工程指导。
After-burningfuel pump is one of the important parts of fuel control system inaero-engine, its performance and reliability is critical to the viability andcombatperformance improvement of fighters. Recently, infrequent casing tonguecavitation damage and low flow-rate instability phenomena were found in anafter-burningfuel pump, which is a high-speed centrifugal pump, of a certainaero-engine after a long term operation ofoff-design conditions. A series of numericalinvestigation was conducted to explore the internal flow characteristic underoff-design conditions and consequentcasing tongue cavitation mechanism,which hasgreat meaning to develop optimization design theory and improve the hydraulicperformance and reliability of high-speed centrifugal pump, as well as the promotionof high performance aero-engine development.
     The block topology and multi-block structured grid have thus been constructed,due to complex geometric structure of the flow passage between the annular casingand straight radial blades of the open impeller. Utilizing Reynolds-AveragedNavier-Stokes equations (RANS)and a phase change cavitation model,the turbulentfield inside the pump was simulated. The flow-rate headcharacteristics predicted byunsteady resultsare consistent with the experimental measurement, then the internalflow were explored by the unsteady calculation. Under large flow-rate condition,there is limited rotational cavitation on the front edge of the blades as well as thebottom of the hub,which will lead to locally cavitation damage. The annular chamberflow near the casing tongue separates mildly. Under small flow-rate condition, nocavitation happens on the impeller surface, while high-speed fuel near the casingtongue comes into serious flow separation, which will probably bring about vortexcavitation in shear turbulence there.
     Then, in respect of high-speed separation flow cavitation mechanism, RANSturbulence/transition model and Large-Eddy Simulation (LES) dynamic subgrid scalemodel have been adoptedrespectively to simulate the high-speed separated flow in asimple geometric structure, an experimental single-hole fuel nozzle,separation transition was found to play a dominant role in the cavitation inception of fuelseparated flow. In the separation transitional zone, Kelvin-Helmholtz(K-H)vortexbillow and distortion motions lead to transient negative pressure fluctuation whichtriggers cavitation inception. Transient cavitation bubbles moving within the K-Hvortex form an observable cavitation area, while there is also cavitation at theseparation line. Based on the time statistical average of the LES single-phase results,a cavitation inception criterion for high-speed separated flow has been deduced. It canbe considered as a judging method of cavitation inception in the downstreamseparation transitional zonewhether the separation line cavitates. The nozzle inletfilleting with just a small radius obviously suppresses the transition process anddecrease the large-scale fluctuated negative pressure.
     Finally, with the dynamic subgrid scale model, the separated flow near theafter-burning fuel pump casing tongue under off-design conditions was investigated.The results identify the unsteady process of separation shear layer destabilization aswell as vortex shedding and distortion. It is found that: under small flow-ratecondition, separation transitional cavitation comes into being near the casing tonguewhich induces wall damage hole there. Also, filleted only with a large radius, the flowseparation and cavitation at the casing tongue can be fully avoided. In considerationof structure strength and external dimension restraint, the effect of narrow radialwidth and rectangular cross-section chamber designs on improving pumphydraulicperformance and preventing casing tongue cavitation have been studied andevaluated. The above results provide a good theory basis and engineering guidancefor optimal design of the after-burning fuel pump.
引文
[1]张绍基.航空发动机燃油与控制系统的研究与展望.航空发动机,2003,29(3):1-5.
    [2]张绍基.航空发动机控制系统的研发与展望.航空动力学报,2004,19(3):375-382.
    [3] Yamamoto K, Tsujimoto Y. A backflow vortex cavitation and its effects on cavitationinstabilities. International Journal of Fluid Machinery and Systems,2008,2(1):40-54.
    [4]杨娟丽.万家寨水电站水轮机转轮空化性能的预测研究[硕士学位论文].北京:中国农业大学,水利与土木工程学院,2005.
    [5] Li S C, Wu Y L, Dai J, et al. Cavitation resonance: The phenomenon and unknown. Journalof Hydrodynamics, Ser. B,2006,18(3):356-362.
    [6] Soyama H, Okamura T, Saito S, et al. Observations of severely erosive vortex cavitation ina centrifugal pump. Transactions of The Japan Society of Mechanical Engineers. B,2008,59(3):1140-1144.
    [7]陈乃祥,吴玉林.离心泵.机械工业出版社,2003.
    [8] Brennen C E. Cavitation and Bubble Dynamics. Oxford: Oxford University Press,1995.
    [9] TrevenaD H. Cavitation and the generation of tension in liquids. Journal of Physics D:Applied Physics,1984,17(11):2139-2164.
    [10] Trevena D H. Cavitation and Tension in Liquids. Bristol, England: Adam Hilger,1987.
    [11] Harvey E N, Whiteley A H, Mcelroy W D, et al. Bubble formation in animals. II. gas nucleiand their distribution in blood and tissues. Journal of Cellular and Comparative Physiology,1944,24(1):23-34.
    [12] Knapp R T, Daily J W, Hammit F G. Cavitation. New York: McGraw Hill,1970.
    [13] Li C Y, Ceccio S L. Observations of the interaction of cavitation bubbles with attachedcavities. Proc. ASME Symp. on Cavitation and Gas-Liquid Flows,ASME FED190, LakeTahoe,1994:283-290.
    [14] Kermeen R W, Mcgraw J T, Parkin B R. Mechanism of cavitation inception and the relatedscale-effects problem. Proceedings of ASME Meeting MEX-1, New York,1955:533-541.
    [15] Saito Y, Takami R, Nakamori I, et al. Numerical analysis of unsteady behavior of cloudcavitation around a NACA0015foil. Computational Mechanics,2007,40(1):85-96.
    [16] Kawakami E, Arndt R E A. Investigation of the behavior of ventilated supercavities.Journal of Fluids Engineering,2011,133(9):91305-91311.
    [17] Arndt R E A. Cavitation in vortical flows. Annual Review of Fluid Mechanics,2002,34(1):143-175.
    [18] Iliescu M S, Ciocan G D, Avellan F. Analysis of the cavitating draft tube vortex in a Francisturbine using particle image velocimetry measurements in two-phase flow. Journal ofFluids Engineering,2008,130(2):21105-21110.
    [19] Hervé C. Cavitation in trees. Comptes Rendus Physique,2006,7(9-10):1018-1026.
    [20] Versluis M, Schmitz B, von der Heydt A, et al. How snapping shrimp snap: throughcavitating bubbles. Science,2000,289(5487):2114-2117.
    [21] Patek S N, Korff W L, Caldwell R L. Biomechanics: deadly strike mechanism of a mantisshrimp. Nature,2004,428(6985):819-820.
    [22]张克危.流体机械原理(上册).北京:机械工业出版社,2001.
    [23] Hickling R, Plesset M S. Collapse and rebound of a spherical bubble in water. Physics ofFluids,1964,7(1):7-14.
    [24] Blake J R, Pearson A, Otto S R. Boundary integral methods for cavitation bubbles nearboundaries.CAV2001: Fourth International Symposium on Cavitation, California Instituteof Technology, Pasadena, CA USA,2001, lecture.004.
    [25] Arndt R E A, Ippen A T. Rough surface effects on cavitation inception. Journal of BasicEngineering,1968,90(2):249-261.
    [26] Huang T T. Cavitation inception observations on six axisymmetric headforms.Journal ofFluids Engineering,1981,103(2):273-279.
    [27] Arakeri V H. A note on the transition observations on an axisymmetric body and somerelated fluctuating wall pressure measurements. Journal of Fluids Engineering,1975,97(1):82-87.
    [28] Arakeri V H, Acosta A J. Viscous effects in the inception of cavitation. InternationalSymposium on Cavitaiton Inception, ASME Winter Annual Meeting, New York,1979.
    [29] Kaze J. Cavitation inception in separated flows[Doctoral Dissertation]. Pasadena:California Institute of Technology,1981.
    [30] Bernal L P. The coherent structure of turbulent mixing layers. I. similarity of the primaryvortex structure. II. secondary streamwise vortex structure[Doctoral Dissertation].Pasadena: California Institute of Technology,1981.
    [31] O'Hern T J. An experimental investigation of turbulent shear flow cavitation. Journal ofFluid Mechanics,1990,215:365-391.
    [32] Ran B, Katz J. Pressure fluctuations and their effect on cavitation inception within waterjets. Journal of Fluid Mechanics,1994,262:223-263.
    [33] Gopalan S, Katz J, Knio O. The flow structure in the near field of jets and its effect oncavitation inception. Journal of Fluid Mechanics,1999,398:1-43.
    [34] Wang G, Ostoja-Starzewski M. Large eddy simulation of a sheet/cloud cavitation on aNACA0015hydrofoil. Applied Mathematical Modelling,2007,31(3):417-447.
    [35] Zhou L, Wang Z. Numerical simulation of cavitation around a hydrofoil and evaluation of aRNG k-epsilon model. Journal of Fluids Engineering, Transactions of the ASME,2008,130(1):11301-11302.
    [36]王国玉,张淑丽,张博,等. FBM模型在栅中翼型云状空化流动数值计算中的应用.北京理工大学学报,2009,29(8):672-675.
    [37] Xing T, Li Z, Frankel S H. Numerical simulation of vortex cavitation in athree-dimensional submerged transitional jet. Journal of Fluids Engineering,2005,127(4):714-725.
    [38] Wienken W, Stiller J, Keller A. A method to predict cavitation inception using large-eddysimulation and its application to the flow past a square cylinder. Journal of FluidsEngineering,2006,128(2):316-325.
    [39] Keck H, Sick M. Thirty years of numerical flow simulation in hydraulic turbomachines.Acta Mechanica,2008,201(1-4):211-229.
    [40] Coutier-Delgosha O, Fortes-Patella R, Reboud J L, et al.3D numerical simulation of pumpcavitating behavior. ASME Conference Proceedings,2002,2002(36169):815-824.
    [41] Frobenius M, Schilling R, Friedrichs J, et al. Numerical and experimental investigations ofthe cavitating flow in a centrifugal pump impeller. ASME Conference Proceedings,2002,2002(36150):361-368.
    [42] Sauer J, Schnerr G H. Development of a new cavitation model based on bubble dynamics.ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für AngewandteMathematik und Mechanik,2001,81(S3):561-562.
    [43] Medvitz R B, Kunz R F, Boger D A, et al. Performance analysis of cavitating flow incentrifugal pumps using multiphase CFD. Journal of Fluids Engineering,2002,124(2):377-383.
    [44] Kunz R F, Boger D A, Stinebring D R, et al. Multi-phase CFD analysis of natural andventilated cavitation about submerged bodies. Proceedings of3rd ASME/JSME JointFluids Engineering Conference, San Francisco, California, FEDSM99-7364,1999.
    [45] Nohmi M, Goto A, Iga Y, et al. Experimental and numerical study of cavitation breakdownin a centrifugal pump. ASME Conference Proceedings,2003,2003(36967):1251-1258.
    [46] Avva R K, Singhal A K, Gibson D H. An enthalpy based model of cavitation: ASME FEDSummer Meeting, Hilton Head Island, South Carolinausa, USA,1995,226:63-70.
    [47] Gonzalez J, Santolaria C. Unsteady flow structure and global variables in a centrifugalpump. Journal of Fluids Engineering,2006,128(5):937-946.
    [48] Majidi K. Numerical study of unsteady flow in a centrifugal pump. Journal ofTurbomachinery,2005,127(2):363-371.
    [49] Byskov R K, Jacobsen C B, Pedersen N. Flow in a centrifugal pump impeller at design andoff-design conditions---Part II: large eddy simulations. Journal of Fluids Engineering,2003,125(1):73-83.
    [50] Yamanishi N, Fukao S, Qiao X, et al. LES simulation of backflow vortex structure at theinlet of an inducer. Journal of Fluids Engineering,2007,129(5):587-594.
    [51] Friedrichs J, Kosyna G. Rotating cavitation in a centrifugal pump impeller of low specificspeed. Journal of Fluids Engineering,2002,124(2):356-362.
    [52] Temam R. Navier-Stokes Equations: Theory and Numerical Analysis. Amsterdam:North-Holland,1984.
    [53]傅德熏,马延文,李新亮,等.可压缩湍流直接数值模拟.北京:科学出版社,2010.
    [54]陶文铨.数值传热学.西安:西安交通大学出版社,2001.
    [55]王勖成.有限单元法.北京:清华大学出版社,2008.
    [56]向新民.谱方法的数值分析.北京:科学出版社,2000.
    [57]傅德董,马延文.计算流体力学.北京:高等教育出版社,2002.
    [58]任玉新,陈海昕.计算流体力学基础.北京:清华大学出版社,2006.
    [59]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004.
    [60] Wu X H, Wu J Z, Wu J M. Effective vorticity-velocity formulations for three-dimensionalincompressible viscous flows. Journal of Computational Physics,1995,122(1):68-82.
    [61] Guj G, Stella F. A vorticity-velocity method for the numerical solution of3Dincompressible flows. Journal of Computational Physics,1993,106(2):286-298.
    [62] Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using theNavier-Stokes equations and a multigrid method. Journal of Computational Physics,1982,48(3):387-411.
    [63] Chorin, A J. A numerical method for solving incompressible viscous flow problems.Journal of Computational Physics,1997,135(2):118-125.
    [64] Harlow F, Welch E. Numerical calculation of time-dependent viscous incompressible flowof fluid with free surface. Physics of Fluids,1965,8(12):2182-2189.
    [65] Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transferin three-dimensional parabolic flows. Int. J. Heat Mass Transfer,1972,10(15):1787-1806.
    [66] Van Doormaal J P, Raithby G D. Enhancements of the SIMPLE method for predictingincompressible fluid flows. Numerical Heat Transfer,1984,7(2):147-163.
    [67]陶文铨.计算传热学的近代进展.北京:科学出版社,2003.
    [68]张兆顺.湍流(近代空气动力学丛书).北京:国防工业出版社,2002.
    [69]张兆顺,崔桂香,许春晓.湍流理论与模拟.北京:清华大学出版社,2005.
    [70] Moser R D, Moin P. The effects of curvature in wall-bounded turbulent flows. Journal ofFluid Mechanics,1987,175:479-510.
    [71] Eswaran V, Pope S B. Direct numerical simulations of the turbulent mixing of a passivescalar. Physics of Fluids,1988,31(3):506-520.
    [72]苏彩虹,周恒.嵌边法出流条件在可压缩流直接数值模拟中的应用.空气动力学学报,2006,24(3):289-294.
    [73] Rodi W. A new algebraic relation for calculating the Reynolds stresses. Zeitschrift fuerangewandte Mathematik und Mechanik,1976,56:219-221.
    [74] Baldwin B, Lomax H. Thin-layer approximation and algebraic model for separatedturbulent flows. AIAA paper78-257,1978.
    [75] Baldwin B, Barth T J. A one-equation turbulence transport model for high Reynoldsnumber wall-bounded flows. AIAA Paper91-0610,1991.
    [76] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows. LaRecherche Aerospatiale,1994,1(1):5-21.
    [77] Launder B E, Spalding D B. The numerical computation of turbulent flows. ComputerMethods in Applied Mechanics and Engineering,1974,3(2):269-289.
    [78] Yakhot V, Orszag S A, Thangam S, et al. Development of turbulence models for shearflows by a double expansion technique. Physics of Fluids A: Fluid Dynamics,1992,4(7):1510-1520.
    [79] Shih T, Liou W W, Shabbir A, et al. A new k-ε eddy viscosity model for high reynoldsnumber turbulent flows. Computers&Fluids,1995,24(3):227-238.
    [80] Wilcox D C. Turbulence modeling-an overview. AIAA paper2001-724,2001.
    [81] Wilcox D C. Multiscale model for turbulent flows. AIAA Journal,1988,26(11):1311-1320.
    [82]阎超.计算流体力学方法及应用.北京:北京航空航天大学出版社,2006.
    [83] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications.AIAA Journal,1994,32(08):1598-1605.
    [84]符松,王亮.湍流转捩模式研究进展.力学进展,2007,151(03):409-416.
    [85] Wilcox D C. Turbulence Modeling for CFD, Third edition. La Canada, CA: D C WIndustries, Inc.,2006.
    [86] Savill A M. One-point closures applied to transition. In: Hallb ck M, Henningson DS,Johansson AV, et al, eds. Turbulence and Transition Modelling. Dordrecht, Boston:Kluwer,1996:233-268.
    [87] Walters D K, Cokljat D. A three-equation eddy-viscosity model for reynolds-averagedNavier-Stokes simulations of transitional flow. Journal of Fluids Engineering,2008,130(12):121401-121414.
    [88] Walters D K, Leylek J H. A new model for boundary layer transition using a single-pointRANS approach. Journal of Turbomachinery,2004,126(1):193-202.
    [89] Klebanoff P S. Effect of free-stream turbulence on a laminar boundary layer. Bulletin of theAmerican Physical Society,1971,16:1323-1333.
    [90] Mayle R E, Schulz A. Heat transfer committee and turbomachinery committee best paperof1996award: the path to predicting bypass transition. Journal of Turbomachinery,1997,119(3):405-411.
    [91] Lesieur M, Métais O, Comte P. Large-Eddy Simulations of Turbulence. Cambridge,England: Cambridge University Press,2005.
    [92] Sagaut P. Large Eddy Simulation for Incompressible Flows: An Introduction, Third Edition.Berlin: Springer-Verlag,2004.
    [93] Smagorinsky J. General circulation experiments with the primitive equations. MonthlyWeather Review,1963,91(3):99-164.
    [94] Lilly D K. The representation of small scale turbulence in numerical simulationexperiments.Proc. IBM Scientific Computing Symposium on environmentalsciences,1967:195-210.
    [95] Germano M. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A,1991,3(7):1760-1765.
    [96] Lilly D K. A proposed modification of the Germano subgrid-scale closure method. Physicsof Fluids A,1992,4(3):633-635.
    [97] Rayleigh. On the pressure developed in a liquid during the collapse of a spherical cavity.Philosophical Magazine Series6,1917,34(200):94-98.
    [98] Plesset M S. The dynamics of cavitation bubbles. Journal of Applied Mechanics,1949,16:227-290.
    [99] Krishnaswamy P,Andersen P,Kinnas S A. Re-entrant jet modelling for partially cavitatingtwo-dimensional hydrofoils. CAV2001: Fourth International Symposium on Cavitation,California Institute of Technology, Pasadena, CA USA,2001, sessionB1.005.
    [100] Dang J, Kuiper G. Re-entrant jet modeling of partial cavity flow on two-dimensionalhydrofoils. Journal of Fluids Engineering,1999,121(4):773-780.
    [101] Kinnas S A, Fine N E. A numerical nonlinear analysis of the flow around2-d and3-dpartially cavitating hydrofoils. Journal of Fluid Mechanics,1993,254:151-181.
    [102] Dellanoy Y, Kueny J L. Two phase flow approach in unsteady cavitation modeling. ASMECavitation and Multiphase Flow Forum, New York,1990:153-159.
    [103] Schmidt D P, Rutland C J, Corradini M L. A numerical study of cavitating flow throughvarious nozzle shapes. SAE Technical Paper971597,1997.
    [104] Dumont N, Simonin O, Habchi C. Numerical simulation of cavitating flows in dieselinjectors by a homogeneous equilibrium modeling approach. CAV2001: FourthInternational Symposium on Cavitation, California Institute of Technology, Pasadena, CAUSA,2001,sessionB6.005.
    [105] Chen Y, Heister S D. Two-phase modeling of cavitated flows. Computers&Fluids,1995,24(7):799-809.
    [106] Kunz R F, Boger D A, Stinebring D R, et al. A preconditioned Navier-Stokes method fortwo-phase flows with application to cavitation prediction. Computers&Fluids,2000,29(8):849-875.
    [107] Ahuja V, Hosangadi A, Arunajatesan S. Simulations of cavitating flows using hybridunstructured meshes. Journal of Fluids Engineering,2001,123(2):331-340.
    [108] Singhal A K, Athavale M M, Li H, et al. Mathematical basis and validation of the fullcavitation model. Journal of Fluids Engineering,2002,124(3):617-624.
    [109] Yuan W, Sauer J, Schnerr G H. Modeling and computation of unsteady cavitation flows ininjection nozzles. Mecanique&Industries,2001,2(5):383-394.
    [110] Janssens M E, Hulshoff S J, Hoeijmakers H W M. Calculation of unsteady attachedcavitation.28th AIAA Fluid Dynamics Conference.AIAA-97-1936,1997.
    [111] Lindau J W, Kunz R F, Venkateswaran S, et al. Development of a fully-compressiblemulti-phase Reynolds-averaged Navier-Stokes model.AIAA Paper2001-2648,2001.
    [112] Zwart P J, Gerber A G, Belamri T. A two-phase flow model for predicting cavitationdynamics. ICMF2004:5thInternational Conference on Multiphase Flow, Yokohama, Japan,No.152,2004.
    [113] Chen Y, Heister S D. Modeling hydrodynamic nonequilibrium in cavitating flows. Journalof Fluids Engineering,1996,118(1):172-178.
    [114] Kubota A, Kato H, Yamaguchi H. Finite-difference analysis of unsteady cavitation on atwo-dimensional hydrofoil. The Proceedings: Fifth International Conference on NumericalShip Hydrodynamics, Hiroshima, Japan,1990:667-684.
    [115] Barske U M. Development of some unconventional centrifugal pumps. ARCHIVE:Proceedings of the Institution of Mechanical Engineers1847-1982(vols1-196),1960,174:437-461.
    [116]合肥通用机械研究所.高速部分流泵[G].1975.
    [117]合肥通用机械研究所高速泵课题组.高速部分流泵水力模型的试验研究.化工与通用机械,1976(2):1-17.
    [118]朱祖超.开式高速离心泵的试验研究.浙江大学学报(自然科学版),1999,33(2):34-38.
    [119]杨敏官.液态硫磺泵的特性分析及实验研究.江苏理工大学学报(自然科学版),2000,21(6):54-57.
    [120]范宗霖,王革田.切线泵的试验研究.水泵技术,2002(1):3-8.
    [121]朱祖超,麻明祥.小流量高扬程高速离心泵的加大流量设计.浙江大学学报(工学版),2001,35(1):11-15.
    [122]李新宏.部分流泵整机非定常流动数值计算及研究[博士学位论文].西安:西安交通大学,2003.
    [123]陈党民,李新宏,黄淑娟.部分流泵整机非定常流动数值模拟.工程热物理学报,2005,26(S1):89-92.
    [124]崔宝玲,朱祖超,林勇刚,等.不同形式高速离心叶轮内部流动的数值模拟.机械工程学报,2007,43(5):19-23.
    [125]柴立平,潘兵辉,石海峡,等.高速部分流泵CFD计算和优化设计.排灌机械工程学报,2010,28(3):211-214.
    [126]崔宝玲,赵瑞,张玉良,等.高速开式离心泵内部的流动特性研究.工程热物理学报,2010,31(4):601-605.
    [127]王福军,黎耀军,王文娥,等.水泵CFD应用中的若干问题与思考.排灌机械,2005,23(5):5-14.
    [128] Kuntz M, Garcin H, Guedes A, et al. Developments of CFX-TASCflow for unsteadyrotor-stator simulations in the frame of the European project HPNURSA.CFX Users Conference2000, Munich, Germany,2000.
    [129] Ding H, Visser F C, Jiang Y, et al. Demonstration and validation of a3d CFD simulationtool predicting pump performance and cavitation for industrial applications. Journal ofFluids Engineering,2011,133(1):11101-11114.
    [130] Barth T J, Jespersen D C. The design and application of upwind schemes on unstructuredmeshes. AIAA-89-0366,1989.
    [131]金忠升.部分流泵性能研究及应用[硕士学位论文].西安:西安电子科技大学,2007.
    [132] Hunt J, Wray A A, Moin P. Eddies, streams, and convergence zones in turbulentflows.Proceedings of the1988Summer Program, Stanford NASA Centre for TurbulenceResearch,1988:193-208.
    [133] Davis M P. Experimental investigation of the cavitation of aviation fuel in aconverging-diverging nozzle[Doctoral Disseration]. Indiana: the University of Notre Dame,2008.
    [134] Davis M P, Dunn P F, Thomas F O. Jet-fuel cavitation in a converging-divergingnozzle.FEDSM2007-37108,2007:385-390.
    [135] Dabiri S, Sirignano W A, Joseph D D. Cavitation in an orifice flow. Physics of Fluids,2007,19(7):072112-072120.
    [136] Martynov S B. Numerical simulation of the cavitation process in diesel fuelinjectors[Doctoral Disseration]. Brighton, England: The University of Brighton,2005.
    [137] Joseph D D. Cavitation and the state of stress in a flowing liquid. Journal of FluidMechanics,1998,366(1):367-378.
    [138] Arakeri V H, Acosta A J. Viscous effects in the inception of cavitation on axisymmetricbodies. Journal of Fluids Engineering,1973,95(4):519-527.
    [139] Alam M, Sandham N D. Direct numerical simulation of 'short' laminar separation bubbleswith turbulent reattachment. Journal of Fluid Mechanics,2000,403:223-250.
    [140] Spalart P R, Strelets M K. Mechanisms of transition and heat transfer in a separationbubble. Journal of Fluid Mechanics,2000,403:329-349.
    [141] Marxen O, Lang M, Rist U, et al. A combined experimental/numerical study of unsteadyphenomena in a laminar separation bubble. Flow, Turbulence and Combustion,2003,71(1):133-146.
    [142] Maucher U, Rist U, Kloker M, et al. DNS of laminar-turbulent transition in separationbubbles. In: High Performance Computing in Science and Engineering '99, Krause E, J gerW, Eds. Berlin: Springer-Verlag,1999:279-294.
    [143] Zaki T A, Durbin P A, Wissink J, et al. DNS of transition to turbulence in a linearcompressor cascade.In:High Performance Computing in Science and Engineering,Garching/Munich2007, Wagner, Steinmetz, Bode, Eds. Berlin: Springer-Verlag,2009:431-440.
    [144] Zaki T, Durbin P, Wissink J, et al. Direct numerical simulation of by-pass andseparation-induced transition in a linear compressor cascade.51st ASME Turbo Expo2006,2006:1421-1429.
    [145] Yang Z, Voke P R. Large-eddy simulation of boundary-layer separation and transition at achange of surface curvature. Journal of Fluid Mechanics,2001,439:305-333.
    [146] Roberts S K, Yaras M I. Large-Eddy simulation of transition in a separation bubble. Journalof Fluids Engineering,2006,128(2):232-238.
    [147] Mcauliffe B R, Yaras M I. Numerical study of instability mechanisms leading to transitionin separation bubbles. Journal of Turbomachinery,2008,130(2):21006-21008.
    [148] Zhang Q. Laminar-turbulent transition for attached and separated flow[DoctoralDisseration]. Lexington, KY: University of Kentucky,2010.
    [149] Zhang X, Gao Z. A numerical research on a compressibility-correlated Langtry’s transitionmodel for double wedge boundary layer flows. Chinese Journal of Aeronautics,2011,24(3):249-257.
    [150] Corral R, Gisbert F. Prediction of separation-induced transition using a correlation-basedtransition model. ASME Conference Proceedings,2010,2010(44021):897-908.
    [151] Winklhofer E, Kull E, Kelz E, et al. Comprehensive hydraulic and flow fielddocumentation in model throttle experiments under cavitation conditions.Proceedings ofthe ILASS-Europe Conference, Zurich, Switzerland,2001:574-579.
    [152]杨庆,张建民,戴光清,等.脉动压力对空化的影响.四川大学学报(工程科学版),2004,36(4):19-21,30.
    [153]孙小鹏,薛盘珍,吕家才.泄流的压力脉动及其概化设计.水动力学研究与进展(A辑),1997(1):102-112.
    [154] Bachert R, Stoffel B, Dular M. Unsteady cavitation at the tongue of the volute of acentrifugal pump. Journal of Fluids Engineering,2010,132(6):61301-61306.
    [155] Nagahara T, Inoue Y, Sato T, et al. Investigation of the Flow Field in a Multistage Pump byUsing LES. ASME Conference Proceedings,2005,2005(41987):1321-1329.
    [156]丛国辉,王福军.双吸离心泵隔舌区压力脉动特性分析.农业机械学报,2008(6):60-63.
    [157]康伟,祝宝山,曹树良.离心泵螺旋形压水室内流场的大涡模拟.农业机械学报,2006(7):62-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700