用户名: 密码: 验证码:
齿类件激光再制造及性能提升方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再制造能够使废旧产品中蕴含的价值得到开发和利用,减小报废产品对环境的污染,延长零部件的使用寿命,是发展循环经济、构建节约型社会的重要组成部分,具有十分重要的经济和社会意义。激光熔覆技术作为先进的再制造技术之一,具有对基体损伤小、加工精度高等优点,在装备零部件的再制造中具有显著优势。
     齿类件是机械系统中传递载荷和运动的重要零件,齿的失效将直接影响机械系统的正常运行。由于传统维修手段的限制,齿类件维修率较低。随着激光技术的发展使齿类件的修复有望获得新的解决途径。为此,本文以不同载荷下损伤齿类件为研究对象,采用激光技术实现了齿类件的再制造,并通过活化屏等离子体氮化复合处理实现了其性能的提升。本研究获得的主要成果如下:
     针对调质钢齿类件体积损伤修复,开展了激光快速成形研究,重点研究了激光快速成形件的显微组织和力学性能,探讨了修复比例对激光再制造零件性能的影响规律。研究结果表明:激光快速成形件组织致密、具有快速凝固组织特征,力学性能较好。激光修复试样的性能由激光修复区和基体两部分决定,随着激光修复比例的增加,激光修复试样的强度增加、塑性降低。
     针对灰铸铁齿面磨损激光修复,探讨了铸铁激光熔覆裂纹的形成机理及控制措施,提出了采用电刷镀/激光熔覆复合处理解决铸铁激光熔覆裂纹敏感性高的新方法。研究结果表明:电刷镀/激光熔覆复合涂层组织致密,无裂纹、气孔等冶金缺陷,该方法为铸铁齿类件的再制造提供了一条可行的技术途径。
     针对高速重载渗碳齿面损伤的修复,成功设计出价格低、成形性好、具有自强化性能的中锰铁基合金熔覆材料。制备的中锰铁基合金熔覆层组织致密,涂层与基体呈冶金结合,熔覆层硬度较高、具有较好的耐磨和抗接触疲劳性能。采用热力学计算、价电子理论和冲击磨料磨损等方法研究了中锰铁基合金熔覆层的自强化机理,为其实际应用提供了理论支撑。
     研究了采用激光熔覆/活化屏等离子体氮化复合处理来实现激光再制造后齿类件性能提升的方法,并探讨了激光熔覆和活化屏等离子体氮化复合涂层的设计原则。研究结果表明:经复合处理后激光熔覆层的表面硬度、耐腐蚀性、耐磨性和抗接触疲劳性能都得到了显著提高;激光熔覆/活化屏等离子体复合涂层性能提高的关键在于激光熔覆层性能与载荷的合理搭配,激光熔覆层能提供足够的支撑以保护氮化层不被破坏是复合涂层设计的基本原则。
Remanufacturing can make waste products which contain value develop and utilize, reduce the environment pollution of scrap products, and prolong the service life of the parts. Remanufacturing engineering is one of the key parts of circular economy development and economical society establishment, and it is significant to economy and society. As one of the advanced remanufacturing technologies, laser cladding technology has lots of merits which supply apparent dominance for equipment parts repairing and remanufacturing, such as weak substrate impairment, high processing accuracy and so on.
     Gear failure will directly affect the normal operation of the mechanical system as it is the major part for load and movement transmission. The repair rate of gear part is very low due to the limitation of traditional maintenance method. With the development of laser technology, the new repaired gear part method is provided. In this paper, the damaged gear parts were investigated. Remanufacturing of gear parts was operated by laser technology, and then active screen plasma nitriding duplex treatment was processed to improve the performance of gear parts. The principal results are as follows:
     Research on laser rapid forming is carried out to settle the problem of hardened and tempered steel gear repair. Microstructure and mechanical property of laser rapid forming sample were researched, and the influence of repair ratio to the performance of laser remanufacturing parts was discussed. The results showed that the microstructure of laser rapid forming sample is dense with a characteristic of rapid solidification, and the sample has high mechanical properties. The performance of repaired specimen depends on laser repair zone and substrate, and the strength of repaired sample increases and the plasticity reduces with the increase of the ratio of laser repaired zone.
     Crack formation mechanism and control measures of laser cladding coating were discussed for laser repair the wear surface of cast gear, and a new method of brush electro-plating and laser cladding duplex treatment was presented to reduce the cast iron laser cladding crack sensitivity. The results show that the duplex treated coating is dense, without any metallurgical defects such as crack and porosity. It provides a feasible technology way for cast iron gear parts remanufacturing.
     The medium manganese Fe-based alloy with low price, well formability and self-strengthening properties was designed to repair surface damage of high speed over-load carburizing gear. The microstructure of medium manganese Fe-based alloy laser cladding coating is dense, and the coating and the substrate is metallurgical bond. The cladding coating has good property of hardness, wear resistance and contact fatigue resistance. Research on self-strengthening mechanism of laser cladding coating was carried based on thermodynamics calculation, valence electron theory and impact abrasive wear methods, and the result provides theoretical support for industrial application.
     The method of remanufacturing gear part property improving by laser cladding and active screen plasma nitriding duplex treatment was studied and the design principle of laser cladding and active screen plasma nitriding duplex treated coating was discussed. Results show that the surface hardness, corrosion resistance, wear resistance and contact fatigue property of laser cladding were improved apparently after duplex treatment. Reasonable collocation between laser cladding coating and load is the key for performance improvement of laser cladding and active screen plasma duplex treated coating. The basic design principle of duplex treated coating is that laser cladding can provide enough support to protect nitride layer from destroying.
引文
[1]徐滨士.装备再制造工程的理论与技术[M].北京:国防工业出版社.2007:1-5页
    [2]赵丽娟,史辉.齿轮传动中磨损问题的研究及修复方法综述[J].中国工程机械学报.2007,5(2):244-245页
    [3]李玉平.常用齿轮材料的选择及其热处理工艺[J].新余高专学报.2006,11(5):105-106页
    [4]郑润娥.齿轮渗碳及渗碳材料应用[J].制造.材料.2001,39(400):36页
    [5]王静.农业拖拉机齿轮失效模式分析[J].安徽农业科学.2007,35(6):1881页
    [6]王小宝.齿轮失效的原因和对策[J].矿冶.1998,7(2):63-67页
    [7]丁守祥.重载齿轮齿面疲劳损坏及预防[J].兵器材料科学与工程.2002,25(1):49-52页
    [8]蒋嵩波,卢艳红.齿轮传动的失效形式分析[J].机械.2005,32:46-49页
    [9]孙兆森,李建胜.齿轮传动失效形式及其对策[J].山西焦煤科技.2006,(4):6-7页
    [10]朱琪.齿轮轮齿失效分析及预防措施[J].机械.2001,28:131-132页
    [11]刘兴华.机械齿轮失效原因分析[J].中国高新技术企业.2008:93页
    [12]伍利群.齿轮修复的基本方法[J].矿山机械.2005,33(11):133-135页
    [13]徐萍.齿轮的磨损失效及修复[J].甘肃冶金.2010,32(1):112-113页
    [14]孙兆森.失效齿轮常用修复方法[J].煤矿机械.2006,27(6):1082-1083页
    [15]张新生.挖掘机大齿轮的修复方案[J].矿山机械.2002,8:77-78页
    [16]张鲁松,高岩军,潘忠民.冶金重载齿轮的修复技术[J].湖南冶金.2004,23(1):40-44页
    [17]王善元,贾成珠,齐玉盛,等.水泥磨减速机大齿轮开裂的焊接修复[1J].焊接.1995,7:14-16页
    [18]石维佳,王宗英,杨文元.含Ni、Cr、Mo合金焊条及保护气对齿轮修复层性能的影响分析[J].机械设计与制造.1997,4:29-30页
    [19]谢沛霖,吴新跃,杨胜国.齿面激光熔覆技术研究[J].中国机械工程.1998,9(7):77-80页
    [20]鲍志军.小模数齿轮激光熔覆修复工艺试验研究[D].上海:上海海事大学硕士学位论文,2007:1-55页
    [21]石娟.齿面激光表面处理的若干关键技术研究[D].上海:同济大学博士学位论文,2006:1-109页
    [22]马运哲.激光熔覆铁基自强化合金层及其组织与性能研究[D].装甲兵工程学院硕 士学位论文,2007:1-65页
    [23]张智,谢沛霖.激光熔覆修复齿轮轴工艺研究[J].电加工与模具.2007,(6):40-43页
    [24]谢沛霖,吴新跃.用堆焊和激光淬火的方法修复精密齿轮轴[J].海军工程学院学报.1998,83(2):59-65页
    [25]张开明,张家明,刘珉,等.“FGM"新材料在建材设备中的应用[J].中国水泥.2003,4:45-46页
    [26]张开明,张家明,潘新炎,等.“FGM"材料的发明与弥散强化复合工艺的创新[J].发明与创新.2003,7:22-23页
    [27]丁丽丽,胡进,陈名华.直升机齿轮喷丸-电刷镀复合修复工艺研究[J].表面技术.2005,34(3):49-51页
    [28]徐滨士.装备再制造工程的理论与技术[M].北京:国防工业出版社.2007:286页
    [29]L. F. Cai. Y. Z. Zhang, L. K. Shi. Micro structure and formation mechanism of titanium matrix composites coating on Ti-6A1-4V by laser cladding[J]. Rare Metals.2007,26(4): 342-346P
    [30]张维平.刘文艳.激光熔覆陶瓷涂层综述[J].表面技术.2011,30(8):30-33页
    [31]C. L. Sexton, G. Byrne, K. G. Walkins. Alloy Development by Laser Cladding an Overview. Journal of Laser Applications[J].2001,13(1):2-11P
    [32]H. H. Chen, C. Y. Xu, J. Chen, H. Y. Zhao. Micro structure and phase transformation of WC/Ni60B laser cladding coating during dry sliding wear[J]. Wear.2008,264: 487-493P
    [33]P. Z Wang, Y. S. Yang, G. Ding, et al. Laser cladding coating against erosion-corrosion wear and its application to mining machine parts[J]. Wear.1997,209:96-100 P
    [34]郭贵芳,陈芙蓉,李林贺.激光熔覆技术在钛合金表面改性中的应用[J].表面技术.2006,35(1):66-69页
    [35]马海波.激光熔覆原位自生颗粒增强复合涂层研究[D].大连理工大学硕士学位论文,2009:3-5页
    [36]J. A. Pinkerton, L. Li. The effect laser pulse width on multiple-layer 316L steel cladding microstructure and surface finish[J]. Applied Surface Science.2003,208-209: 411-416P
    [37]Q. M. Zhang, X. M. Liu, N. Sun, et al. Fundamental investigation on overlapping coating formed by broad-beam power feeding cladding[J]. Heat Treatment of Metals. 2001,(2):25-28P
    [38]M. L. Zhong, W. J. Liu, Burmester et al. Research on Nd:YAG pulsed laser powder feeding cladding on ultra thin sheet[J]. Transactions of Metal Heat Treatment.2000, 21(3):36-41P
    [39]尹紫光.高硬度材料激光熔覆镍基合金技术研究[D].长春理工大学硕士学位论文.2008:2-15页
    [40]刘江龙,邹至荣.高能束热处理[M].机械工业出版社.1997:245页
    [41]Q. W. Meng, L. Geng, B. Y. Zhang. Laser cladding of Ni-base composite coatings onto Ti-6A1-4V substrates with pre-placed B4C+NiCrBSi powders[J]. Surface and Coatings Technology.2006,200:4923-4928P
    [42]J. P. Yellup. Laser cladding using the powder blowing technique [J]. Surface and Coatings Technology.1995,71:121-128P
    [43]张光钧,吴培佳,许佳宁,等.激光熔覆的应用基础研究进展[J].金属热处理.2011,36(1):5页
    [44]李养良,金海霞,白小波,席守谋.激光熔覆技术的研究现状与发展趋势[J].热处理技术与装备.2009,30(4):1-5页
    [45]刘江龙,邹至荣.高能束热处理[M].机械工业出版社.1997:248页
    [46]关振中.激光加工过工艺手册[M].中国计量出版社.1998:269页
    [47]C. Y. Cui, Z. X. Guo. H. Y. Wang. J. D. Hu. In situ TiC particles reinforced grey cast iron composite fabricated by laser cladding of Ni-Ti-C system[J]. Journal of Materials Processing Technology.2007,183:380-385P
    [48]H. C. Man, S. Zhang, F. T. Cheng, T. M. Yue. In situ synthesis of TiC reinforced surface MMC on A16061 by laser surface alloying[J]. Scripta Materialia.2002,46: 229-234P
    [49]S. Yang, N. Chen, W. J. Liu, M. L. Zhong. In situ formation of MoSi2/SiC composite coating on pure Al by laser cladding[J]. Materials Letter.2003,57:3412-3416P
    [50]S. Zhang, W. T. Wu, M. C. Wang, H. C. Man. In-situ synthesis and wear performance of TiC particle reinforced composite coating on alloy Ti6A14V[J]. Surface and Coatings Technology.2001,138:95-100P
    [51]Y. H. Liu, Z. X. Guo, Y Yang, et al. Laser (a pulsed Nd:YAG) cladding of AZ91D magnesium alloy with Al and Al2O3 powders[J]. Applied Surface Science.2006,253: 1722-1728P
    [52]Q. H. Xu, W. Gao, X. Tian, et al. The properties of laser cladding Ni-alloy coating on 45 steel plate[J]. Development and Application of Materials.1997,12(6):7-8P
    [53]K. Y. Chiu, F. T. Cheng, H. C. Man. Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion[J]. Materials Science and Engineering A. 2005,402:126-134P
    [54]C. Navas, A. Conde, B. J. Fernandez, et al. Laser coatings to improve wear resistance of mould steel[J]. Surface and Coatings Technology.2005,194:136-142P
    [55]F. Liu, C. S. Liu, X.Q. Tao, S.Y. Chen. Laser cladding of Ni-based alloy on copper substrate[J]. Journal of University of Science and Technology Beijing.2006,13(4): 329-332P
    [56]Y. P. Zhang, Z. R. Zhou, J. M. Cheng, et al. Laser remelting of NiCoCrAlY clad coating on super alloy[J]. Surface and Coatings Technology.1996,79:131-134P
    [57]C. P. Paul, H. Alemohammad, E. Toyserkani, et al. Cladding of WC-12Co on low carbon steel using a pulsed Nd:YAG laser[J]. Materials Science and Engineering A. 2007,464:170-176P
    [58]C. Y. Cui, Z. X. Guo, Y. H. Liu, et al. Characteristics of cobalt based alloy coating on tool steel prepared by powder feeding laser cladding[J]. Optics and Laser Technology. 2007.39:1544-1550P
    [59]刘录录.H13钢表面激光熔覆改性研究[D].天津工业大学硕士学位论文,2008:3-5页
    [60]董世运,马运哲,徐滨士,韩文政.激光熔覆材料研究现状[J].材料导报.2006,20(6):5-9页
    [61]J. del Val, R. Comesana, F. Lusquinos, et al.Laser cladding of Co-based super alloy coatings:Comparative study between Nd:YAG laser and fibre laser[J]. Surface and Coatings Technology.2010,204:1957-1961P
    [62]M. Qian, L. C. Lim, Z. D. Chen. Laser cladding of nickel-based hard facing alloys [J]. Surface and Coatings Technology.1998,106:174-182P
    [63]Q. W. Meng. L. Geng, D. R. Ni. Laser cladding NiCoCrAlY coating on Ti-6A1-4V[J]. Materials Letters.2005.59:2744-2777P
    [64]A. Basu, A. N. Samant, S. P. Harimkar, et al. Laser surface coating of Fe-Cr-Mo-Y-B-C bulk metallic glass composition on AISI4140 Steel [J]. Surface & Coatings Technology. 2008.202:2623-2631P
    [65]Q. J. Zhu, S. Y. Qu, X. H. Wang, Z. D. Zou. Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding[J], Applied Surface Science.2007,253:7060-7064P
    [66]X. L. Wu. G. N. Chen. Micro-structural features of iron-based laser coating[J]. Journal of Materials Science.1999,34:3355-3361P
    [67]J. H. Quyang, S. Nowotny, A. Richter, E. Beyer. Characterization of laser clad yttria partially-stabilized ZrO2 ceramic layers on steel 16MnCr5[J]. Surface and Coatings Technology.2001,137:12-20P
    [68]董世运,韩杰才,杜善义.激光熔覆铜基自生复合材料涂层及其耐磨性能[J].材料开发与应用.2000,15(3):1-4页
    [69]K. W. Ng, H. C. Man, F. T. Cheng, T. M. Yue. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts[J]. Applied Surface Science.2007,253:6236-6241P
    [70]S. F. Corbin, E. Toyserkani, A. Khajepour. Cladding of an Fe-aluminide coating on milde steel using pulsed laser assisted powder deposition[J]. Materials Science and Engineering A.2003,354:48-57P
    [71]S. Bysakh, K. Chattopadhyay, T. Maiwald, et al. Microstructure evolution in laser alloyed layer of Cu-Fe-Al-Si on Cu substrate[J]. Materials Science and Engineering A. 2004,375-377:61-665P
    [72]W. C. Lin. C. Chen. Characteristics of thin surface layers of cobalt-based alloys deposited by laser cladding[J]. Surface and Coatings Technology.2006,200: 4557-4563 P
    [73]M. J. Tobar, J. M. Amado, C. Alvarez, et al. Characteristics of Tribaloy T-800 and T-900 coatings on steel substrates by laser cladding [J]. Surface and Coatings Technology.2008,202:2297-2301P
    [74]张三川,姚建铨,梁二军.激光熔覆进展与熔覆合金设计[J].激光技术.2002,26(3):204-207页
    [75]李强.激光熔覆不同颗粒碳化物颗粒/NiCrBSiC复合涂层的微观组织[D].哈尔滨工业大学博士学位论文.1998:1-50页
    [76]B. S. Du, Z. D. Zou. X.H. Wang, S. Y. Qu. In situ synthesis of TiB2/Fe composite coating by laser cladding[J]. Materials Letter.2008,62:689-691P
    [77]X. L. Wu. In situ formation by laser cladding of a TiC composite coating with a gradient distribution[J]. Surface and Coatings Technology.1999,115:111-115P
    [78]Z. D. Chen, L. L. Chew, M. Qian. Laser cladding of WC-Ni composite[J]. Journal of Materials Processing Technology.1996,62:321-323P
    [79]孙荣禄,杨贤金.TC4合金表面激光熔覆NiCrBSiC+TiN粉末涂层的微观组织研究[J].金属热处理.2006,31(3):27-29页
    [80]Y T. Pei. J. H. Ouyang, T. C. Lei. Laser cladding of ZrO2-(Ni alloy) composite coating [J]. Surface and Coatings Technology.1996,81:131-135P
    [81]H. M. Wang, Y. L. Yu, S. Q. Li.Microstructure and tribological properties of laser clad CaF2/Al2O3 self-lubrication wear-resistant ceramic matrix composite coatings[J]. Stripta Materialia.2002,47:57-61P
    [82]X. D. Lu, H. M. Wang. Corrosive sliding wear behavior of laser clad Mo2-Ni3Si/NiSi inter metallic coating [J]. Applied Surface Science.2005,245:346-352P
    [83]D. W. Zhang, T. C. Lei, F. J. Li. Laser cladding of stainless steel with Ni-CrsC2 for improved wear performance [J]. Wear.2001,251:1372-1376P
    [84]M. X. Li, Y. Z. He, G. X. Sun. Laser cladding Co-based alloy/SiCp composite coatings on IF steel [J]. Materials and Design.2004,25:355-358P
    [85]牛伟.TC4合金表面激光熔覆耐磨涂层的研究[D].天津工业大学硕士学位论文.2007:5-9页
    [86]付锐.激光熔覆制备Ni-Si系合金涂层组织与性能研究[D].兰州理工大学硕士学位论文.2005:3-14页
    [87]曲锋.高硬度材料激光熔覆钴基合金技术研究[D].长春理工大学硕士学位论文.2008:4-16页
    [88]曹国光.碳钢表面激光熔覆铁基B4C陶瓷材料的组织与性能研究[D].太原理工大学硕士学位论文.2010:2-7页
    [89]胡木林,谢长生.王爱华.激光熔覆材料相容性的研究进展[J].金属热处理,2001,1:1-6页
    [90]李春彦,张松.综述激光熔覆材料的若干问题[J].激光杂志.2002,23(3):5-9页
    [91]李胜,胡乾牛,曾晓雁,等.激光熔覆用高硬度铁基合金粉末的研究与应用[J].金属热处理.2004,29(9):6-10页
    [92]李胜,胡乾牛,曾晓雁,等.激光熔覆专用铁基合金粉末的研究进展[J].激光技术.2004,28(6):591-594页
    [93]刘中华.钛合金表面激光熔覆镍基复合涂层组织性能研究[D].大连理工大学硕士学位论文.2007:1-7页
    [94]朱刚贤,张安峰,李涤尘.激光熔覆工艺参数对熔覆层表面平整度的影响[J].中国激光.2010,37(1):296-301页
    [95]张庆茂,钟敏霖,杨森,等.送粉式激光熔覆层质量与工艺参数之间的关系[J].焊接学报.2001,22(4):51-56页
    [96]M. Picasso, C. F. Marsden, J. D. Wagniere, et al. A simple but Realistic Model for Laser Cladding[J]. Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science.1994,25(4):281-291P
    [97]孙宽,姚继蔚,徐忠锦,林树忠.影响激光熔覆层质量的主要因素[J].农业装备与车辆工程.2007,3:36-42页
    [98]刘江龙,邹至荣.高能输热处理[M].机械工业出版社.1997:257页
    [99]吴建.影响激光涂层品质的主要因素分析[J].机械制造与自动化.2004,33(4):55-56页
    [100]S. Li, Q. W. Hu, X. Y. Zeng, et al. Effect of carbon content on the microstructure and the cracking susceptibility of Fe-based laser-clad layer[J]. Applied Surface Science. 2005,240:63-70P
    [101]W. L. Song, P. D. Zhu, K. Cui. Effect of Ni content on cracking susceptibility and microstructure of laser-clad Fe-Cr-Ni-B-Si alloy[J]. Surface and Coatings Technology. 1996,80:279-282P
    [102]P. A. Kobryn, E. H. Moore and S. L. Semiatin. The effect of laser power and traverse speed on microstructure, porosity, and build height in laser deposited Ti-6A1-4V[J]. Scripta mater.2000,43:299-305P
    [103]张平.原津平.孙磊,等.Mo元素对NiCrBSi合金激光熔覆层开裂敏感性的影响[J].焊接学报.2009,30(2):68-70页
    [104]张晓东.钛合金表面激光熔覆镍包石墨涂层的研究[D].哈尔滨工业大学硕士学位论文.2006:8-9页
    [105]邹鸿承,戴蜀娟,罗欣,等.激光熔覆的热变形研究及热力学分析[J].应用激光.1995,15(2):56-59页
    [106]J. Rafal, S. Gerard, C. Ana, et al. Influence of the base preheating on cracking of the laser-cladded coatings[C]. Proceedings of SPIE.2003:356-361P
    [107]张维平,刘文艳.激光熔敷陶瓷涂层综述[J].表面技术.2001,30(4):30-38页
    [108]张晓东.董世运,徐滨士,李庆芬.激光熔覆再制造成形金属裂纹的控制措施[J].2008,第四届世界维修大会,海口:622-624页
    [109]李延民.激光立体成形工艺特性及显微组织研究[D].西北工业大学博士学位论文.2001:1-2页
    [110]谭华.激光快速成形过程温度测量及组织控制研究[D].西北工业大学硕士论文.2005:1-2页
    [111]黄卫东等.激光立体成形.西安:西北工业大学出版社[M].2007:1-5页
    [112]Y. Z. Zhang, M. Z. Xi, S. Y. Gao, et al. Characterization of laser direct deposited metallic parts [J]. Journal of Materials Processing Technology.2003,142(2):582-585.
    [113]张魁武.国外激光熔覆应用和直接熔覆金属零件及梯度材料制造[J].金属热处理.2002,27(9):1-4页
    [114]C. O. Brown, E. M. Breinan, B. H. Kear. Method for fabricating articles by sequential layer deposition[P]. U.S Patent:4323756,1979-10-25
    [115]D. B. Snow, E. M. Breinan, B. H. Kear. Rapid solidification processing of superalloy using high powder lasers[C]. Procedding Fourth International Superalloys Symposium. Alaitors Publishing Div., Baton Rouge, LA,1980,189-203P
    [116]张凯,刘伟,尚晓峰,王天然.激光直接快速成形金属材料及零件的研究进展(上)-国外篇[J].激光杂志.2005,26(4):4-8页
    [117]M. L. Griffth, M. E. Schlienger, L. D. Harwell, et al. Understanding thermal behavior in the LENS process[J[. Materials and Design.1999,20:107-113P
    [118]L. Wang, S. Feliceli, Y. Gooroochum, et al. Optimization of the LENS process for steady molten pool size[J]. Materials Science and Engineering A.2008,474:148-156P
    [119]G. K. Lewisa, E. Schlienger. Practical considerations and capabilities for laser assisted direct metal deposition[J]. Materials and Design.2000,21:417-423P
    [120].1. Choi. Y. Chang. Characteristics of laser aided direct metal/material deposition process for tool steel[J]. International Journal of Machine Tools and Manufacture.2005, 45:597-607P
    [121]X. Wu. J. Mei. Near net shape manufacturing of components using direct laser fabrication technology[J]. Journal of Materials Processing Technology.2003,135: 266-270P
    [122]G. P. Dinda, A. K. Dasgupta, J. Mazumder. Laser aided direct metal deposition of Incoel 625 super alloy:Microstructure evolution and thermal stability[J]. Materials Science and Engineering A.2009,509(1-2):98-104P
    [123]J. Mazumder, D. Dutta, N. Kikuchi, et al. Closed loop direct metal deposition:art to part[J]. Optics and Lasers in Engineering.2000,34:397-414P
    [124]N. I. S. Hussein, I. Segal, D. G. McCartney, I. R. Pashbv. Microstructure formation in Waspaloy multilayer builds following direct metal deposition with laser and wire[J]. Materials Science and Engineering A.2008,497:260-269P
    [125]L. Thivillon, Ph. Bertrand, B. Laget, I. Smurov. Potential of direct metal deposition technolog for manufacturing thick functionally graded coatings and parts for reactors components [J]. Journal of Nuclear Materials.2009,385(2):1-6P
    [126]E. C. Santos, M. Shiomi, K. Osakada, et al. Rapid manufacturing of metal components by laser forming[J]. International Journal of Machine Tools and Manufacture.2006,46: 1459-1468P
    [127]L. Xue, J. Y. Chen, M. U. Islam, et al. Laser consolidation of Ni-base IN-738 super alloy for repairing gas turbine blades[C]. ICALEO 2000,89(D):31P
    [128]W. B. Kim, Y. S.Yang, S. J. Na. Laser consolidation of arc sprayed coatings[J]. Surface and Coatings Technology.1989,37(4):409-418P
    [129]M. Gaumann, C. Bezencon, P. Canalis, et al. Single-crystal laser deposition of super alloy:Processing microstructure maps[J]. Acta Materialia.2001,49(6):1051-1062P
    [130]L. E. Weiss, R.Merz, F. B. Prinz, et al. Shape deposition manufacturing of heterogeneous structures [J]. Journal of Manufacturing System.1997, (16):239P
    [131]Y. M. Li, H.O.Yang, X. Lin, et al. The influences of processing parameters on forming characterizations during laser rapid forming[J]. Materials Science and Engineering A. 2003, A360:18-25P
    [132]M. Gremaud, J. D. Wagmiere, A. Zryd. et al. Laser metal forming:process fundamentals[J]. Surface Engineering.1996,3(12):251-259P
    [133]A. J. Pinkerton, L. Li. The behavior of water-and gas-atomised tool steel powders in coaxial laser freeform fabrication[J]. The Solid Films.2004.453-454:600-605P
    [134]K. Schwendner, P. C. Collins, C. A. Brice, et al. Direct laser deposition of alloys from elemental powder blends[J]. Scripta Materialia.2001.48:1123-1129P
    [135]M. Gauman. S. Henry, F. Cleton, et al. Expitaxial laser metal forming:analysis of mcrostructure formation[J]. Materials Science and Engineering A.1999, A271: 232-241P
    [136]A. J. Pinkerton, L. Li. The effect of laser pulse witdth on multiple layer 316L steel clad microstructure and surface finish[J]. Applied Surface Science.2003,208/209: 411-416P
    [137]张安峰,李涤尘,卢秉恒.激光直接金属快速成形技术的研究进展[J].兵器材料科学与工程.2007,30(5):68-72页
    [138]http://www. sandia.gov/mst/technologist/net-shaping.html.
    [139]J. Lin, W. M. Steen. Design characteristics and development of a nozzle for coaxial laser cladding[J]. Journal of Laser Applications.1998, (10):55-63P
    [140]D. P. Hand, M. D. T. Fox, F. M. Haran, et al. Optical focus control system for laser welding and direct casting[J]. Optics and Lasers in Engineering.2000,34:415-427P
    [141]J. Lin, W. M. Steen. An in-process method for the inverse estimation of the powder catchment efficiency during laser cladding[J]. Optics and Laser Technology.1998,30: 77-84P
    [142]J. Mazumder, D. Dutta, N. Kikuchi, A. Ghosh. Closed loop direct metal deposition:Art to part [J]. Optics and lasers in Engineering.2000, (34):397-414P
    [143]J. Mazumder, J. Choi, K. Nagarathnam, et al. The direct metal deposition of H13 tool steel for 3-D components[J]. Journal of the Minerals Metals & Materials Society.1997, 49(5):55-60P
    [144]J. Mazumder, A. Schifferer, J. Choi. Direct materials deposition:designed macro and micostructure[J]. Materials Research Innovations.1999,3(3):118-131P
    [145]K. H. Shin, H. Natu, J. Mazumder. A method for the design and fabrication of heterogeneous objects[J]. Materials and Design.2003,24:339-353P
    [146]M. Gaumann, S. Henry, F. Cleton, et al. Epitaxial laser metal forming:analysis of microstructure formation[J]. Materials Science and Engineering A.1999, A271: 232-234P
    [147]X. Wu. R. Sharman, J. Mei. et al. Direct laser fabrication and microstructure of bum-resistanct Ti alloy[J]. Materials and Design.2002,23(3):23-247P
    [148]X. Wu, J. Mei. Near net shape manufacturing of components using direct laser fabrication technology [J]. Journal of Materials Processing Technology.2003.135(2-3): 266-270P
    [149]X. Wu. J. Liang, J. F Mei. et al. Microstructures of laser-deposited Ti-6A1-4V. Materials and Design[J].2004,25(2):137-144P
    [150]X. Wu, R. Sharman, J. Mei, W. Voice. Microstructure and properties of laser fabricated burn-resistant Ti alloy [J]. Materials and Design.2004,25:103-109P
    [151]F. Wang, J. Mei, X. H. Wu. Direct laser fabrication of Ti6A14V/TiB[J]. Journal of Materials Processing Technology.2008,195:321-326P
    [152]F. D. Wang, J. Mei, X. H. Wu. Microstructure study of direct laser fabricated Ti alloys using powder and wire[J]. Applied Surface Science.2006,253:1424-1430P
    [153]黄卫东,李延民,等.金属材料激光立体成形技术[J].材料工程.2001,(3):40-43页
    [154]冯莉萍,黄卫东,李延民,陈静,林鑫,丁国陆.基材晶体取向对激光多层涂覆微观组织的影响[J].中国激光.2001,A28(10):949-952页
    [155]陈静,杨海鸥,杨健等.高温合金和钛合金的激光快速成形工艺研究[J].航空材料学报.2003,23(10):100-103页
    [156]陈静,林鑫,王涛等.316L不锈钢激光快速成形过程中熔覆层的热裂机理[J].稀有金属材料与工程.2003,32(3):183-186页
    [157]X. Lin, T. M, Yue, H. O. Yang, W.D. Huang. Microstructure and phaser evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy[J]. Acta Materialla. 2006,54(7):1901-1915P
    [158]X. Lin, Y. M. Li, M. Wang, et al. Columnar to equiaxed transition during alloy solidification[J].Scienc in China, Ser.E.2003,46(5):475-489P
    [159]杨健,黄卫东,陈静,等.激光快速成形金属零件的残余应力[J].应用激光.2004,24:5-8页
    [160]X. Lin, T. M. Yue. Phase formation and microstructure evolution in laser rapid forming of graded SS316L/Rene88DT alloy[J]. Materials Science and Engineering A.2005, 402:294-306P
    [161]X. Lin, T. M. Yue, H. O. Yang, et al. Laser rapid forming of SS3161/Rene88DT graded material[J]. Materials Science and Engineering A.2005,391:325-336P
    [162]H. Tan, J. Chen, X. Lin, et al. Research on molten pool temperature in the process of laser rapid forming[J]. Journal of Materials Processing Technology.2008.198: 454-462P
    [163]X. M. Zhang, J. Chen, X. Lin, W. D. Huang. Study on microstructure and mechanical properties of laser rapid forming Inconel 718 [J]. Materials Science and Engineering A. 2008,478:119-124P
    [164]Y. Z. Zhang, L. K. Shi, J. Cheng, et al. Research and Advancement on Laser Direct Forming[J]. Journal of Advanced Materials.2003,35(2):36-40P
    [165]张永忠,席明哲,石力开,程晶.激光快速成形316L不锈钢的组织及性能[J].稀有金属材料与工程.2002,31(2):103-105页
    [166]张永忠,石力开,章萍芝,等.激光快速成形镍基高温合金研究[J].航空材料学报.2002,22(1):22-25页
    [167]高士友,张永忠,石力开,王殿武.激光快速成形TC4钛合金的力学性能[J].稀有金属.2004,28(1):29-33页
    [168]席明哲,张永忠,石力开,等.工艺参数对激光快速成型316L不锈钢组织性能的影响[J].中国激光.2002,36(11):105-108页
    [169]张永忠,章萍芝,石力开,等.激光直接堆积成形铜合金的组织及性能[J].金属热处理.2001,(6):4-7页
    [170]Y. Z. Zhang, Z. M. Wei, L. K. Shi, et al. Characterization of laser powder deposited Ti-TiC composites and functional gradient materials[J]. Journal of Materials Processing Technology.2008,26:438-444P
    [171]靳晓曙,杨洗陈,王云山,刘运武,冯立伟.激光三维直接制造和再制造新型同轴送粉喷嘴的研究[J].应用激光.2008,28(4):266-269页
    [172]李会山,杨洗陈,王云山,张大鹏.模具的激光修复[J].金属热处理.2004,29(2):39-41页
    [173]杨洗陈,李会山,王云山,等.用于重大装备修复的激光再制造技术[J].激光与光电子学进展.2003,40(10):53-57页
    [174]杨洗陈,李会山,刘运武,等.激光再制造技术及其工业应用[J].中国表面工程.2003,4:43-46页
    [175]K. Zhang, W. J. Liu, X. F. Shang. Research on the processing experiments of laser metal deposition shaping [J]. Optics & Laser Technology.2007,39(3):549-557P
    [176]钟敏霖,刘文今.垂直装卸的分体式激光熔覆同轴送粉喷嘴.中国发明专利:00100041.1,200-01-07
    [177]M. L. Zhong, et al. Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on drienctionally solidified Ni-based superalloy[J]. Scripta Materialla.2005, (53):159-164P
    [178]M. L. Zhong, W. J. Liu, G. Q. Ning, et al. Laser direct manufacturing of tungsten nickel collimation component [J]. Journal of Materials Processing Technology.2004,147: 167-173P
    [179]钟敏霖,宁国庆,刘文今.激光快速柔性制造金属零件基本研究[J].应用激光.2001,21(2):6-78页
    [180]宁国庆,钟敏霖,杨林,刘文今,陈艳霞,李凤光.激光直接制造金属零件过程的闭环控制研究[J].应用激光.2002,2(2):172-176页
    [181]王华明.金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J].航空学报.2002,23(5):473-478页
    [182]王华明,张述权,王向明.大型钛合金结构件激光直接制造的进展与挑战[J].中国激光.2009,12(36):3206-3208页
    [183]王华明,张凌云.金属材料快速凝固激光加工与成形[J].北京航空航天大学学报.2004,30(1):962-967页
    [184]H. M. Wang, D. Y. Luan. L. Y. Zhang. Micro structure and wear resistance of laser melted W/W2Ni3Si metal silicides matrix in-situ composities[J]. Scripta Materiallia. 2003,48(8):1179-1184P
    [185]闫世兴,董世运,徐滨士,等.Fe314合金粉末激光快速成形组织与力学性能分析[J].中国激光.2009,36(11):3074-3078页
    [186]王志坚,董世运,徐滨士,夏伟.激光熔覆工艺参数对金属成形效率和形状的影响[J].红外与激光工程.2010,39(2):315-319页
    [187]J. C. Liu, L. J. Li. Effects of process variables on laser direct formation of thin wall[J]. Optics and Laser Technology.2007,39:231-236.3P
    [188]邓琦林,胡德金.激光熔覆快速成型致密金属零件的试验研究[J].金属热处理.2003,28(2):33-38页
    [189]P. Li, T. P. Yang, S. Li, D. S. Liu, et al. Direct laser fabrication of nickel alloy samples[J]. International Journal of Machine Tools & Manufacture.2005,45(11): 1288-1294P
    [190]P. Li, S. Q. Ji, X. Y. Zeng, et al. Direct laser fabrication of thin-walled metal parts under open loop control[J]. International Journal of Machine Tools & Manufacture. 2007,47(6):996-1002P
    [191]X. Y Li, X. Y. Zeng, H. L. Li, X. J. Qi. Laser direct fabrication of silver conductors on glass boards[J]. Thin Solid Films.2005,483:270-275P
    [192]王维.TC4合金激光快速修复过程中熔合不良缺陷的评价研究[D].西北工业大学硕士学位论文.2007:15-16页
    [193]李倩.钛合金激光熔覆工艺与形状修复试验研究[D].大连理工大学硕士学位论文.2010:1-6页
    [194]朱胜.姚巨坤.激光再制造工艺与技术[J].新技术新工艺.2009,(8):1-3页
    [195]薛雷,黄卫东,陈静,林鑫.激光成形修复技术在航空铸件修复中的应用[J].铸造技术.2008.3(29):391-393页
    [196]J. A. Vaccali. The laser as a cladding tool[J]. American Machinist.1990,2:49-52P
    [197]S. J. Matthews, Laser fusing of hardfacing alloy powders[J]. Laser in Materials Processing.1983:138-148P
    [198]张永忠,石力开.高性能金属零件激光快速成形技术研究进展[J].航空制造技术.2010,8:49页
    [199]Y. P. Kathuria. Some aspects of laser surface cladding in the turbine industry [J]. Surface and Coatings Technology.2000,132:262-269P
    [200]M. Gaumann, C. Bezencon, P. Canalis, W. Kurz. Single-crystal laser deposition of super alloys:processing-microstructure maps[J]. Acta mater.2001,49:1051-1062P
    [201]熊征.激光熔覆强化和修复薄壁型零部件关键技术基础研究[D].华中科技大学博士学位论文.2009:16-17页
    [202]徐滨士等.装备再制造工程的理论与技术[M].北京:国防工业出版社.2007:20-24页
    [203]肖荣诗,陈凯,陈涛.激光制造技术的现状及发展趋势[J].电加工与模具(增刊).2009:18-20页
    [204]刘军,王捷.航空发动机涡轮叶片叶尖修补焊修复技术探讨[J].航空发动机.1994,2:46-49页
    [205]L. Sexton, S. Lavin, G. Byrne, et al. Laser cladding of aerospace materials[J]. Journal of Materials Processing Technology.2002,122:63-68P
    [206]王茂才,吴维强.先进燃气轮机叶片激光修复技术[J].燃气轮机技术.2001,14(4):53-56页
    [207]王茂才,陈江,吴维,等.高温高速轮盘损伤区激光修复重建之工艺方法[P].中国专利:1199663,1998-11-25
    [208]王茂才,吴维,陈江,等.炼油厂烟机涡轮盘冲蚀区的激光修复方法[P].中国专利:1191788,1988-09-02
    [209]王茂才,华伟刚,白林祥,等.烟机轮盘与叶片冲蚀区激光熔铸修复[J].石油化工设备.2001,30:10-12页
    [210]W. F. Wang, M. C. Wang, J. Zhang, et al. Research on the microstructure and wear resistance of titanium alloy structural members repaired by laser cladding[.T]. Optics and Lasers in Engineering.2008(46):810-816P
    [211]王维,林鑫.陈静.等.TC4零件激光快速修复加工参数带的选择[J].材料开发与应用.2006,22(3):19-23页
    [212]薛雷,陈静,张凤英,等.飞机用钦合金零件的激光快速修复[J].稀有金属材料与工程.2006,35(11):1817-182页
    [213]薛雷,黄卫东,陈静,林鑫.激光成形修复技术在航空铸件修复中的应用[J].铸造技术.3(29):391-393页
    [214]董世运,徐滨士,王志坚,张晓东.激光再制造齿类零件的关键问题研究[J].中国激光.2009,36(1):134-138页
    [215]S. Y. Dong, B. S. Xu, Z. J.Wang, et al. Laser remanufacturing technology and its applications[C]//ShuShen Deng, Akira Matsunawa, Xiao Zhu. Lasers in Material Processing and Manufacturing III. Beijing:Proc. of SPIE,2007:6825IN.1-6P
    [216]董世运,张晓东,徐滨士,等.45钢凸轮轴磨损凸轮的激光熔覆再制造[J].装甲兵工程学院学报.2011,25(2):85-87页
    [217]李会山,杨洗陈,王云山,等.模具的激光修复[J].金属热处理.2004,29(2):39-42页
    [218]雷剑波,杨洗陈,王云山,等.激光再制造快速修复海上油田关键设备[J].相关产业.2006,6:54-56页
    [219]熊征,曾晓雁.在GH4133锻造高温合金叶片上激光熔覆StelliteX-40合金的工艺研究[J].热加工工艺.2006,35(23):62-64页
    [220]X. Zheng, G. X. Chen, X. Y. Zeng. Effects of process variables on interfacial quality of laser cladding on aeroengine blade material GH4133[J]. Journal of materials processing technology.2009,209:930-936P
    [221]朱蓓蒂,曾晓雁,胡项,等.汽轮机末级叶片的激光熔覆研究[J].中国激光.1994,21(6):526-529页
    [222]葛志军,邓琦林,宋建丽,陈畅源.激光熔覆修复铜合金零件的工艺研究[J].电加工与模具.2007,(1):39-40页
    [223]邓琦林,熊忠琪,周春燕,高宾.激光熔覆修复技术的基础试验研究[J].电加工与模具.2008,(6):36-39页
    [224]刘其斌,李绍杰.航空发动机叶片铸造缺陷激光熔覆修复的研究[J].金属热处理.2006,31(3):52-55页
    [225]J. L. Song, Q. L. Deng, C. Y. Chen, et al. Rebuilding of metal components with laser cladding forming[J]. Applied Surface Science.2006,252:7934-7940P
    [226]陈江,刘玉兰.激光再制造技术工程化应用[J].中国表面工程.2006,19(5):50-55页
    [227]吕耀辉.徐滨士,向永华,刘存龙.灰口铸铁镍基等离子熔覆组织和性能[J].中国表面工程.2009,22(1):46-55页
    [228]X. Tong, H. Zhou, L. Q. Ren, et al.Thermal fatigue characteristics of gray cast iron with non-smooth surface treated by laser alloying of Cr powder[J]. Surface and Coatings Technology.2008,202(12):2527-2534P
    [229]M. Panayotova. Deposition of Fe-C alloy on structural steel and cast iron for repair of worn machine parts[J]. Surface and Coatings Technology.2000,124(2-3):266-267页
    [230]李达,杨庆祥,崔占全,杨育林.高耐磨药芯焊丝堆焊组织及基体选择[J].焊接学报.2009,12(30):69-72页
    [231]张玉峰,熊海涛,周厚强.灰口铸铁件磨损后镍-磷复合刷镀修复工艺的研究[J].热加工工艺.2004,1:32-33页
    [232]谢长生,王爱华,黄开会等.铸铁表面激光熔覆裂纹的形成原因[J].钢铁.1994,29(8):48-53页
    [233]栾景飞,罗伟,严密等.铸铁表面抗裂耐磨激光熔覆材料的研制[J].中国激光.2002,29(7):652-656页
    [234]陈钧.船用铸铁零部件焊接中的技术问题研究[D].上海海事大学硕士学位论文.2006:1-42页
    [235]张平,徐滨士,韩文政.新型Fe-Mn堆焊合金的抗接触疲劳性能的研究[J].焊接学 报.1998,9(3):188-194页
    [236]韩文政,张平,张冀良,等.中锰铸钢坦克履带板服役时的强化特性研究[J].兵器材料科学与工程.2000,23(6):19-25页
    [237]王明胜,樊维祥.奥氏体中锰钢的成分设计分析[J].机械工程材料.1993,17(1):17-21页
    [238]朱瑞富,韩志强,李士同,等.稀土和钛镀奥氏体中锰钢的变质作用[J].中国稀土学报.1997,15(3):233-238页
    [239]韩文正,马丽丽.中锰铸钢疲劳裂纹扩展行为研究[J].兵器材料科学与工程.2000,23(3):12-15页
    [240]陈希杰.奥氏体稳定性与形变强化能力关系的研究[J].铸造.1983,5:7-13页
    [241]朱之凯等.系统在钢中合金化及分布.稀土在钢铁中的作用[M].机械工业出版社.1987:239页
    [242]刘宗昌.钢的系统整合特性[J].钢铁研究学报.2002,14(5):35-41页
    [243]胡汉起.金属凝固原理[M].北京:冶金工业出版社.1985:75-81页
    [244]董世运.铝合金表面激光熔覆铜基自生复合材料层的研究[D].哈尔滨工程大学博士论文.2005:71-77页
    [245]刘江龙,邹志荣,苏宝榕.高能束热处理[M].北京:机械工业出版社.1997:144-156页
    [246]陈光.非平衡凝固新型金属材料[M].北京:科学出版社.2004:35-36页
    [247]徐祖耀.马氏体相变研究进展和瞻望[M].金属学报.1980,(3):161页
    [248]张鸿冰,倪乐民,徐祖耀Fe-Mn-C系Ms及马氏体相变驱动力的热力学计算[J].金属学报.1987,2(1):42-48页
    [249]徐祖耀.马氏体相变与马氏体[M].北京:科学出版社.1978:481-486页
    [250]徐祖耀,张鸿冰,罗守福.Fe-C合金Ms点的热力学计算及马氏体相变驱动力[J].金属学报.1984,20(3):151-161页
    [251]李绍熊,何镇明,赵宇光等Fe-Mn-C系合金1000固溶处理组织图的研究[J].金属学报.1991,27(5):B310-B314页
    [252]刘志林.合金价电子结构与成分设计[M].长春:吉林科学技术出版社.1990:1-140页
    [253]朱瑞富,吕宇鹏,李士同,张福成.高锰钢的价电子结构及其本质特性[J].科学通报.1996,41(14):1336-1338页
    [254]朱瑞富,吕宇鹏,陈传忠,李士同,王世清Fe-C-Mn合金奥氏体的价电子结构分析[J].金属学报.1996,32(6):561-563页
    [255]朱瑞富,韩志强,吕宇鹏,李士同,王世清.系列奥氏体锰钢的拉伸变形行为及其本质[J].山东工业大学学报.1997,27(1):50-54页
    [256]朱瑞富,吕宇鹏,陈传忠,李士同,王世清Fe-C-Mn合金奥氏体的价电子结构分析[J].金属学报.1996,32(6):561-563页
    [257]吕宇鹏,朱瑞富,李士同,韩志强,王世清.锰钢奥氏体组织与性能的价电子结构分析[J].钢铁研究学报.1999,11(1):51-53页
    [258]朱瑞富,朝志强,魏涛,吕宇鹏,李士同,王世清.奥氏体中锰钢加工硬化的微观机制[J].钢铁研究学报.1997,9(1):30-33页
    [259]侯增寿,卢光熙.金属学原理[M].上海:上海科学技术出版社.1990:54页
    [260]朱瑞富,李士同,吕宇鹏,陈传忠,魏涛,王世清.Mn8钢TEM原位拉伸变形过程的动态观察[J].科学通报.1996,41:2276-2280页
    [261]张福成,郑炀曾.锰铬奥氏体钢中合金元素及碳的短程有序分布[J].科学通报.1991,36(5):382-385P
    [262]C. Kwietniewski, H. Dong, T. Strohaecker, X.Y. Li, T. Bell. Duplex surface treatment of high strength Timetal 550 alloy towards high load-bearing capacity[J]. Surf. Coat. Tech.2001,139(2-3):284-292P
    [263]K. Nagatsukua, A. Nishimoto, K. Akamatsu. Surface hardening of duplex stainless steel by low temperature active screen plasma nitriding[J]. Surf. Coat. Tech..2010, 205(Supplement 1):s295-s299P
    [264]F. Mahboubi. M. Fattah. Duplex treatment of plasma nitriding and plasma oxidation of plain carbon steel[J]. Vacuum.2005,79(1-2):1-6P
    [265]C. Zhao, C.X. Li, H. Dong, T. Bell. Study on the active screen plasma nitriding and its nitriding mechanism[J]. Surf. Coat. Tech..2006,201(6):2320-2325P
    [266]A. Nishimoto, K. Nagatsuka, R. Narita, et al.. Effect of the distance between screen and sample on active screen plasma nitriding properties[J]. Surf. Coat. Tech..2010, 205(Supplement 1):s365-s368P
    [267]M. K. Hedavati, F. Mahboubi, T.Nickchi. Comparison of conventional and active screen plasma nitriding of hard chromium electroplated steel[J].Vacuum.2009,83(8): 1123-1128P
    [268]C. X. Li, T. Bell. Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel [J].Corrosion Science.2004, (46):1527-1547P
    [269]S. Ahangarani, F. Mahboubi, A. R. Sabour. Effects of various nitriding parameters on active screen plasma nitriding behavior of a low-alloy steel.Vacuum[J].2006, (80): 1032-1037P
    [270]C. X. Li, T. Bell. Sliding wear properties of active screen plasma nitrided 316 austenitic stainless steel [J]. Wear.2004, (256):1144-1152P
    [271]S. Ahangarani, A. R. Sabour, F. Mahboubi. Surface modification of 30CrNiMo8 low-alloy steel by active screen setup and conventional plasma nitriding methods [J]. Applied Surface Science.2007; (254):1427-1435P
    [272]赵程,孙国定.活性屏离子氮化机理的研究[J].青岛科技大学学报.2004,25(1):43-47页
    [273]金应荣,刘锦云,李孔军,赵广彬.活性屏离子氮化过程氮的输运机理分析[J].西华大学学报.2010,29(2):58-61页
    [274]W. C. Oliver, G. M. Pharr. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research.1992,7(6):1564-1580P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700