用户名: 密码: 验证码:
射流气动声场宏观与微观方法的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
射流气动噪声问题引起了越来越多的关注,本文从宏观与微观角度出发,分别用FEM、FVM、LBM、MDM和谐振子方法等研究射流气动声场问题,并作了某些研究探索。
     对于贯流风机非轴对称射流组成的受限空间旋转射流气动声场,本文用宏观传统的气动声学计算方法,研究了它的旋转射流特性及其房间流场的气流组织,数值分析和实验测量了因流动致声的有关对应监测特征点的静压频谱及功率谱密度分布。
     对于轴对称管道旋转射流流动,采用定常—非定常—LES的大涡模拟方案,研究了旋转射流特性、压力频谱与声压及其声传播问题。动叶的卡门涡和叶顶泄漏涡,以及叶片前缘产生的近壁叶道涡是动叶组特色涡。涡声的源头位于前缘和尾缘。流场外侧的湍流粘性和有效粘性均大于中部,加剧了声音耗散,声压的幅射重点指向轴线四周。
     对于轴对称圆射流运动,本文用有限元方法构造了三维圆喷嘴模型。在射流出口设置空气的阻抗边界条件,用Skyline求解方法,对三种高雷诺数流动和两种低雷诺数流动进行数值分析,用以描述流场对应的声模态和对应频域的声场信息。圆射流的声压是以声阻抗率为特性的传播,呈现测量的退相干性。射流的声模态与管嘴的结构模态在大雷诺数下的高频率段重叠交叉,耦合作用不明显。大雷诺数下的声压指向性呈弱的非轴对称结构,而小雷诺数高马赫数的声压指向在近场是球形的。在高频部分的下游传递出锥状逆波,破坏了轴线两侧的波阵面,尤其是在上游轴线周侧。
     本文用介观方法对射流气动声场作了LBM编程计算。建立了C语言计算平台,其相对量值分析易达到10-9以上的时空精度, D2G9模型较适合展开声场计算,小周期的速度干扰声压计算与文献结果对比较好。
     采用分子动力学的Andresen柔性约束机制,对射流流场这一特定的巨正则系统进行了二维微尺度分子运动仿真研究,各处都表现出湍流的性质,速度脉动呈随机特性。Lagrange密度可以方便的以当地密度和压强进行计算,密度的时间变化近似有二周期特点。与壁面相互作用强烈产生较大的声压,壁面的随机碰撞是一种有效的控制方法。
     本文又提出了三势流组合成的复合势流模型,获得了各种声压分布。在点源内部,谐振子作用下的绝对值相比经典情况值较大,中间经历一个虚数“真空带”。双偶极子的内部声压类似于双帽子分布。势流作用下的射流声场,声压在近管口的轴线四周有很强的指向,而管径较大时,整个趋势和示值与文献计算较符合。
     本文的研究结果和某些探索,为进一步的声学微观机理研究做了一定铺垫。并为在分子和量子水平上研究宏观气动声场问题,提供了进一步的研究基础和可能的应用技术支持。
Jet aerodynamic noise causes more and more attention. This research aims to studyand analyze the jet aerodynamic sound behavior from macroscopic to microscopic aspects.FEM, FVM, LBM, MDM, and the harmonic oscillator method are adopted respectively,and make some exploration research.
     For the non-axisymmetric jet aerodynamic sound field of the confined space withcross flow fan, the rotating jet characteristics and room airflow organization are studiedwith the macro traditional aeroacoustic calculation method. The static pressure spectrumsand power spectral density distributions of the corresponding monitoring points areobtained by numerical analyses and experimental measure, which are induced by flow.
     For the axisymmetric rotating jet flow with guide vanes in pipe, the steady-unsteady-LES program is used to study the jet rotation, the pressure spectrum, soundpressure and sound transmission. It is shown that the rotor blades are the main sourcesurface. The Karman vortexes and tip leakage vortexes, passage vortexes from the leadingedge near the wall are the characteristics vortexes. Vortex-sound sources are located in theleading edges and the trailing edges. The turbulent viscosity and effective viscosity of thelateral flow field are larger than that of the middle, as exacerbated the sound of theturbulence dissipation, so sound pressure radiated focus to the environment of the axis.
     For the axisymmetric round jet movement, three-dimensional circular nozzle model isobtained with the infinte element method. Three high-Reynolds-number flows and twolow-Reynolds-number flows, with air impedance boundary condition, using Skylinemethod, to describe the acoustic modes corresponding to the flow field, and thecorresponding frequency-domain sound field information. Round jet show that the soundpressure spread with the acoustic impedance characteristic, showing the decoherencemeasurement. The acoustic modes of flow field overlap the nozzle structural modal in thelarge Reynolds number; cross-coupling is not obvious. Sound pressure distributions in thelarge Reynolds number display a weak non-axisymmetric structure, but the sounddistributions with the high Mach number and small Reynolds number in the near-field isspherical characteristic. In the high-frequency part the cone inverse waves from the downstream destroy the wave fronts on both sides of the axis, especially in the upstreamaround the axis.
     Micro jet pneumatic sound fields are obtained with the mesoscopic method. The LBMcomputing platform is created by C language. The results show that their relative values canbe more than10-9size accuracy and time price, this greatly improve the accuracy of theCFD simulation. D2G9model is more suited to expand the sound field calculations, thesound pressures with small period radius velocity disturb are better matched with theliterature results.
     Two-dimensional microscale grand canonical systems are simulated with Andresenflexible constraint mechanism by molecular dynamics. Throughout the flow field show thenature of the turbulence, and velocity fluctuations is random features. Lagrange density canbe easily calculated in local density and pressure, and there are2-cycle characteristics withthe time-variation of the density approximately. Stronger interaction with the wall producesa larger sound pressure, and so the random collision to the wall is an effective controlmethod.
     This paper proposed a composite potential flow model of three potential flows. Withinthe point source, the harmonic oscillator acting sound pressures are larger than the classicsituation, going through an imaginary vacuum belt. Within the dipole source, soundpressure is similar to dual-hat distribution. Under the action of the jet potential flow, soundpressure near the axis of the nozzle bient, there is a strong points, but only in large diametercondition, the whole trend and the values display a good match to the literaturecalculations.
     This study results and some exploration pave the way for further acoustic microscopicmechanism; provide a further basis for further study and possible application of technicalsupport for the macro aerodynamic sound field research in molecular and quantum levels.
引文
[1] A.D. O’Connell, M. Hofheinz, M. Ansmann, et el. Quantum ground state and sing-le-phonon control of a mechanical resonator. nature464(08967),2010.5,Vol.464:697-703
    [2] KOTAKE S. Molecular mechanical engineering. JSME international journal. SeriesB, fluids and thermal engineering,1995,38(1):1-7(4ref.)
    [3] Delfs, J., Heller, H. Aeroacoustics research in Europe-1996highlights: a summaryof last year’s activities in the six CEAS countries. Journal of Sound and Vibration,1997,204(4):609-622.
    [4] Voutsinas, S.G. Aeroacoustics research in Europe: the CEAS-ASC report on2005highlights. Journal of Sound and Vibration,2007,299(1):419-459.
    [5] Boden, H. Sarin, S. Aeroacoustics research in Europe: the CEAS-ASC report on1999highlights. Journal of Sound and Vibration,2000,237(3):477-482.
    [6] Ta'asan, S. Nark, D. M. An Absorbing Buffer Zone Technique for Acoustic WavePropagation, AIAAPaper,1999,595-0146.
    [7] Berenger, J.P. A Perfectly Matched Layer for the Absorption of ElectromagneticWaves. Journal of Computational Physics,1994,114(2):185-200.
    [8] Colonius, T. Modeling artificial boundary conditions for compressible flow. Annu.Rev. Fluid Mech,2004,36:315–345.
    [9] Lighthill, M. J. On sound generated aerodynamically II. Turbulence as a source ofsound. Proc R Soc,1954, A222:1-32.
    [10] Powell, A. Theory of vortex sound. Journal of the Acoustical Society of America,1964,36(1):177-195.
    [11] Howe, M.S. The Theory of Vortex Sound. Cambridge: Cambridge University Press,2003.
    [12] Curle, N. The influence of solid boundaries upon aerodynamic sound. Proc. RoyalSociety,1955,231:505-514.
    [13] Lowson, M. V. Theoretical studies of compressor noise. J. Acoustical Society of A-merica,1970,47:371-385.
    [14] Ffowcs Williams, J. E., Hawkings D. L., Sound generation by turbulence and surfa-ces in arbitrary motion.Philosophical Transactions of the Royal Society of London,A1151,1969,264:321-342.
    [15] Goldstein, M. E., Unsteady vortical and entropic distortions of potential flows rou-nd arbitrary obstacles.J Fluid Mech,1978,89:433-468.
    [16] Lele, S.K. Compact finite difference schemes with spectral-like resolution. Journalof Computational Physics,1992,103:16-42.
    [17] Tam, C.K.W., Webb, J.C. Dispersion-Relation-Preserving Finite Difference Schem-es for Computational Acoustics. Journal of Computational Physics.1993,107:262-281.
    [18] Chang, S.C. The method of space-time conservation element and solution element:a new approach for solving the Navier Stokes and Euler equations. ComputationalPhysics,1995,119:295-324.
    [19]刘敏,吴克启.基于非结构网格CE/SE算法圆柱绕流气动声场模拟.工程热物理学报,2009,30(2):227-229
    [20]李晓东,段传波,于潮.三维FW-H方程与CAA数值模拟匹配技术研究.工程热物理学报,2005,26(1):56-58.
    [21]甘加业,吴克启,基于伴随格林函数法射流噪声的研究.工程热物理学报,2009,30(2):217-219
    [22] Orszag, S. A. Numerical simulation of incompressible flows within simple bounda-ries. I galerkin (Spectral) representation. Stud.Appl. Math.,1971,50:293-327.
    [23] Fornberg, B. ANumerical study of2-D turbulence. J. Comput. Phys.,1977,25:1-31
    [24] Moin, P., Kim, J., On the numerical solution of time-dependent viscous incompre-ssible fluid flows involving solid boundaries. J. Comput. Phys.,1980,35:381-392.
    [25] Hussaini, M. Y., Kopriva, D. A., Salasm, D. A., Spectral methods for the Euler equ-ations: PartⅡ-chebyshev methods and shock fitting. AIAAJ.,1985,23:234-240
    [26] Wang, J. P., Nakamura, Y., Yasuhara, M. Accurate computations of compressibleNavier-Stokes equations by the spectral collocation method. J. Jpn. Soc. Aero. Spa.Sci.,1990,38:232-240
    [27] Wang, P., Hasegawa, T. Numerical simulation on compressible turbulence by spec-tral method. ACTAMech. Sinica (English Series),1998,14:193-20.
    [28] Huang, X., Zhang, X. A Fourier Pseudospectral Method for Some ComputationalA-eroacoustics Problems. International Journal of Aeroacoustics,2006,5(3):279-294
    [29] Wang, Z. J. High-order spectral volume method for benchmark aeroacoustic prob-lems.41st Aerospace Sciences Meeting and Exhibit6-9January,2003, Reno Neva-da AIAA-2003-0880
    [30] Visbal, M. R., Rizzetta, D. P. Large-Eddy Simulation on General Geometries UsingCompact Differencing and Filtering Schemes. AIAAAerospace Sciences Meeting&Exhibit,40th, Reno, NV; UNITED STATES,14-17Jan.2002.
    [31] Patera,A.T. Aspectral element method for fluid dynamics:laminar flow in a channelexpansion. Journal of Computational Physics,1984,54:468-488
    [32] Kreiss, H. Methods for the approximate solution for time dependent problems. GA-RP Report, No.10,1973.
    [33] Hirsh, R. Higher order accurate difference solutions of fluid mechanics problewmsby a compact differencing technique. J. Comput. Phys.,1975,19:90-109.
    [34] Lele, S. K. Compact finite difference schemes with spectral-like resolution. Journalof Computational Physics,1992,103:16-42.
    [35] Adams, N., Shariff, K. A high resolution hybrid compact-ENO scheme for shockturbulence interaction problems, J. Comput. Phys.,1996,127:27-51.
    [36] Mahesh, K. AFamily of High Order Finite Difference Schemes with Good SpectralResolution. JOURNAL OF COMPUTATIONALPHYSICS,1998,145:332-358.
    [37] Visbal, M. R., Rizzetta, D. P. Large-Eddy Simulation on General Geometries UsingCompact Differencing and Filtering Schemes. AIAAAerospace Sciences Meeting&Exhibit,40th, Reno, NV; UNITED STATES,14-17Jan.2002.
    [38] Kim, J. W., Lee, D. J. Optimized Compact Finite Difference Schemes with Maxim-um Resolution. AIAAJournal,1996,34(5):887-893.
    [39]傅德薰,马延文.高精度差分格式及多尺度流场特性的数值模拟.空气动力学学报,1998,16(1):24-35
    [40]高慧,马延文,傅德薰.六阶精度的群速度直接控制紧致格式及其应用.航空动力学报,2003,18(1):24-31.
    [41] Tam, C.K.W., Webb, J.C. Dispersion-Relation-Preserving Finite Difference Schem-es for Computational Acoustics. Journal of Computational Physics,1993,107:262-281.
    [42] Hu, F. Q., Hussaini, M. Y., Manthey, J. Low dissipation and dispersion Runge-Kut-ta schemes for computational acoustics. Journal of Computational Physics,1996,124:177-191.
    [43] Tam, C. K. W., Aganin, A. Computation of Transonic Nozzle Sound Transmissionand Rotor Problems by the Dispersion-Relation-Preserving Scheme. Third Compu-tational Aeroacoustics (CAA) Workshop on Benchmark Problems, Aug.012000,191-202.
    [44] Popescu, M., Shyy, W., Garbey, M. Finite volume treatment of dispersion relationpreserving and optimized prefactored compact schemes for wave propagation incomputational aeroacoustics. Journal of Computational Physics,2005,210(2):705-729.
    [45]刘凯欣,王景焘,张德良.时-空守恒元解元(CE/SE)方法简述.第三届全国计算爆炸力学会议,2005:21-28.
    [46] Ronny,W., Andrew,O. Computational aeroacoustics using the B-spline collocationmethod. Comptes rendus Mécanique,2005,33(9):726-731.
    [47] Bailly, C., Juve, D. Aeroacoustic simulations and stochastic approach using lineariz-ed Euler's equations. The Journal of the Acoustical Society of America,1999,105(2):1066-1079.
    [48] Popescu, M.,Shyy, W.,Garbey, M. Finite volume treatment of dispersion relationpreserving and optimized prefactored compact schemes for wave propagation, Jour-nal of Computational Physics,2005,210:705-729.
    [49]居鸿宾,钟芳源,沈孟育.涡、声干扰研究的某些进展.力学进展,1997,27(3):358-371.
    [50] Amiet, R. K., High frequency thin-airfoil theory for subsonic flows. AIAA J,1976,14(8):1076-1082
    [51] Lowson, M. V. Theoretical studies of compressor noise. J. Acoustical Society ofAmerica,1970,47:371-385.
    [52] Atassi, H. M., Grzedzinski, J. Unsteady disturbances of streaming motions aroundbodies. J Fluid Mech,1989,209:385-403.
    [53] Fang, J., Atassi, H.M. Numerical Solutions for Unsteady Subsonic Vortical FlowsAround Loaded Cascades. ASME Paper92-GT-173, June1992.
    [54] Atassi, H., Fang, J., Hardy, B. Sound Radiated From a Loaded Cascade in Nonuni-form Transonic Flow. AIAA-96-1756, May1996.
    [55]蔡增基,龙天渝.流体力学泵与风机(4thEdit.).北京:中国建筑工业出版社,2008
    [56]杨中华.负浮力射流特性的研究.武汉大学:武汉大学,2004.
    [57]陈翼,张林进,叶旭.射流混合器内气体湍流扩散过程的CFD数值模拟与实验研究初探.过程工程学报,2007年10月, Vol.7No.5:865-870
    [58]王凌,张景松,罗锐等.自由淹没气体旋转射流速度场实验研究.清华大学学报(自然科学版),2011(04):493-498
    [59]陈锦成,王彤,谷传纲,傅耀.受限空间内射流影响下气固两相流动非定常数值模拟.上海交通大学学报.2011(6):880-884
    [60]姜国强,任秀文,李炜.横流环境湍射流涡动力学特性数值模拟.水科学进展,2010(03):307-314
    [61]许常悦,吴丹,孙建红.可压缩湍流圆孔射流的大涡模拟.南京航空航天大学学报.2010,(05):583-587
    [62]李牧,孙承纬,赵剑衡等.激光驱动薄膜产生等离子体射流的条件分析.高压物理学报,2011,(04):351-358
    [63]江南,曹则贤.一种大气压放电氦等离子体射流的实验研究.物理学报,2010,(05):3324-3330
    [64]张琦,余永刚,陆欣,刘东尧.等离子射流与渐扩边界中液体工质相互作用特性的模拟实验.爆炸与冲击,2011(03):311-316
    [65]王春霞.常压等离子射流对纺织品表面改性的均匀性和渗透性研究.东华大学:东华大学博士学位论文,2008.
    [66]刘岩,张若京.电场驱动射流的弯曲失稳分析.计算力学学报,2008(S1):42-47
    [67]尹协振,李芳.电雾化、电纺丝和带电射流稳定性研究.天津科技,2009(01):1-7
    [68]李妮.静电纺射流和纳米纤维形成过程及纤网形态的研究.东华大学:东华大学博士学位论文.,2008.
    [69]邱少辉.一种新型通风方式—条缝型送风口形成的竖壁贴附射流通风模式的2DPIV实验研究.西安建筑科技大学:西安建筑科技大学博士学位论文,2008.
    [70]陈祖志.射流振荡制冷机性能与机理研究.大连理工大学:大连理工大学博士学位论文,2008.
    [71]李辉,唐川林,胡东.自激振荡脉冲射流喷嘴雾化特性试验研究.矿山机械,2010,(08):31-34
    [72]余业珍.突片激励射流传热和混合特性研究.南京航空航天大学:南京航空航天大学博士学位论文,2009.
    [73]王金华,方宇,黄佐华等.利用高速摄影纹影法研究天然气高压喷射射流特性.内燃机学报,2007,25(6):500-504
    [74]洪若瑜,郭庆杰,张济宇.流化床中射流机制和双射流相互作用.过程工程学报,2003,(6):486-492
    [75]郭庆杰,张济宇,刘振宇.双射流流化床流动特性的研究.燃料化学学报,1999,(6):535-540
    [76]尹招琴.双射流汽车尾气流场超细颗粒的成核和凝并过程的研究.浙江大学:浙江大学,2008.
    [77]刘坤.超音速聚合射流氧枪射流行为的数学物理模拟研究.东北大学:东北大学,2008.
    [78]陈亮,乐嘉陵,宋文艳,等.超声速冷态流场液体射流雾化实验研究.实验流体力学.2011(2):29-34+40
    [79]卢树强,李德波,易富兴,等.超音速射流火焰的DNS研究:计算方法与涡结构.工程热物理学报,2011,(08):1307-1310.
    [80] Cheol Lee, Duck Joo Lee. An analysis of flow and screech tone from supersonicaxisymmetric jet at the initial stage. JOURNAL OF MECHANICAL SCIENCEAND TECHNOLOGY,2008,22(4):819-826
    [81]高峰.流动矢量主动控制的微射流技术研究.西北工业大学:西北工业大学,2003.
    [82]李长庚.基于冲击射流的电子器件冷却方法研究.中南大学:中南大学,2009.
    [83] CHEN Er-yun, MA Da-wei, LE Gui-gao, WANG kai, ZHAO Gai-ping. Numericalsimulation of highly underexpanded axisymmetric jet with runge-kuttadiscontinuous galerkin finite element method. Journal of Hydrodynamics,2008,20(5):617-623
    [84] Michael J. Doty, Dennis K. McLaughlin. Space–time correlation measurements ofhigh-speed axisymmetric jets using optical deflectometry. EXPERIMENTS INFLUIDS,2008,38(4):415-425
    [85] H. Suzuki, N. Kasagi and Y. Suzuki. Active control of an axisymmetric jet withdistributed electromagnetic flap actuators. EXPERIMENTS IN FLUIDS.2004,Vol.36, Number3,498-509
    [86]刘明宇,马延文,傅德薰.可压缩轴对称射流三维拟序结构的演化.中国科学G辑,2003,(01):15-21
    [87]刘明宇,马延文,傅德薰.可压缩轴对称射流流场近区的数值模拟.计算物理,2000,(04):341-346
    [88] E.Mollo-Christensen, M.A. Kolpin and J.R. Martuccelli. Experiments on jet flowsand jet noise far-field spectra and directivity patterns. Journal of Fluid Mechanics,1964,18:285-301
    [89] J.L. Stromberg, D.K. McLaughlin, T.R. Troutt. Flow field and acoustic properties ofa Mach number0.9jet at a low Reynolds number. Journal of Sound and Vibration,22Sep.,1980,72,(2):159-17
    [90] Tyler, J. M.&Sofrin, T. G.1962Axial flow compressor noise studies. SAE Trans.70,309-332
    [91]徐敏义,杜诚,米建春.圆形射流中心线上小尺度湍流的统计特性及其受高频噪声的影响.物理学报,2011(03):382-390
    [92]甘加业,吴克启.基于伴随格林函数法射流噪声的研究.工程热物理学报,2009(02):217-219
    [93]戴光,王兵,张颖等.基于Lighthill波动方程的轴对称射流气动声场的数值模拟.大庆石油学院学报,2006,(06):60-62+126
    [94]胡国庆,刘明宇,傅德薰,马延文.轴对称射流气动声场的数值模拟.计算物理,2001(03):193-198
    [95] S. K. Cho, J. Y. Yoo and H. Choi. Vortex pairing in an axisymmetric jet using two-frequency acoustic forcing at low to moderate strouhal numbers. EXPERIMENTSIN FLUIDS.2000.Vol.25, Number4,305-315
    [96]郭照立,郑楚光.格子Boltzmann方法的原理及应用.北京:科学出版社.2009.1
    [97]李元香,康立山,陈毓屏.格子气自动机.北京:清华大学出版社,1994.
    [98] Wolf-Gladrow D A. Lattice-gas Celluar Automata and Lattice Boltzmann Model:An Introduction. Berlin: Springer,2000.
    [99] Succi S. lattice Boltzmann Equation for Fluid Dynamicas and Beyond. Oxford:Clarendon Press,2001.
    [100] Z. L. Guo, B. C. Shi, N.C. Wang. Fully Lagraugian and Lattice BoltzmannMethods for the Advection-Diffusion Equation, Journal of Scientific Computing,1999,14(3),291-300.
    [101] He X Y, Luo L S, Dembo M. Some progress in the lattice Boltzmann method: Rey-nolds number enhancement in simulations. PhysicaA,1997,239:276-285.
    [102] Reider M B, Sterling J D. Accuracy of discrete-velocity BGK models for the simu-lation of the incompressible Navier-Stokes equations. Computers&Fluids,1995,24(4):459-467.
    [103] Mei R W, Shyy W. On the finite difference lattice Boltzmann method for curvilinearcoordinates. Journal of Computational Physics,1998,143:426-448.
    [104] Guo Z L, Zhao T S, et al. Implicit-explicit finite-defference lattice Boltzmann meth-od for compressible flows. International Journal of Modern Physics C,2007,18(22):1961-1983.
    [105] J. M. Buick, C. A. Greated, D. M. Campbell. Lattice BGK simulation of sound wa-ves. Europhys. Lett.,1998,43(3):235-240
    [106] Leung,R.C.K.,So,R.M.C.,Kam,E.W.S. et al. Attempt to calculate acosutic directive-ty using LBM. AIAA,2006,2006-2574.
    [107] S. Mallick, R. Shock, and V. Yakhot,“Numerical simulation of the excitation of aHelmholtz resonator by a grazing flow,” Journal of the Acoustical Society of Ame-rica,2003,114(4)
    [108] Li, X.M.,Leung,R.C. K.,So,R.M.C. One-step aeroacoustics simulation using latticeBoltzmann method. AIAAJournal,2006,44(1):78-89.
    [109] Kam,E.W.S.,So,R.M.C.,Leung,R.C.K. Noreflecting boundary conditions for onestep LBM simulation of aeroacoutics. In:12thAIAA/CEAS Aeroacoustics Confe-rence,Canbridge,Massachusetts,2006.
    [110] Andrew R. Leach. Molecular Modelling principles and Application(2ndedit). HenryLing Ltd, Great Britain,2001
    [111] Daan Frenkel, Berend Smit. Understanding Molecular Simulation:From Algorithmsto Applications. Academic Press, San Diego, USA,2002
    [112] http://nobelprize. org/physics/laureates/2005.
    [113]彭堃墀.量子光学与量子信息.中国基础科学,2000,(4):19224.
    [114]吴克启.宏观气动声场量子分子动力学讲义,2010
    [115] Argaman N. Makov G. Density Functional Theory--an introduction. Physics2.1999,9806013
    [116]李宏芳.量子力学的退相干解释及哲学.自然辩证法通讯,2005,27(5):94-99
    [117]郑立贤.量子力学定态微扰论及其教学研究一兼论微扰论中的氢原子问题.华南师范大学:华南师范大学博士学位论文.2003
    [118] B. P. Lanyon, M. Barbieri, M. P. Almeida, et el. Experimental Quantum Computingwithout Entanglement. PHYSICAL REVIEW LETTERS, PRL101,2008,200501
    [119]厉江帆.二阶非线性光学频率转换两模量子场耦合系统的时间演化与量子起伏.国防科学技术大学:国防科学技术大学博士学位论文,2005.
    [120]白冬梅.非线性Schr dinger方程及其相关耦合方程的数值解法.南京航空航天大学:南京航空航天大学博士学位论文,2010.495-500.
    [121]刘学深,花巍,丁培柱.非线性Schr dinger方程的动力学行为分析.计算物理,2004,(06):495-500
    [122]李增刚,詹福良. Virtual.LabAcoustics声学仿真计算高级应用实例.北京:国防工业出版社,2010
    [123] Goldstein, M. E. Aeroacoustics. New York, McGraw-Hill International Book Co.,1976, pp:305.
    [124] J.E. Coon, S.Gupta, E. McLaughlin. Isothermal isobaric molecular dynamics simu-lation of diatomic liquids and their mixtures, Chemical Physics.1987,113(1):43-52
    [125] Delhommelle, Millie. Inadequacy of the Lorentz-Berthelot combing rules for accu-rate predictions of equilibrium properties by molecular simulation. Mol. Phys,2001,99(8):619-625.
    [126] Nagayama G, Cheng P. Effects of interface wettability on microscale flow by mole-cular dynamics simulation. Internationnal Journal of Heat and Mass Transfer,2004,47(3):501-503.
    [127] Rapaport D C. The art of Molecular Dynamcis Simulation, Second Editon. Camb-ridge: Cambridger University Press,2004.
    [128] G. Galassi and D.J. Tildesley,"Phase Diagrams of Diatomic Molecules: Using theGibbs Ensemble Monte Carlo Method" Molecular Simulations,1994,13(1):11-24
    [129] AEleen Frisch,Michael J. Frisch.Gaussian98User’s Refrence,Second Edition,1998
    [130] A.D. Becke. Density-functional thermochemistry.III. The role of exact exchange.J.Chem. Phys.1993,98:5648.
    [131] Lele, S.K. Compact finite difference schemes with spectral-like resolution. Journalof Computational Physics,1992,103:16-42.
    [132] Kim, J. W., Lee, D. J. Optimized Compact Finite Difference Schemes with Maxim-um Resolution. AIAAJournal,1996,34(5):887-893.
    [133] Ostashev, V.E. Acoustics in Moving Inhomogeneous Media. E&FN SPON, London,UK,1997.
    [134] Tam, C.K.W. Computational aeroacoustics: Issues and methods. AIAA Journal,1995,33:1788-1796.
    [135] Yong Cho, Young J. Moon. Discrete Noise Prediction of Variable Pitch Cross-FlowFans by Unsteady Navier-Stokes Computations. ASME J. Fluids Engineering,2003,Vol.125(3):543-550
    [136]游斌,吴克启.贯流风机变斜式叶轮和常规直叶轮的对比研究.工程热物理学报,2005,26(1):58-60
    [137]王嘉冰,刘飞,刘敏等.贯流风机偏心涡非定常特性研究.工程热物理学报,2008,29(2):1141-1143
    [138]胡俊伟,丁国良,张春路.空调器室内机气动噪声研究.机械工程学报,2004,40(11):188-191
    [139]杜立春,裴峰.空调房间内气流组织的数值模拟,制冷与空调,2004.(1):8-10
    [140]孙晓峰,周盛.气动声学.北京:国防工业出版社,1994
    [141] Klemm T, Gabi M. Using PIV and CFD to Investigate the Effect of Casing Designon Cross Fan Performance. In: Procedding of PSFVIP-4, Chamonix, France,2003.1-8
    [142]刘敏.基于数值模拟及实验的贯流风扇气动噪声特性研究.华中科技大学:华中科技大学博士学位论文,2009
    [143]刘飞,王嘉冰,胡亚涛等.贯流风机涡结构与噪声特性的数值研究.工程热物理学报,2009,30(1):44-46
    [144] F.Q. Hu, M.Y. Hussaini, J. Manthey. Low-dissipation and-dispersion Runge-Kuttaschemes for computational acoustics. Journal of Computational Physics,1996,124:177-191.
    [145]吴秉礼,李文洲.轴流通风机的工程设计方法—设计手册.吉林:吉林大学出版社,2007.9
    [146]吴克启.透平压缩机械.北京:机械工业出版社,1989
    [147]甘加业.亚音速叶轮机械动静干扰噪声的研究.华中科技大学:华中科技大学博士学位论文,2009
    [148] Malcolm W. Chase, Jr. NIST-JANAF Thermochemical Tables, Fourth Edition, PartI, AI-Co. Gaithersburg, Maryland20899-0001, American Institute of Physics andtheAmerican Chemical Society.1998.
    [149]高执棣,郭国霖.统计热力学导论.北京:北京大学出版社.2004
    [150]罗小兵,李志信,过增元.合成喷形成的机理分析.清华大学学报(自然科学版).2000,40(12):86-89
    [151]罗振兵,夏智勋.合成射流技术及其在流动控制中应用的进展.力学进展,2005,35(2):221-234
    [152]薛永飞,胡亚涛,涂运冲等.有限元法圆射流的气动噪声和模态研究.工程热物理学报,2011(12):72-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700