用户名: 密码: 验证码:
铝板电磁超声检测技术关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金板材具有强度高、密度低、耐腐蚀性强等特性,是制造航天设备、军工设备及高速列车的主要材料,随着航天技术、探月工程、国产飞机、航空母舰及高速铁路等项目的大力开展和日趋成熟,我国铝合金材料的需求量越来越大,材料质量决定了产品质量,铝合金检测技术的需求变得越来越重要。
     电磁超声检测技术因其无需耦合剂,耐高温又易操作等优势被广泛研究。目前,电磁超声检测技术被广泛应用在钢板、铝板、钢管等缺陷检测中,已经成为国内外主流的无损检测方法之一。但其缺点为换能效率较低、信号微弱,是实际应用中需要克服的主要困难。
     本文在回顾了国内外多年来电磁超声技术的发展和应用,在总结前人们研究成果的基础上,对EMAT换能机理进行了探讨,针对EMAT工作的三个过程:电磁场、电磁超声耦合以及声场传播,分析相应的换能原理,进行详细的数学描述,推导出电磁超声换能过程的完整方程和边界条件。依据产生波型的不同,分析出EMAT的各个组成部分中高频激励线圈和永磁铁的不同配置情况,及对应不同配置情况激发出波型的种类和它的声波传播形式。
     本文利用ANSYS有限元仿真软件对电磁超声换能器的电磁场进行了仿真分析,得出被测铝板中涡流及洛伦兹力的分布情况。同时将电磁场得到的结果与结构场进行耦合,得出被测铝板中质点的应力、应变及位移情况,从而达到对EMAT辐射声场进行仿真分析的目的。由于EMAT换能效率低,信号微弱,为了提高其换能效率,对其模型进行优化。针对优化的主要对象:线圈与被测铝板间的提离距离、线圈及永磁铁的各个参数对换能效率的影响做了详细分析,最终确定出各参数的优化组合。通过仿真分析得出EMAT被测铝板的内部辐射声场分布及被测铝板表面的指向角,并通过实验验证了这个仿真结果的正确性。通过改变被测铝板的厚度和激励电流频率得到相应辐射声场的变化情况。然后分析了三种不同配置的换能器辐射声场分布的各自指向性特点。
     表面波具有单模式、能量集中、在试样的表层传播等特点,其适用于金属板表面大范围健康状况检测,本文详细的论述了电磁超声表面波产生的原理及传播特性,在此基础上,利用ANSYS软件进行了有限元仿真。利用折线形线圈及单磁铁的组合,建立了EMAT的3-D有限元模型。为简化有限元求解过程,将其产生的电磁超声表面波分为:电磁场、涡流、洛伦兹力、波动四个部分,以铝板为对象,以有限元仿真为基础,搭建了由激励、接收和电磁超声换能器三部分组成的电磁超声表面波金属板探伤检测装置。这个检测装置利用FPGA产生正、负两路频率和周波数可调的脉冲串,并采用多级放大来解决电磁超声回波中接收信号比较微弱的问题,通过产生的表面波对金属板中的缺陷进行了检测,及进行了声场指向性试验。实际试验是在长600mm,宽300mm,厚20mm的铝板上进行的,经试验验证,电磁超声表面波探伤检测装置可以在铝板中产生表面波,并通过产生的表面波可以对板中的缺陷进行检测。通过声场指向性试验可以证明,表面波传播具有指向性,回波信号经过小波降噪处理后,能够达到预期效果,信号能够清晰展示。
Aluminum alloy plate, which has the characteristics of high strength and low density as well as strong in corrosion resistance, is widely used in manufacturing fields such as aerospace equipment, military equipment and high-speed train. With space technology, lunar exploraion project, domestic large planes, aircraft carrier and high-speed rail project developing at such a tremendous pace and becoming mature, demand of aluminum alloy material in our country is more an more big. More importantly, quality of the products largely depends on quality of the material to be used. Therefore, the need for aluminum alloy detecting technology has became increasingly significant.
     Electromagnetic ultrasonic testing technology has been widely studied owning to its advantages of no coupling agent needed, high-temperature resistance and easy operation. At present, electromagnetic ultrasonic testing technology has widespreadly applicated in defects detection of steel and aluminum plate as well as steel pipe. The technology is becoming one of the mainstream nondestructive testing methods at home and abroad. Nevertheless, its lower-changing-efficiency and weak-signal features remain the major obstacle to be overcomed for its practical application.
     The paper reviews the development and application of electromagnetic ultrasound technology. Based on summarizing of the previous achievements obtained by researchers, corresponding EMAT transducing mechanism is explored. Aiming at three processes of EMAT:electromagnetic field and electromagnetic ultrasound coupling as well as acoustic field propagation, the paper analyzes the corresponding transducing principle. And futher, a detailed mathematical description is presented and complete formula and boundary conditions is deduced in the process of electromagnetic ultrasound transducing. In accordance with different types of generated wave, various configuration of permnent magnet and high frequency incentive coil in every EMAT components are given and analyzed. The simulated waveform categories and its acoustic propagation form aroused by various configuration are also obtained.
     In this paper, ANSYS finite element simulation software is employed for electromagnetic field simulation and analysis of electromagnetic ultrasonic transducer, distributing situation of eddy current and lorentz force in the tested aluminum plate are gained. After coupling structue field with the results obtained from the electromagnetic field, particle's stress and strain parameters as well as displacement in the tested work piece can be obtained. Thus, the purpose of simulating and analyzing of the EM AT radiation acoustic field is achieved. As for lower-changing-efficiency and weak-signal shortcomings, the EMAT model is optimized in order to enhance its transduction efficiency. Aiming at main optimization objects:lift-off distance between coils and tested work piece as well as various parameters of permanent magnet and coil effecting on transduction efficiency, detailed analysis has been done. Eventually, optimum combination of various parameters is determined. Through simulation and analysis, internal radiation acoustic field distribution and pointing angle on surface of the EMAT tested work piece can be obtained. Moreover, validation and accuracy of the results can be experimentally verified. By altering thickness and incentive electric current frequency of the tested work piece, variation of the radiating acoustic field can be obtained accordingly. Furthermore, respective directional characteristics of radiation acoustic field distribution under three configuration of the transducer are analyzed.
     Surface wave, featured by single-mode and energy-concentrated, is suitable for large scale quality detecting on metal plate surface. This paper discusses producing principle and propagation feature of electromagnetic ultrasonic surface wave. Finite element simulation has be done with utilization of ANSYS software. Combining broken line type coil with single magnet, EMAT3-D finite element model is established. To simplify finite element solving, the generated electromagnetic ultrasonic surface wave are divided into four parts:electromagnetic field, eddy current, lorentz force and fluctuation. Aiming at aluminum plate testing, electromagnetic surface wave metal plate inspecting device is developed based on finite element simulation. The device is composed of three parts:incentive part, receiving part and electromagnetic ultrasonic transducer. The detection device generates positive and negative two channels pulse sequence with adjustable frequency and cycle by use of FPGA. Multi-level amplification resolves the problem of weak signal receiving in electromagnetic ultrasonic echo wave. Defects in metal plate has been tested through the generated surface waves, while at the same time, acoustic field directional experiment has been done. The actual test is conducted on a aluminum plates with600mm length,300mm width and20mm thickness. Experiment shows that electromagnetic ultrasound surface wave detection device can generate surface wave in aluminum plate, through which defects in the aluminum plate can be tested. It is proved that surface wave propagation is directional through acoustic field directional experiment. After wavelet de-noising treatment, echo signal can achieve the expecting result and can be clearly demonstrated.
引文
[1]周正干,冯海伟.超声导波检测技术的研究进展.无损检测,2006,28(2):57-63.
    [2]V.I. Nizhankovskiia.Classical magnetostriction of nickel in high magnetic field[J].THE EUROPEAN PHYSICAL JOURNAL B,2006,53(14):1-4.
    [3]Liang Jin, Qingxin Yang, Suzhen Liu et al. Electromagnetic Stimulation of the Acoustic Emission for Fatigue Crack Detection of the Sheet Metal. TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,2010,20(3):1848-1851.
    [4]李振才.电磁超声(EMAT)技术的发展与应用.无损探伤,2006,30(6):13-14.
    [5]周佳伟.电磁超声换能器的机理研究及其仿真分析:(硕士学位论文).沈阳:沈阳工业大学,2011.
    [6]S. Thomas, S. S. A. Obayya, R. Taneja et al. A Coupled Electromagnetic and Mechanical Analysis of Electromagnetic Acoustic Transducers. International Journal for Computational Methods in Engineering Science and Mechanics,2009,10:124-133.
    [7]徐君,姚恩涛,周克印等.InSb磁敏电阻脉冲涡流传感器的研究[J].仪器仪表学报,2007,28(5):865-867.
    [8]王淑娟,康磊,翟国富.电磁声超声换能器优化设计综述.仪器仪表学报:2007,28(8):93-99.
    [9]潘伟才.基于FPGA的电磁超声检测系统的研究:(硕士学位论文).哈尔滨:哈尔滨工业大学,2008.
    [10]宫佳鹏,许霁,邱玉等.基于电磁超声导波的铝合金板材缺陷自动检测装置.仪表技术与传感器,2011(5):78-81.
    [11]胡昌华,李国华,周涛.基于MATLAB7.X的系统分析与设计[M].西安:西安电子科技大学出版社.
    [12]Park C I. Cho S H, Kim Y Y. Torsional wave transduction using obliquely-bonded magnetostrictive nickel strips in cylinders. Rotterdam, Netherlands:Institute of Electrial and Electronics Engineers Inc.,2005:713-716.
    [13]Oleg Davydov, Frank Zeilfelder. Scattered data fitting by direct extension of local polynomials to bivariate splines[J]. Advances in Computational Mathematics,2004(21):223-271.
    [14]S.Giguere, B.A.Lepine, J.M.S. Dubois.Pulsed eddy current technology:characterizing material loss with gap and lift off variations[J]. Res Nondestr Eval,2001.13:119-129.
    [15]郭辰霖.永磁激励下电磁超声探伤方法的研究:(硕士学位论文).沈阳:沈阳工业大学,2010.
    [16]高松巍,李冰,邢燕好.电磁超声在钢管探伤中的应用.沈阳工业大学学报,2009,31(5):582-586.
    [17]张玲玲.电磁超声导波在管道中传播机理的仿真:(硕十学位论文).沈阳:沈阳工业大学2011.
    [18]Gori M, Giamboni S. Guided waves by EMAT transducers for rapid defect location on heat exchanger and boiler tubes. Ultrasonic,1996,34:311-314.
    [19]R. Shapporabadi, A. Konrad, A. Sinclair. The Governing Electrodynamic Equations of EMATs. Journal of Applied Physics.2005,97(10E102):1-3.
    [20]康磊.用于铝板检测的电磁超声导波换能器优化设计技术研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2010.
    [21]王戈,王祝堂.2007年中国铝加工业述评(2).轻合金加工技术,2008,36(8):1-5.
    [22]吴斌,邓菲,何存富.超声导波无损检测中的信号处理研究进展.北京工业大学学报,2007,33(4):342-348.
    [23]Masashi Yoshida. Tetsuo Asano. A New Method to Measure the Oxide Layer Thickness on Steels Using Electromagnetic Acoustic Resonance. Journal of Nondestructive Evaluation, 2003(22):11-19.
    [24]Jafari Shapoorabadi R, Sinclair AN. Improved finite element method for EMAT analysis and design. IEEE Tran Magnetics,2001,37(4):2821-2823.
    [25]孙明礼,胡仁喜,崔海蓉等.ANSYS10.0电磁学有限元分析实例指导教程.北京:机械工业出版社,2007:1-16.
    [26]T. David. Y. Japha, V. Dikovsky. Magnetic interactions of cold atoms with anisotropic conductors[J]. THE EUROPEAN PHYSICAL JOURNAL D,2008.48:321-332.
    [27]Physicotechnical Institute, Ural Division, Russian Academy of Sciences et al. On the Possibility of Estimating the Elasticity Limit and Residual Deformations in Ferromagnetic Metals Using the Parameters of Electromagnetic Acoustic Transformation. Russian Journal of Nondestructive Testing.2010,46(1):83-89.
    [28]吴朝晖.超声无损检测的应用与探讨.宁波工程学院学报,2005,17(4):22-24.
    [29]王世山,王德林,李彦明.大型有限元软件ANSYS在电磁领域的使用.高压电器,2002,38(3):27-33.
    [30]张伟代译,张广纯.利用电磁声换能器(EMAT)技术进行超声表面检查的标准检测方法.无损探伤,2003,27(3):30-35.
    [31]张建卫译,张广纯.电磁超声换能器(EMAT)标准导则.无损探伤,2003,27(1):18-23.
    [32]Wilcox P, Lowe M, Cawley P. The excitation and detection of Lamb waves with planar coil electromagnetic acoustic transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2005.52(12):2370-2384.
    [33]刘松平.无损检测新技术——永恒的发展主题.无损检测,2004,26(9):32.
    [34]B. Dutton, S. Boonsang, R. Dewhurst. A New Magnetic Configuration for a Small in-Plane Electromagnetic Acoustic Transducer Applied to Laser-Ultrasound Measurements Modeling and Validation. Sensors and Actuators,2006.125:249-259.
    [35]Zhang Hui, Wang Shujuan. Extraction of failure characteristic of rolling element bearing based on wavelet transform under strong noise. Journal of Harbin Institute of Technology (New Series). 2005,12(2):18-22
    [36]王淑娟.电磁超声换能器三维有限元分析及优化设计.中国电机工程学报.2009,29(30)
    [37]谢宝忠,陈铁群,林俊明等.任意激励波形的涡流检测系统设计[J].无损检测,2007,29(4):173-176.
    [38]孙日明.电磁超声应用于钢轨应力检测的研究和分析.南京:南京航空航天大学,2011.
    [39]S.T.Li, X.L.Qiao,J.G.Chen.Effects of oxygen flow on the properties of indium tin oxide films.Materials Chemistry and Physics.2006,98(1):144-147.
    [40]刘天华,乔学亮.EMAT测距测厚的系统设计及实现[J].测控技术,2005,24(4)98-100.
    [41]Kirikov A, Britvin V, Kashin A. Industrial Ultrasonic Examination Of Plates with EMAT[C]. 17th World Conference on Nondestructive Testing, Shanghai:ICNDT,2008:1156-1165.
    [42]王威.几种磁测残余应力方法及特点对比[J].四川建筑研究院,2008,34(6):74-76.
    [43]X. Jian, S. Dixon, R. Edwards et al. Coupling Mechanism of an EMAT. Ultrasonics,2006,44: 653-656.
    [44]杨宾峰,罗飞路,张玉华等.脉冲涡流在飞机铆接结构无损检测中的应用研究[J].计量技术,2005,12:15-17.
    [45]Clorennec D, Prada C, Royer D. Laser Ultrasonic Inspection of Plates Using Zero-Group Velocity Lamb Lamb Modes[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2010,57(5):1125-113.
    [46]朱红秀,吴淼.确定电磁超声换能器钢管检测最佳磁化强度的试验研究.无损检测,2004,26(6):297-298.
    [47]X. Jian, S. Dixon, R. S. Edwards et al.Coupling Mechanism of EMATs for Ultrasonic Generation. J. Acoust. Soc. Am.2006,119(5):2693-2701.
    [48]Anouar Belahcen, Magnetoelasticity. Magnetic Force and Magnetostriction in Electrical Machine[D]. Doctoral thesis,2004.
    [49]张志钢,阙沛文,雷华明.兰姆波的电磁超声磁致伸缩式激励及其特性.上海交通大学学报.2006,40(1):133-137.
    [50]Krautkramer J, Krautkramer H. Ultrasonic Testing of Materials[M]. Berlin:Springer,1969: 98-10.
    [51]宋卫华,王小民,李明轩.电磁超声界面回波瞬时图谱分析与神经网络识别.声学学报,2007,32(4):333-337.
    [52]林高用.高性能7X75系铝合金厚板加工技术相关基础研究:(博士学位论文).长沙:中南大学,2006:4-27.
    [53]吴山标.电磁超声检测中激磁场的有限元模拟.物理测试,2009,27(3):42-46.
    [54]X. Jian, S. Dixon. R. Edwards.Ultrasonic Field Modeling for Arbitrary Non-contact Transducer Source. Proc. of SPIE,2005,5852:515-519.
    [55]Rose JL, Aviolim, Mudgep et al. Guided wave inspection potential of defects in rail. NDT&E International,2004:153-161.
    [56]李桂颖.金属板厚度电磁超声检测与数据处理技术研究:(硕士学位论文).沈阳:沈阳工业大学,2011.
    [57]刘瑾,雷毅.小波分析在超声检测信号处理中的应用.电焊机,2007,40(7):77-80.
    [58]R.A.Smith, G.R.Hugo. Transient eddy current NDE for ageing aircraft-capabilities and limitations[J]. Insight,2001,43(1):14-25.
    [59]何存富,吴斌,范晋伟.超声柱面导波技术及其应用研究进展.力学进展,2001,31(2):203-214.
    [60]X. Zhao, J. Rose. Guided Circumferential Shear Horizontal Waves in an Isotropic Hollow Cylinder. J. Acoust. Soc. Am.2004,115:1912-1916.
    [61]张志刚,阙沛文,雷华明.表面波电磁声换能器及电声学特性的研究.声学技术,2006,25(2):119-123.
    [62]张利,杨建伟,程辉等.超声波水浸探伤中探头距工件的最佳距离及调整.2006:47-49.
    [63]R.Murayama, K.Misumi. Development of a Non-contact Stress Measurement System During Tensile Testing Using the Electromagnetic Acoustic Transducer for a Lamb Wave. NDT&E International.2006(39):299-303.
    [64]李燕南,伍逸枫,刘欣等.基于MATLAB微弱信号的相关检测设计与仿真.中国高新技术企业,2010,(1):25-35.
    [65]K.Mirkhani, C.Changgares, C.Masterson et al. Optimal design of EMAT transmitters. NDT&E International.2004, (37):181-193.
    [66]他得安,刘镇清,田光春.超声导波在管材中的传播特性.声学技术,2001,20(3):131-134.
    [67]王戈,王祝堂.2007年中国铝加工业述评(2).轻合金加工技术.2008,36(8):1-5.
    [68]H.C.Yang. C.C.Tai. Pulsed eddy current measurement of a conducting coating on a magnetic metal plate[J]. Meas.Sci.Technol.2002,13:1259-1265.
    [69]刘贵民.无损检测技术[M].北京:国防工业出版社,2006.
    [70]Guiyun Tian, Ali Sophain. Defect classification using a new feature for pulsed eddy current sensor [J]. NDT & E International.2005.38(1):77-82.
    [71]张永生,黄松岭,赵伟等.基于电磁超声的钢板裂纹检测系统.无损检测,2009,31(4):307-310.
    [72]刘天华,乔学亮等EMAT(?)距测厚的系统设计及实现.测控技术,2005,24(4):20-21.
    [73]吴伟,蔡培升.基于MATLAB的小波去噪仿真[J].信息与电子工程,2008,6(3):220-222.
    [74]刘明明.金属板表面电磁超声探伤技术的研究:(硕士学位论文).沈阳:沈阳工业大学,2011.
    [75]高潮.电磁超声无损检测技术的研究与实验:(硕士学位论文).天津:天津大学,2010.
    [76]M.F.Lewis,杨清宗.纪念声表面波器件的奠基人——英国物理学家瑞利发现瑞利波100周年.压电与声光,1986,2:333-337.
    [77]高文凭.金属板电磁超声导波机理研究与仿真分析:(硕士学位论文).沈阳:沈阳工业大学,2011.
    [78]张思全,陈铁群,朱佳震.脉冲涡流检测技术的进展[J].无损检测,2008,30(11):838-841.
    [79]G.Y.Tian. A.Sophian, D.Taylor et al. Multiple Sensors on Pulsed Eddy-Current Detection for 3-D Subsurface Crack Assessment. IEEE SENSORS[J].2005,5(1):90-96.
    [80]Erol Uzal, Moulder John C, Screeparna Mitra. Impedancd of Coils over Layered Metals with Continuously Variable Conductivity and Permeability [J]. Theory and Experiment. Journal of Applied Physics,2007,74(3):2076-2089.
    [81]许守平译,张广纯.利用电磁声换能器(EMAT)技术进行超声检查的标准方法无损探伤.无损检测,2003,27(2):20-28.
    [82]Kawashima K. Measurement of velocity variations along a wave path in the through-thickness direction in a plate[J]. Ultrasonics,2005, (43):135-144.
    [83]Doubov A. A. The method of metal magnetic memory-the new trend in engineering diagnostics[J]. Welding in the Word,2005,49(9):314-319.
    [84]段伟亮,康磊等.基于FPGA的电磁超声测厚仪.仪表技术与传感器,2010(4):14-16.
    [85]申建中,张仲宁,张淑仪.电磁超声换能器的频率特性.全国声学学术会议,厦门,2006:551-552.
    [86]Koorosh Mirkhania, Chris Chaggares. Optimal design of EMAT transmitters[J]. NDT&E International,2004(37):181-193.
    [87]杨理践,张璐瑶,高松巍等.电磁超声表面波产生机理的ANSYS仿真.信息技术与应用学术会议论文,2009(6):186-191.
    [88]索进章,梁昭峰,董守龙等.小波阈值去噪法在超声信号处理中的应用研究.噪声与振动控制,2006(3):35-38.
    [89]Yu Runqiao, Xu Changying, Long Shengrong.Applications of metal magnetic memory in drill string evaluation technique [J]. Chinese Jouranl of Scientific Instrument,2008,29(1):191-194.
    [90]都有为.磁性材料新近进展[J].物理,2006,35(9):730-739.
    [91]Mauricio Pereira da Cunha, Jared W.Jordan. Improved Longitudinal EMAT Transducer for Elastic Constant Extraction [J]. IEEE International,2005(8):426-432.
    [92]张志刚,阙沛文,雷华明.表面波电磁声换能器及电声学特性的研究.声学技术,2006,25(2):¨9-123.
    [93]吴伟,蔡培升.基于MATLAB的小波去噪仿真[J].信息与电子工程,2008,6(3):220-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700