用户名: 密码: 验证码:
重金属污染物在红壤中迁移规律及修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是组成地球生态环境的重要部分,也是人类生存的宝贵资源。近年来,随着采矿业、冶金业、铸造业以及电子业的迅猛发展,土壤重金属污染状况日益严重。在过去50年里,粗略统计排放到全球环境中的镉达到2.2×104吨、铜9.39×105吨、铅7.83×105吨、锌1.35×106吨。其中有相当一部分进入土壤,致使世界各国土壤出现不同程度的污染问题。土壤重金属污染致使人类生存环境质量恶化,导致各类污染事件频发,严重危害生态系统的良性循环和人类的生存健康。因而,土壤重金属污染修复技术成为研究热点。
     目前各国都在为研究与开发重金属污染土壤修复技术作出努力,常规的重金属污染土壤修复技术有物理修复技术、化学修复技术、植物修复技术、微生物修复技术以及电动力学修复技术等。但以上土壤修复技术存在运行费用高、片面强调土壤污染而忽视了土壤——地下水系统的整体性、对环境造成二次污染、可操作性差等局限性,因而能够工程化的土壤修复技术十分有限。
     针对以上问题,本课题以我国南昌地区特征土壤——红壤作为研究对象,以铜和镍为特征污染物,提出新的土壤修复技术——可降解螯合剂淋洗法+可渗透反应格栅(chelating agent-permeable reactive barrier,CH-PRB)治理土壤重金属污染。淋洗法是传统的土壤修复技术,国内外的环境工作者已具备完善的工程经验。可渗透反应格栅(permeable reactive barrier,PRB)技术是一种新的地下水处理技术,该技术在国外已有广泛应用。CH-PRB土壤修复技术将土壤和地下水视为整体,在修复重金属污染土壤的同时,处理受污染的地下水。且CH-PRB技术采用经筛选的、可生物降解螯合剂作为淋洗剂,在保证土壤中重金属物质去除效果的同时,避免了对环境造成的二次污染。
     本课题通过人工模拟污染红壤,进行重金属(铜和镍)在红壤中赋存形态特征研究。研究证明:在铜污染红壤中铜的赋存形态以可交换态为主,占总含铜量的31.98%;在镍污染红壤中镍的赋存形态以可残渣态为主,占总含镍量的57.49%,其次才是可交换态,占总含镍量的29.53%。
     搭建直径为30cm,高200cm的土柱试验,以硫酸铜溶液为特征污染物,以浅层积水,自由漫流进水形式向土柱持续注入硫酸铜溶液,模拟硫酸铜溶液在红壤中的扩散过程,研究重金属在红壤中的扩散、赋存形态的分布及迁移规律,并运用瞬间剖面法计算出重金属溶液在红壤中的水动力弥散系数,建立重金属污染物在埋深小于100cm土层中水动力弥散系数分布方程。以对流——弥散模型(Convective——Dispersive Model,CD模型)为基础,耦合水动力弥散系数分布方程,建立了土壤表面存在重金属溶液浅层积水条件下,红壤中重金属溶质迁移模型。
     通过烧杯试验,对比研究壳聚糖、EDTA及柠檬酸三钠三种螯合剂对红壤中重金属(铜和镍)的浸提效果。研究表明,生物螯合剂——壳聚糖可作为淋洗液应用于修复红壤的重金属污染,且多种重金属共存时,在浸提过程中各种金属间表现出明显的协同作用。
     构建CH-PRB土壤修复技术系统,以0.2g/L壳聚糖溶液作为淋洗液对直径20cm,高100cm,平均含铜量为2.34mg/g铜污染土柱进行修复试验。修复进行42天,待修复土壤中铜的去除率达到98.29%,土壤中残存的重金属铜含量仅为0.04mg/g,低于《土壤环境质量标准》(GB15618-1995)中规定的二级土壤含铜量最高限值——0.05mg/g。为了高效去除土壤淋洗渗出液及地下水中存在的重金属污染物质,本课题采用平行对比试验,对可渗透反应格栅中的填料材料进行筛选。研究证明,废铁屑+活性炭+粉煤渣按照1:1:1体积比混合,作为CH-PRB土壤修复技术中可渗透反应格栅的填料,可对土壤淋洗渗出液及地下水中的重金属和有机物起到很好的去除效果。最终出水水质为:[Cu]=0mg/L,COD=9.80mg/L,pH值=5.11-5.12。研究结果证明CH-PRB土壤修复技术可高效、稳定、持续处理红壤及地下水中重金属污染物质。
     参照连续搅拌反应器(CSTR),建立可降解螯合剂淋洗系统的反应动力学模型,确立了污染土壤体积、土壤中重金属提取率与淋洗液停留时间、淋洗时间等因素之间的关系,初步构建了CH-PRB土壤修复技术的设计体系,为该技术的推广与应用提供参考。
Soil is an important part of ecological environment, and is one of the main resources which humanbeings must depend upon for survival. In the recent years, the heavy metal pollution of soil hasincreased with the development of mining industry, metallurgical industry, foundry industry andelectronic industry. According to statistics, in the past50years, the emission amount of cadmium was2.2×104tons, copper was9.39×105tons, lead was7.83×105tons, and zinc was1.35×106tons. Aconsiderable portion of those heavy metals had been absorbed into the system of soil and undergroundwater, which caused heavy metal pollutions in the world. That means the heavy metal pollution has ledto deterioration of soil quality, and caused frequent heavy metal contaminations in human society. Theheavy metal pollution of soil has been a threat to the circulation of soil ecosystem and the human beingsurvival. Therefore, the heavy metal remediation technology has become a research hotspot.
     The physical technology, the chemical technology, the phytoremediation technology, the microbialremediation technology and the electro-chemical technology are the traditional technologies to restorethe soil heavy metal contaminnation. Although the researchers are working for developing the heavymetal remediation technology, those remediation technologies still have some problems, such as, thehigh operating cost, the pollution of underground water, the secondary pollution to the environment,and the feasibility. So few technologies can be applied in engineerings.
     According to the drawbacks, the new soil remediation technology—CH-PRB (biodegradable chelatingagent+permeable reactive barrier) was raised in the project. In this project, the red soil was the object of thestudy, and the copper and the nickel were the specific pollutants. Leaching method is the traditional soilremediation technology and the researchers have enough engineering experiences on it. The technology ofPRB (permeable reactive barrier) is a new groundwater treatment technology, which has been widely used inforeign countries. The two techniques are combined in the CH-PRB technology, which is able to restore thesoil and the polluted groundwater which contaminated by heavy metal at the same time. And thegreen-chelating agents are used in the CH-PRB technology as the eluents to remove the heavy metal in thesoil, while avoiding secondary pollution in the environment.
     The study of the copper and nickel speciations in the artificial-contaminated soil were performed toevaluate the heavy metals distribution in the red soil. The analyzed results have indicated: the exchangeablefraction of copper was the high proportion in the copper-contaminated soil, which was31.98%, while inthe nickel-contaminated soil the most portion was observed in the residual form, up to57.49%, and theexchangeable fraction was29.53%.
     Conducting the soil column experiment(diameter was20cm, height was100cm), with the solution ofCuSO4slowly filting down into the soil column simulating the diffusion of copper in the red soil, themigration regularity of copper in the red soil was studied and the hydrodynamic diffusion coefficient in thedifferent layers were calculated using the instantaneous profile method. Basing the advection dispersion model and using the finite-difference time-domain method, the heavy metal migration model wasestablished, which coupled with the hydrodynamic diffusion coefficient.
     By the beaker test, with the copper and the nickel were the specific pollutants, the heavy metalsextraction efficiencies of chitosan, ethylene diamine citric acid, and sodium citrate from the red soilwere compared in the project. The studies have shown that the biological chelating agent-chitosancould be used as the eluent in the leaching process to remediate the heavy metal contaminated red soil,and the coexistence of a variety of heavy metals would make the heavy metals show good synergisticproperties in the process of extraction.
     With the model of the soil remediation process of CH-PRB, the contaminated soil columnexperiment, which diameter was20cm, height was100cm, and copper content was2.340mg/g, wasstudied. Using the0.2g/L chitosan solution as the eluent, the removal efficieny of the tested soil columnwas98.29%, and the remaining copper content in the soil was only0.04mg/g, which was lower thanthe upper limit of copper content in the second class soil in Environmental Quality Standards for Soils(GB15618-1995). By parallel experiments, the results have shown that the reaction filler which wasconsisted of the iron scrap, activated carbon powder, and cinder with the volume rate of1:1:1, was themost effective matter filled in the permeable reactive barrier. This kind of reaction filler could removethe heavy metal in the exudates of the contaminated soil column and in the underground water. Thefinal influent with [Cu]=0mg/L, COD=9.80mg/L, pH=5.11-5.12was obtained. The studies havedemonstrated that the soil remediation process of CH-PRB could restore the heavy metal contaminatedred soil efficiently and steadily, and this process was sustainable.
     Referring to the continuous stirred tank reactor (CSTR), the reaction kinetics model of thebiodegradable chelating agent leaching system in the CH-PRB was established. Furthermore, therelation between the extraction efficiency of the heavy metal, the volume of contaminated soil and theresidence time of eluent, the leaching time were discussed. At the same time, the initial construction ofthe CH-PRB soil remediation process design system was set up, which will offer references for theapplication of this new process.
引文
[1]毕全.壳聚糖对低浓度铜离子的吸附研究:[硕士学位论文].南京:南京理工大学图书馆,2009.11~13
    [2] L. S. Brit, A. Tom, F. Eirik, et al. Heary metal surveys in Nordic lakes;concentrations, geographic patterns and relation to critical limits. Ambio,2001,30(1):2~10
    [3] R. A. Sutherland, C. A. Tolosa, F. M. G. Tack, et al. Characterization of selectedelement concentrations and enrichment ratios in background andanthropogenically impacted roadside areas. Archives of EnvironmentalContamination and Toxicology,2000,38(4):428~438
    [4]廖金凤.海南省土壤中的镍.中山大学学报(自然科学版),1998,37(S2):16~19
    [5]杨定清,傅绍清,青长乐.镍的作物效应及临界值研究.四川环境,1994,13(1):19~23
    [6]康立娟,赵明宪,栾国有. Ni在稻谷各部位累积规律的研究.东北师大学报自然科学版,2003,35(4):68~71
    [7] S. P. Mcgrath, F. J. Zhao, E. Lombi. Phytoremediation of metals, metalloids andradionuclides. Advances in Agronomy,2002,75(1):156~158
    [8] C. Keller, D. Hammer, A. Kayser, et al. Root development and heavy metalphytoextraction efficiency: comparison of different plant species in the field. PlantSoil,2003,249(1):67~81
    [9]严密,杨红飞,姚婧等.马唐对Pb污染土壤的修复作用.土壤通报,2007,38(3):549~552
    [10]王新,贾永锋,杨树.落叶松对土壤重金属的吸收及修复研究.生态环境,2007,16(2):432~436
    [11] D. E. Salt, R. D. Smith, I. Raskin. Annual review of plant physiology and plantmolecular biology. Phytoremediation,1998,49(5):643~668
    [12]陈亚华,李向东,刘红云等. EDTA辅助下油菜修复铅污染土壤的潜力.南京农业大学学报,2002,25(4):15~18
    [13] Z. G. Shen, X. D. Li, C. C. Wang, et al. Lead phytoextraction fromcontaminatedsoil with high-biomass plant species. Journal of Environmental Quality,2002,31(11):1893~1900
    [14] M. J. Blaylock, D. E. Salt, S. Dushenkov, et al. Enhanced accumulation of Pb inIndian mustard by soil applied chelating agents. Environmental Science&Technology,1997,31(3):860~865
    [15]杨智宽,舒俊林,刘良栋.壳糖螯合剂对Pb污染土壤植物修复的促进作用.农业环境科学学报,2006,25(1):86~89
    [16]周建民,党志,陈能场等. NTA对玉米体内Cu Zn的积累及化学形态的影响.农业环境科学学报,2007,26(2):453~457
    [17] X. Chen, S. Schauder, N. Potier, et al. Structural identification of abacterialquorum–sensing signal containing boron. Nature,2002,415(1):545~549
    [18] N. R. Pace, D. A. Stahl, D. J. Lane, et al. The analysis of natural microbialpopulations by ribosomal RNA sequences. ASM News,1985,51(9):4~12
    [19] A. K. Johri, M. Dua, A. Singh, et al. Characterization and regulation of catabolicgenes. Critical Reviews in Microbiology,1999,25(4):245~273
    [20] G. S. Sayler, J. T. Fleming, D. E. Nivens. Gene expression monitoring in soils bymRNA analysis and gene lux fusions. Current Opinion in Biotechnology,2001,12(5):455~460
    [21] A. Lipski, U. Friedrich, K. Altendorf. Application of rRNA–targetedoligonucleotide probes in biotechnology. Applied Microbiology andBiotechnology,2001,56(11):40~57
    [22]孟庆恒,傅珊,张海江等.微生物在铬污染土壤中的分布及铬累积菌株的初步筛选.农业环境科学学报,2007,26(2):472~475
    [23] M. M. Page, C. L. Page. Electroremediation of contaminated soils. Journal ofEnvironmental Engineering,2002,128(3):208~219
    [24] Y. B. Acar, A. N. Alshawabkeh. Principle of electrokinetic remediation.Environmental Science&Technology,1993,27(13):2638~2647
    [25] S. K. Puppala, A. N. Alshawabkeh, Y. B. Acar, et al. Enhancedelectrokineticremediation of high sorption capacity soil. Journal of Hazardous Materials,1997,55(1-3):203~220
    [26]周东美,仓龙,邓昌芬.络合剂和酸度控制对土壤铬电动过程的影响.中国环境科学,2005,25(1):10~14
    [27]钱暑强,金卫华,刘铮.从土壤中去除Cu2+的电修复过程.化工学报,2002,53(3):236~240
    [28] D. B. Gent, R. M. Bricka, A. N. Alshawabkeh, et al. Bench and field-scaleevaluation of chromium and cadmium extraction by electrokinetics. Journal ofHazardous Materials,2004,110(1-3):53~62
    [29] R. Marks, Y. Acar, R. Gale. Electrochemical decontamination of mixed wastes andslurries. U.S.A.,5458747,1995.
    [30] A. N. Alshawabkeh, R. M. Bricka, D. B. Gent. Pilot-Scale Electrokinetic cleanupof lead-contaminated soils. Journal of Geotechnical&GeoenvironmentalEngineering,2005,131(3):283~291
    [31] Z. M. Li, J. W. Yu, S. I. Neretniek. A new approach to electrokinetic remediation ofsoils polluted by heavy metals. Journal of Contaminant Hydrology,1996,22(3-4):241~253
    [32] S. L. Raymond, Y. L. Loretta. Enhancement of electrokinetic extraction fromlead-spiked soils. Journal of Environmental Engineering,2000,126(9):849~857
    [33] A. T. Yeung, C. N. Hsu, R. M. Menon. EDTA-enhanced electrokinetic extractionof lead. Journal of Geotechnical&Geoenvironmental Engineering,1996,122(8):666~673
    [34] K. Popov, V. Yachmenev, A. Kolosov, et al. Effect of soil electroosmotic flowenhancement by chelating reagents. Colloids and Surfaces A: Physicochemical andEngineering Aspects,1999,160(2):135~140
    [35] M. Pazos, M. A. Sanroma, C. Cameselle. Improvement in electrokineticremediation of heavy metal spiked kaolin with the polarity exchange technique.Chemosphere,2006,62(5):817~822
    [36]孟凡生,王业耀.污染高岭土电动修复适宜电压研究.农业环境科学学报,2007,26(2):449~452
    [37]郑燊燊,申哲民,陈学军等.逼近阳极法电动力学修复重金属污染土壤.农业环境科学学报,2007,26(1):240~245
    [38]张丰如,何江.微波消解-紫外分光光度法测定水中总氮.分析测试学报,2006,25(3):112~114
    [39]刘雯.微波萃取气相色谱法测定土壤中六六六滴滴涕.环境科学与技术,2005,28(S1):35~36
    [40] H. S. Tai, C. J. Jou. Immobilization of chromiu contaminated soil by means ofmicrowave energy. Journal of Hazardous Materials,1999,65(3):267~275
    [41] C. G Jou. An efficient technology to treat heavy metal lead contaminated soil bymicrowave radiation. Journal of Environmental Management,2006,78(1):124~126
    [42] R. A. Abramovitch, C. Q. Lin, E. Hicks, et al. Insitu remediation of soilscontaminated with toxic metal ions using microwave energy. Chemosphere,2003,53(9):17~19
    [43]徐莉,滕应,张雪莲等.多氯联苯污染土壤的植物-微生物联合田间原位修复.中国环境科学,2008,28(7):646~650
    [44]滕应,骆永明,高军等.多氯联苯污染土壤菌根真菌-紫花苜蓿-根瘤菌联合修复效应.环境科学,2008,29(10):2925~2930
    [45] X. L. Zhuang, J. Chen, H. Shim, et al. New advances in plant growth-promotingrhizobacteria for bioremediation. Environment International,2007,33(3):406~413
    [46] Z. A. Hickman, B. J. Reid. Earthworm assisted bioremediation: theory and practice.Environment International,2008,34(7):1072~1081
    [47] E. Meers, F. M. G. Tack, S. van Slycken, et al. Chemically assisted phytoextraction:A review of potential soil amendments for increasing plant uptake of heavy metals.International Journal of Phytoremediation,2008,10(5):390~414
    [48] N. Kulik, A. Goi, M. Trapido, et al. Degradation of polycyclic aromatichydrocarbons by combined chemical pre-oxidation and bioremediation in creosotecontaminated soil. Journal of Environmental Management,2006,78(4):382~391
    [49] K. Nam, J. J. Kukor. Combined ozonation and biodegradation for remediation ofmixture of polycyclic aromatic hydrocarbons in soil. Biodegradation,2000,11(1):1~9
    [50] R. E. Saichek, K. R. Reddy. Electrokinetically enhanced remediation ofhydrophobic organic compounds in soils: a review. Critical Reviews inEnvironmental Science and Technology,2005,35(2):115~192
    [51] T. Alcantara, M. Pazos, S. Gouveia, et al. Remediation of phenanthrene fromcontaminated kaolinite by electroremediation-fenton technology. Journal ofEnvironmental Science and Health, Part A: Toxic/Hazardous Substances andEnvironmental Engineering,2008,43(8):901~906
    [52] G. Maini, A. K. Sharman, G. Sunderland, et al. An intergrated methodincorporating sulfur-oxidizing bacteria and electrokinetics to enhance of copperfrom contaminated soil. Environmental Science&Technology,2000,34(6):1081~1087
    [53] M. Arest, A. Dibenedetto, C. Fragale, et al. Thermal desorption ofpolychlorobiphenyls from contaminated soils and their hydrodechlorination usingPd-and Rh-supported catalysts. Chemosphere,2008,70(6):1052~1058
    [54] X. T. Liu, G. Yu. Combined effect of microwave and activated carbon on theremediation of polychlorinated biphenyl-contaminated Soil. Chemosphere,2006,63(2):228~235
    [55] M. M. Higarashi, W. E. Jardim. Remediation of pesticide contaminated soil usingTiO2mediated by solar light. Catalysis Today,2002,76(2-4):201~207
    [56]骆永明.污染土壤修复技术研究现状与趋势.化学进展,2009,21(2/3):558~565
    [57] K. J. Cantrell, D. I. Kaplan. Retention of zero-valent iron colloids by sand columns:application to chemical barrier formation. Journal of Environmental Quality,1995,25(5):1086~1094
    [58] K. J. Cantrell, D. I. Kaplan, T. J. Gilmore. Injection of colloedal Fe0particles insand with shear-thinning fluids. Journal of Environmental Engineering,1997,123(8):786~791
    [59] K. J. Cantrell, D. I. Kaplan, T. W. Wietsma. Zero-valent iron for the in-situremediation of selected metals in groundwater. Journal of Hazardous Materials,1995,42(2):201~212
    [60] G. B. Wickramanayake, A. R. Gavaskar, A. Chen. Chemical oxidation and reactivebarriers: remediation of chlorinated and recalcitrant compounds. In: The SecondInternational Conference on Remediation of Chlorinated and RecalcitrantCompounds. Ohio: Battelle Press,2000.
    [61]周启星,林海芳.污染土壤及地下水修复的PRB技术及展望.环境污染治理技术与设备,2001,2(5):48~53
    [62]罗战祥,揭春生,毛旭东.重金属污染土壤修复技术应用.江西化工,2010,2(6):100~103
    [63] J. W. Huang, J. Chen, W. R. Berti, et al. Phytor-emediation of lead-contaminatedsoil: role of synthetic chelates in lead phytoextraction. Environmental Science&Technology,1997,31(3):800~805
    [64]陈苏,孙丽娜,孙铁珩等. Cd2+和Pb2+在不同污染土壤中的吸附-解吸行为研究.应用生态学报,2007,18(8):1819~1826
    [65]张伟安,汪玉庭,杨智宽.巯基壳聚糖对增强污染土壤中汞提取量的影响.环境污染与防治,2007,29(6):411~4131
    [66] J. W. Huang, J. Chen, W. R. Bfrti, et al. Phytoremediation of lead contaminatedsoil: role of synthetic chelate in lead phytoextraction. Environmental Science&Technology,1997,31(3):800~805
    [67]刘良栋,舒俊林,杨智宽.壳聚糖与EDTA对铅污染土壤中铅的解吸的影响研究.农业环境科学学报,2006,25(2):345~348
    [68]蒋挺大.壳聚糖.北京:化学工业出版社,2005.
    [69]张平.壳聚糖吸附金属离子的研究.湿法冶金,1994,49(1):16~20
    [70]徐洪峰.壳聚糖鳌合剂去除水中Cu2+的研究.环境工程,2002,12(6):6~8
    [71]李琼,余燕平,王振东.壳聚糖对废水中Cu2+的吸附研究.工业水处理,2003,23(4):30~32
    [72]周以力,吴建一.壳聚糖对铅离子吸附的研究.嘉兴学院学报,2003,15(6):20~25
    [73] D. W. Kang, H. R. Choi, D. K. Kweon. Stability constants of amidoximateschitosan-gpoly copolymer (acrylonitrile) for heavy metal ions. Applied PolymerScience,1999,73(4):469~476
    [74]中国土壤学会农业化学专业委员会编.土壤农业化学常规分析方法.北京:科学出版社,1983.
    [75] A. Tessier, P. G. C. Campbell, M. Bisson. Sequential extraction procedures for thespeciation of particulate trace metals. Analytical Chemistry,1979,51(7):844~850
    [76]丁疆华,温琐茂,舒强等.土壤环境中镉,锌形态转化的探讨.城市环境与城市生态,2001,14(2): l~10
    [77]李宗利.污灌土壤中Pb Ed形态的研究.农业环境保护,1994,2(4):152~157
    [78]刘霞,刘树庆,王胜爱等.河北主要土壤中Cr和Pb的形态分布及其影响因素.土壤学报,2003,40(3):393~401
    [79]符建荣.土壤中铅的积累及污染的农业防治.农业环境科学学报,1993,12(5):223~232
    [80]刘云国,李欣,徐教等.土壤重金属锰污染的植物修复与土壤酶活性.湖南大学学报,2002,29(4):11~21
    [81]莫争,王春霞,陈琴等.重金属Cu, Pb, Zn, Cr, Cd在土壤中的形态分布和转化.农业环境保护,2002,21(1):9~12
    [82]张宝杰.城市生态与环境保护.哈尔滨:哈尔滨工业大学出版社,2002.
    [83]隋红建,饶纪龙.土壤溶质运移的数学模拟研究—现状及展望.土壤学进展,1992,20(5):1~7
    [84]宋树林.地下水弥散系数的测定.海岸工程,1998,17(3):61~65
    [85] Indrek Porro. Comparison of batch and column methods for determining strontiumdistribution coefficients for unsaturated transport in basalt. Environmental Science&Technology,2000,34(9):1679~1686
    [86]程金茹,郭择德.黄土包气带土壤水动力弥散系数的测定研究.辐射防护通讯,2001,21(5):24~26
    [87]邵爱军.土壤水动力弥散系数的室内测定.土壤学报,2002,39(2):185~189
    [88]张毅,姜瑞忠,郑小权.井间示踪剂分析技术.石油大学学报(自然科学版),2001,25(2):76~83
    [89]李锡夔.饱和-非饱和土壤中污染物运移过程的数值模拟.力学学报,1998,30(3):321~331
    [90]任理,李春友,李韵珠.粘性土壤溶质运移新模型的应用.水科学进展,1997,8(4):321~328
    [91]任理,李保国,叶素萍等.稳定流声中饱和均质土壤盐分迁移的传递函数解.水科学进展,1999,10(2):107~112
    [92] Buchter, C. Hinz, M. Gfeller, et al. Cadmium transport in an unsaturated stonysubsoil monolith. Soil Science Society of America Journal,1996,60(3):716~721
    [93]魏新平,王文焰,王全九.用对流扩散方程确定非饱和土壤水动力弥散系数.灌溉排水,2000,19(2):48~51
    [94]刘青勇,刘春华,李存法等.反求弥散度的一种数值解法.水文,2000,20(4):44~45
    [95]刘阳.页岩介质中放射性核素迁移的实验研究及其数学模型.长春科技大学学报,2001,31(3):78~82
    [96] T. Iida, K. Ueki, H. Tsukahara, et al. Point physical model of movement of ionsthrough natural snow cover. Journal of Hydrology,2000,235(3-4):170~82
    [97] J. Yan. Effect of mineral colloids on virus transport through saturated sandcolumns. Journal of Environmental Quality,2000,29(2):532~39
    [98]翟春生,邵爱军,彭建平等.土壤水动力弥散系数的室内测定.南水北调与水利科技,2007,5(5):87~89.
    [99]邵爱军.土壤水盐运移数值模拟.北京:地质出版社,2007.
    [100]雷至栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,2002.
    [101]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨.生态学杂志,2004,23(1):65~68
    [102]周启星,黄国宏.环境生物地球化学及全球环境变化.北京:科学出版社,2001.
    [103]骆永明.金属污染土壤的植物修复.土壤,1999,31(5):261~265
    [104]骆永明.强化植物修复的螯合诱导技术及其环境风险.土壤,2000,32(2):57~61
    [105] S. Petrov, V. Nenov. Removal and recovery of copper from wastewater by acomplexation-ultrafiltration process. Desalination,2004,162(3):201~209
    [106] C. Lindim, A. Varennes, M. O. Torres, et al. Remediation of sandy soil artificiallycontaminated with cadmium using a polyacrylate polymer. Communications inSoil Science and Plant Analysis,2001,32(9-10):1567~1574
    [107]陈亮.壳聚糖吸附处理废水的研究进展.四川环境,2001,20(3):19~23
    [108] M. W. Wan, G. P. Ioana, T. L. Hsuan, et al. Copper adsorption through chitosanimmobilized on sand to demonstrate the feasibility for in situ soil decontamination.Carbohydrate Polymers,2004,5(3):249~254
    [109]段新芳.甲壳素和壳聚糖的研究及其在农林业中的应用.世界林业研究,1998,11(3):9~141
    [110]黄丽萍.甲壳质壳聚糖在农业上的应用.吉林农业科学,1998,39(4):84~87
    [111]国家环境保护总局编.水和废水检测分析方法.(第四版).北京:中国环境科学出版社,2002.88~284
    [112] R. W. Peters, L. Shem. Use of chelating agents for remediation of heavy metalcontaminated soil. Washington D. C.: American Chemical Society,1992.70~84
    [113] Y. Gao, A. T. Kan, M. B. Tomson. Critical evaluation of desorption phenomena ofheavy metals from natural sediments. Environmental Science&Technology,2003,37(24):5566~5573
    [114] R. A. Muzzarelli. Chitin. New York: Pergamon press,1977.134~135
    [115]徐景华,鲁越青,李益民等.壳聚糖对重金属离子吸附作用的研究.水处理技术,1998,24(6):359~362
    [116] M. D. Andrade, S. O. Prasher, W. H. Hendershot. Optimizing the molarity of aEDTA washing solution for saturated-soil remediation of trace metal contaminatedsoils. Environmental Pollution,2007,147(3):781~790
    [117] M. A. M. Kedziorek, A. Dupuy, A. C. M. Bourg. Leaching of Cd and Pb from apolluted soil during the percolation of EDTA: laboratory column experimentsmodeled with a non-equilibrium solubilization step. Environmental Science&Technology,1998,32(11):1609~1614
    [118]蒋挺大.甲壳素.(第二版)北京:化学工业出版社,2005.
    [119]骆永明.中国主要土壤环境问题及对策.南京:河海大学出版社,2008.32~45
    [120] G. Dermont, M. Bergeron, G. Mercier, et al. Soil washing for metal removal: areview of physical/chemical technologies and field applications. Journal ofHazardous Materials,2008,152(1):1~3
    [121] G. R. Eykholt, C. R. Elder, C. H. Benson. Effects of aquifer heterogeneity andreaction mechanism uncertainty on a reactive barrier. Journal of HazardousMaterials,1999,68(1):73~96
    [122] D. W. Blowes, C. J. Ptacek, S. G. Benner, et al. Treatment of inorganiccontaminants using permeable reactive barriers. Journal of ContaminantHydrology,2000,45(1-2):123~137
    [123] R. Wilkin, C. M. Su, R. Ford, et al. Chromium-removal processes duringgroundwater remediation by a zerovalent iron permeable reactive barrier.Environmental Science&Technology,2005,39(12):4599~4605
    [124] D. Schafer, R. Kober, A. Dahmke. Competing TCE and cis-DCE degradationkinetics by zero-valent iron-experimental results and numerical simulation.Journal of Contaminant Hydrology,2003,65(3-4):183~202
    [125] S. R. Day, S. F. O'Hannesin, L. Marsden. Geotechnical techniques for theconstruction of reactive barriers. Journal of Hazardous Materials,1999,67(3):285~297
    [126] Y. Furukawa, J. W. Kim, J. Watkins, et al. Formation of ferrihydrite and associatediron corrosion products in permeable reactive barriers of zero-valent iron.Environmental Science&Technology,2002,36(24):5469~5475
    [127]陈苏,孙丽娜,晁雷等.不同浓度组合的镉铅在不同污染负荷土壤中的吸附-解吸动力学行为.应用基础与工程科学学报,2007,15(1):34~44
    [128]丁真真.中国农田土壤重金属污染与其植物修复研究.水土保持研究,2007,14(3):25~27
    [129] J. W. Huang, J. J. Chen, W. R. Berti, et al. Phytoremediation of lead-contaminatedsoils: role of synthetic chelates in lead phytoextraction. Environmental Science&Technology,1997,31(3):800~805
    [130] J. Wu, F. C. Hsu, S. D. Cunningham. Chelate-assisted Pb phytoextration: Pbavailability, uptake and translocation constraints. Environmental Science&Technology,1999,33(11):1898~1904
    [131]姜理英,杨肖娥,石伟勇等.植物修复技术中有关土壤重金属活化机制的研究进展.土壤通报,2003,34(2):154~157
    [132]陈能场,陈怀满.重金属在根际中的化学行为.土壤学进展,1993,21(1):9~14
    [133] X. Xian. Effect of chemical form of cadmium, zinc and lead in polluted soils ontheir uptake by cabbage plants. Plant and Soil,1989,113(2):257~264
    [134] B. Szteke, R. Jedrzejczak. Influence of the environmental factors on cadmiumcontent in strawberry fruit. Fruit Science Reports,1989,16(1):1~6
    [135]闫峰,刘合满,梁东丽等.不同土壤对Cr吸附的动力学特征.农业工程学报,2008,24(6):21~25
    [136]吴虹霁.西南某地红壤中铯的吸附动力学研究:[硕士论文].成都:成都理工大学图书馆,2007.26~27
    [137] F. J. Hingston. A review of anion adsorption. Ann Arbor: Ann Arbor SciencePublishers,1981.51~90
    [138] R. M. Powell. Permeable reactive barrier technologies for contaminant remediation.Washington D. C.: United States Environmental Protection Agency,1998.
    [139] S. J. Morrison, D. R. Metzler, B. P. Dwyer. Removal of As, Mn, Mo, Se, U, V andZn from groundwater by zero-valent iron in a passive treatment cell: reactionprogress modeling. Journal of Contaminant Hydrology,2002,56(1-2):99~116
    [140] H. L. Lien, R. T. Wilkin. High level arsenite removal from groundwater byzero-valent iron. Chemosphere,2005,59(3):377~386
    [141] R. T. Wilkin, R. W. Puls, G. W. Sewell. Long-term performance of permeablereactive barriers using zero-valent iron: an evaluation at two sites. Washington D.C.: United States Environmental Protection Agency,2002.
    [142]陆泗进,王红旗,杜琳娜.污染地下水原位治理技术—透水性反应墙法.环境污染与防治,2008,30(6):452~457
    [143] T. M. Sivavce, D. P. Horney. Reductive dechlorination of chlorinated ethenes byiron metal. In: the209th ACS National Meeting. Anaheim: American ChemicalSociety,1995.2~6
    [144] R. W. Gillham. In Situ Treatment of groundwater: metal-enhanced degradation ofchlorinated organic contaminants. In: Advances in Groundwater Pollution Controland Remediation. Antalya: Kluwer Academic Publishers,1996.249~274
    [145] R. W. Gillham, S. F. O′Hannesin. Metal-Catalyzed Abiotic Degradation ofHalogenated Organic Compunds. In: the International Association ofHydrogeologists. Hsmilton: Environment Canada,1992.94~103
    [146] L. J. Matheson, P. G. Tratnyek. Reductive dehalogenation of chlorinated methanesby iron metal. Environmental Science&Technology,2008,28(12):2045~2053

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700