用户名: 密码: 验证码:
碳氮合金化耐磨合金电弧喷涂的熔滴过渡行为及涂层性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在设备零件表面制备高性能的耐磨涂层是提高其使用寿命的有效途径。相对于其它热喷涂方法,电弧喷涂由于具有设备简单、操作方便、效率高、成本低的特点而得到广泛应用。目前制备电弧喷涂耐磨涂层主要采用碳强化的合金丝材,但是此种喷涂丝材中的碳化物容易长大、脱落,从而使涂层难以获得高耐磨性能和结合强度。本文通过使用氮替代部分碳进行碳氮合金化,并添加适量的钒、铌等强碳氮化合物形成元素,在涂层中形成了碳氮化物等硬质相颗粒,显著地提高了涂层的耐磨性能和结合强度,开辟了具有较高综合性能电弧喷涂耐磨涂层材料的新途径。
     以自主研发的4Cr13马氏体涂层为基础合金涂层,通过添加适量的氮化物以及钒铁、铌铁,设计了新型碳氮合金化耐磨合金材料,并研制出工艺性良好的碳氮合金化耐磨合金电弧喷涂药芯丝材;研究了合金涂层金属基体中氮的析出行为,并确定了合金涂层的合理氮含量,结果表明:4Cr13马氏体不锈钢涂层中最大氮含量约为0.10%,而加入微量的固氮元素钒和铌能使合金涂层的氮含量达到0.20%以上。铌和钒提高氮在马氏体不锈钢涂层溶解度的主要原因为:这两种元素降低氮在熔滴金属中的活性系数,从而增大了氮的固溶度;作为碳氮化物形成元素与氮作用,形成复杂的碳氮化物粒子,增大涂层的含氮量。
     应用高速摄影技术研究了电弧喷涂雾化熔滴过渡行为,并分析其对耐磨合金涂层质量的影响,结果发现:制备碳氮合金涂层时雾化熔滴的尺寸差别较大,最大熔滴体积约为最小熔滴的几十倍。电弧喷涂电流和雾化空气压力越大,雾化熔滴的尺寸就越小,雾化效果就越好,熔滴速度也就越快。熔滴最高速度达78m/s,而最低速度只有21m/s。电弧喷涂雾化熔滴过渡行为研究为电弧喷涂工艺和涂层质量的分析与评定提供了有效手段和依据。
     系统研究喷涂电流、喷涂电压、喷涂距离、雾化空气压力等主要电弧喷涂工艺参数对碳氮合金化耐磨合金涂层组织和性能的影响,并优化了喷涂工艺参数;分析了基材表面粗化处理、涂层厚度及喷涂后热处理对涂层组织性能的影响,结果表明:制备碳氮合金化涂层的最优电弧喷涂工艺参数是:喷涂电压为30V,喷涂电流为240A,雾化空气压力为0.5MPa,喷涂距离为200mm;采用Ni95Al5喷涂丝材制备碳氮合金化涂层的打底层(即过渡涂层),其最佳厚度值约为0.1mm,而工作涂层的最佳厚度值约为0.6mm;550℃~650℃的回火热处理细化了涂层的基体组织,提高了涂层的综合性能。
     深入分析了碳氮合金化耐磨合金涂层的组织结构与性能,结果表明:碳氮合金化涂层组织为板条马氏体、少量残余奥氏体以及弥散分布在涂层基体中的碳化物硬质相颗粒。涂层致密,成形良好,呈典型层状结构。钒和铌元素能改善碳氮合金化涂层的组织和性能,当添加4%的钒铁和6%的铌铁时,涂层获得最佳综合性能,此时涂层的氧化物含量和孔隙率较低。与4Cr13涂层相比,碳氮合金化涂层具有更高的显微硬度和结合强度,其显微硬度平均值约为556HV0.1,结合强度达38.9MPa,耐磨粒磨损性能约为4Cr13涂层的1.78倍。涂层经550℃回火热处理后,其微观组织形貌无明显变化,而涂层硬度、耐磨粒磨损性能以及结合强度有一定提高。
     全面探析了耐磨合金中碳氮化物硬质相及耐磨粒磨损机理,结果表明:碳氮析出相为MX复合物(M为Nb、V和Ti;X为C、N),弥散分布在涂层金属中的晶界和晶内,尺寸均不大于3.5μm。碳氮化物在涂层中起到了细化一次结晶组织、钉扎位错阻碍晶粒长大的细化作用;碳氮化物分布均匀而且在高温下不易产生分解,对涂层金属起到了沉淀强化作用,上述作用显著提高了涂层的强度和韧性。大量的碳氮化物质点沉淀析出,提高了涂层硬度,抵御了磨粒对涂层金属基体的有效切削,从而使涂层获得较高的耐磨粒磨损性能。
     研究了碳氮合金耐磨合金涂层残余应力的形成机理及影响因素,用射线衍射法检测了涂层的残余应力,并与采用有限元方法模拟的结果进行比较,结果表明:碳氮合金化涂层与基材结合面处的残余应力值最大且为压应力。用数值分析方法成功模拟了涂层应力分布和形成情况,其分析结果与XRD检测的涂层残余应力为同一量级。数值模拟为预防和控制涂层残余应力提供了可靠依据,并由此将涂层残余应力控制在较低水平。
     在搅拌车的搅拌筒叶片及泵轴等零件表面制备碳氮合金化耐磨合金并进行了生产应用研究,采用外观分析法和划痕试验法检测了涂层性能,结果表明:碳氮合金化涂层有较高的结合强度、耐磨损性能以及良好的加工性能,适合有耐磨损要求零件的生产与修复,因而碳氮合金化涂层具有较高的推广和应用价值。
Coatings with good wear-resistant prepared on the surface of the machine partshave emerged as an effective way to improve its service life. Compared with otherthermal spraying, arc spraying begin to be widely used for its advantages, such assimple device, convenient operation, higher efficiency and lower cost. The carbonalloying flux-cored wire is mainly used in the alloying arc sprayed coatings at present,but the adhesion strength and wear resistanc of this kind of coatings is lower for thecarbides is easy to grow and pee. In this article, element N was added into the wirebeing replaced parts of element C to be carbonitride alloying, and element V and Nbwere also added into the coatings to form carbonitride hard phase particles, which cangreatly improve properties of the coatings, especially the adhesion strength and wearresistanc. The research opened up a new path for arc sprayed resistant coatingsmaterials with good comprehensive properties.
     A new kind of carbonitride wear-resistant coating based on the basis alloyingcoating of the4Cr13martensitic stainless steel coating had been designed by addingCrN, ferrovanadium and ferrocolumbium. And arc sprayed flux-cored wires withgood performance had also been developed successfully. The precipitation behaviorof nitrogen in the coating had been studied, and the reasonable nitrogen content in thealloy was obtained. The results indicated that maximal nitrogen content in4Cr13steelis approximately0.10%, which can be up to0.20%after adding extremely a littlequantitiy of element V and Nb. The main reason that additions of Nb, V and Ti canincrease nitrogen solubility in the coatings are: first, they can reduce activitycoefficient of nitrogen in molten drop and increase its solid solubility; Second, as themost effective carbonitride forming elements added in the coating, these alloyingelements can enlarge nitrogen content.
     The transitional behavior of arc sprayed droplet was studied using high-speedvideo techniques, and effects on the coatings were also analyzed, the results showedthat the sizes of atomized droplets were different obviously when being sprayed, thebig droplet was about dozens of times than that of small one. The higher the value ofsprayed current and air pressure, the smaller the atomized droplets, the better theeffect of atomizing, and the higher the speed of atomized droplets. The highest speedof droplet was about78m/s, and the lowest speed of droplet was about21m/s. Theresearch on the droplet provided an effective way to analyzing and evaluating on thearc spraying process and coatings quality.
     The effects of mainly arc spraying process parameters of the spraying current,voltage, pressure and distance of the air atomizing on the microstructure andproperties of the carbonitride alloying coatings had been studied systematically. Theprocess parameters of arc spraying had been optimized. The effects of surfaceroughtening treatment of the workpiece, thicness of coatings and heat treatment onthe properties and microstructure of the coatings had also been studied. The resultsindicted that the optimal process parameters preparing carbonitride alloying coatingswere as follow:240A of current,30V of voltage,200mm of spraying distance and0.5MPa of the air atomizing pressure. The arc sprayed wire Ni95Al5was used toprepare the trasitional coatings, the thickness is about0.1mm, and the workingcoatings is about0.6mm. And550℃~650℃of tempering heat treatment canenharnce the comprehensive properties.
     The microstructure and properties of the carbonitride alloying coatings weredeeply investigated. The results showed that there are three main phases of the lathmartensite, the residual austenite and the hard phase particles distributedhomogeneously in metal matrix of the coatings. Coatings have compact structure andgood forming. Elements V and Nb can improve the microstructure and properties ofthe coatings. Coatings with4%ferrovanadium and6%ferrocolumbium had the bestcomprehensive properties, in which there were less porosity and oxides. The carbonitride alloying coatings had higher value of microhardness and adhesionstrength than that of4Cr13coatings, the average microhardness value is about556HV0.1, and the adhesion strength value reaches38.9Mpa. The value of abrasive wearperformance is about1.78times higher than that of the4Cr13coatings. After thetemper temperature of550℃, the hardness, the wear resistance and the adhesionstrength of the coatings had been improved, but the microstructure had not beenobviously changed.
     The carbonitride hard-phases in the coatings and the abrasive wear mechanism ofthe coatings were investigated and analyzed. The results indicated that carbonitrideparticles in the matrix of the coatings are complex MX distributing on the grainboundary or matrix, which sizes are smaller than3.5μm. M is the element of Nb, V orTi, and X is the element of C or N. The carbonitride can effectively refine themicrostructure, and hinder the crystal growing by fixing the crystal boundary. Thehomogeneous distribution of very fine carbonitride can not been easily disintegrated,which has precipitation strengthening effect on the matrix of the coatings. Thuscarbonitride could improve the strength and toughness of the coatings. The coatingswould have good abrasive wear behavior for the large quantities of carbonitrideparticles that precipitated out improving the microhardness of the coatings andhindering effective cutting of particles on the coatings.
     Formation mechanism of the carbonitride alloying coatings and influencingfactors on the coatings had been studied. Residual stress of the coatings was tested byXRD, which result was compared with that of the numerical simulation of the finiteelement method. The results indicated that there was the maximum value of residualstress on the interface between coatings and steel plate, which was compressive stress.Distribution and formation of the coatings had been successfully simulated by thenumerical analysis. And the result was the same as the order of XRD, which canprovide evidence to prevent and control the stress of the coatings, the value of theresidual stress was relative low which waw about1000MPa.
     Carbonitride alloying coatings were successfully prepared on the surface of theblade of the mixing drum for concrete mixer vehicle and the shaft of pump, the performance of the coatings had been tested by appearance analysis and scratch test,the results indicated that the coatings had high the wear resistance and adhesionstrength after long-time operation, which can meet the need of production. Therefore,the carbonitride alloying coatings have higher value of application and dissemination.
引文
[1] Schoop M U. A new process for the production of metallic coatings[J]. Chem.Met.Eng.,1990,(8):404~406,
    [2] Masahiro Fukumoto. The current status of thermal spraying in Asia[J]. Journal ofThermal Spray Technology,2008,17(1):6~9.
    [3] Sidhu T S, Prakash S, Agrawal R D. Hot corrosion performance of a NiCr coatedNi-based alloy[J].Scripta Materialia,2006(55):179~182
    [4] Weulersse-Mouturat K, Moulin G, Billard P, Pierotti G. High temperaturecorrosion of superheater tubes in waste incinerators and coal-fired plants[J].Materials Science Forum,2004(462):977~980.
    [5] Srivastava S C, Godiwalla K M, Banerjee M K. Fuel ash corrosion of boiler andsuperheater tubes[J].Journal of Materials Science,1997,32(4):835~849.
    [6]徐滨士.优质、高效、经济的热喷涂技术—高速电弧喷涂技术.第九次全国焊接会议论文集(1),天津,1999:39~47.
    [7]刘广海.电弧喷涂技术的发展现状及其在主要工业领域的应用[J].金属加工(热加工),2008,(18):26-29.
    [8]徐滨士.装备再制造技术[J].中国设备工程,2008,(9):61~62.
    [9]陈永雄,徐滨士等.高速电弧喷涂技术在装备维修与再制造工程领域的研究运用现状[J].中国表面工程,2006,19(5):169~172.
    [10]汪瑞军,张天剑,徐林等.大功率高速电弧喷涂层性能及其应用[J].焊接,2004(3):27~30.
    [11] Liu G M, RozniatowskiK, Kurzydlowski K J. Quantitative characteristics ofFeCrAI films deposited by arc and high veloeity arc spraying[J]. MaterialsCharacterization,2001,(46):99~104.
    [12]张恒华.超音速电弧喷涂技术[J].热处理,2008,23(4):7.
    [13]李尚周,聂铭,余红雅等.NiCrFe-Cr3C2合金超音速活性电弧喷涂涂层性能的研究[J].表面技术,2003,32(4):15~l7.
    [14]刘少光,赵琪,李志章等.N2保护对TiAl3和Cr3C2复合涂层组织结构及高温冲蚀性能的影响[J].功能材料,2008,39(l):166~169.
    [15]许一,梁秀兵,徐滨士等.还原性保护气氛电弧喷涂技术研究[J].同济大学学报.2001,29(9):1122~1125.
    [16]贺定勇.电弧喷涂粉芯丝材及其涂层的磨损特性研究[D].北京:北京工业大学,2004:12~26.
    [17]刘贵民,徐滨士等.电弧喷涂及高速电弧喷涂FeCrAl的微观性能研究[J].中国表面工程,1999,44(3):11~15.
    [18]孟凡刚,王勇等.电弧喷涂药芯丝材涂层的组织和高温冲蚀性能[J].中国石油大学学报(自然科学版),2009,33(2):11~15.
    [19]罗来马,刘少光等.高速电弧喷涂FeMnCr/Cr3C2涂层抗高温冲蚀磨损性能[J].稀有金属材料与工程,2010,39(2):234~237.
    [20]王艳燕.电弧喷涂马氏体不锈钢涂层的组织与性能研究[D].沈阳:沈阳工业大学硕士学位论文,2009:22~56.
    [21]杜令忠,徐滨士等.高速电弧喷涂3Cr13钢涂层的组织及在含细沙油润滑条件下的磨损性能[J].金属热处理,2007,32(5):10~13.
    [22] Z.Zureeki, D.Garg, D.Bowe. Electric Arc Deposition of Carbon Steel Coatingswith Improved Mechanical Properties[J]. Journal of Thermal Spray Technology.2001,6(4):417~421.
    [23]黄林兵,余圣甫,邓宇等.电弧喷涂4Cr13涂层预处理工艺及组织与性能研究[J].表面技术,2010,39(6),26~28.
    [24]邓宇,余圣甫等.一种新型马氏体不锈钢耐磨涂层的组织性能研究[J].石油化工设备,2012,39(4),12~16.
    [25]傅斌友,贺定勇等.电弧喷涂制备纳米涂层的组织结构与性能[J].材料热处理学报,2010,31(1):141~144.
    [26]杨建桥,杨保兴.热喷涂纳米结构涂层研究现状与展望[J].腐蚀与防护,2008,29(5):290~294.
    [27]李长青,马世宁,刘谦.热喷涂纳米结构涂层技术的研究进展[J].材料保护,2004,37(5):32~34.
    [28]梁秀兵,邓智昌等.热喷涂纳米粉体材料及其涂层制备[J].材料工程,2002,92~93.
    [29]尹衍升,张金升,李嘉等.新型半陶瓷材料-金属间化合物及其应用[J].中国陶瓷,2002,38(1):39.
    [30]贺定勇,傅斌友等.含WC陶瓷相电弧喷涂耐磨粒磨损性能研究[J].摩擦学学报,2007,27(2):116~118.
    [31]方建筠,栗卓新.TiB2陶瓷颗粒增强的金属基复合涂层[J].焊接学报,2011,32(1):61~64.
    [32]栗卓新,方建筠,史耀武等.高速电弧喷涂FeTiB2/Al2O3复合涂层的组织及性能[J].中国有色金属学报,2005,15(11):1800-1804.
    [33] Jian Jun Fang, Zhu Xin Li,Yao Wu Shi, Microstructure and properties of TiB2containing coatings prepared by arc spraying[J]. Applied Surface Science,2008,254:3849-3858.
    [34]蒋建敏,张发云等.含碳化物陶瓷粉芯丝材电弧喷涂层的结构和性能[J].金属热处理,2007,32(6):57~60.
    [35]傅斌友,贺定勇等.电弧喷涂铁基非晶涂层的结构与性能[J].焊接学报,2009,30(4):53~55
    [36]高振,郭金花等.高速电弧喷涂含非晶相铁基涂层的摩擦磨损特性[J].中国表面工程,2009,22(4):49~52.
    [37]魏琪,卢兰志,李辉等.含非晶相铁基涂层的制备及性能[J].机械工程材料,2010,34(1):52~55.
    [38] S Dallaire, H Levert. Development of Cored Wires for Improving the AbrasionWear Resistance of Austenitic Stainless Steel[J]. Journal of Thermal SprayTechnology.1997,6(4):456~462.
    [39] K.Wira.MicrostrueturecandcWearcProperties of Arc Sprayed Tungsten CarbideCoatings. Proc.of the14th ITSC, Kobe, Japan,1995:465~469.
    [40] Y. Borisov, N.Voropaj, I.Netesa.Composite Flux Cored Wires for ThermalSpraying.Proc.of the14th ITSC, Kobe, Japan,1995:1115~1118.
    [41] P.Georgieva, R.Thorpe, A.Yansk.i. Aninnovative turnover for the wire arcspraying technology[J]. International Thermal Spray and Surface Engineering,2006,1(2):68~69.
    [42] D.G.Atteridge, R.Davis, M.Seholl etal. Twin Wire Arc and High Energy PlasmaSpray Coating Using Nano Powder Filled Cored Wire as Feed Stoek.ThermalSpray Nano’99,Quebec City, Canada,1999:16~20.
    [43]贾焕丽,孙宏飞,李梅广.新型电弧喷涂粉芯丝材的现状与发展前景[J].表面技术,2005,34(6):4-6.
    [44]秦颢.电弧喷涂丝材在我国的新进展[J].焊接,2001,(12):5~7.
    [45]蒋建敏,贺定勇,闫玉芹等.新型热喷涂粉芯丝材的研究及应用[J].机械工人(热加工),2003,(9):22~23.
    [46] XU Binshi, ZHANG Wei, XU Weipu. Influence of oxides on high velocity arc sprayed Fe2Al/Cr3C2composite coatings[J].Journal of Central South University ofTechnology,2005,12(3):259~261.
    [47]罗来马,俞佳等.高速电弧喷涂FeMnCr/Cr3C2涂层的组织与性能[J].材料热处理学报,2009,30(3):174~177.
    [48]雷廷权,傅家骐.金属热处理工艺方法500种[M].北京:机械工业出版社,1998.
    [49] Moller W,Parascandola S, Telbizova T, et al. Surface processes and diffusionmechanisms of ion nitriding of stainless steel and aluminium[J]. Surface andCoatings Technology,2001,136:73~79.
    [50] Yilbas B S, Sunar M, Gasem Z, et al. Laser gas assisted nitriding and tin coatingof Ti–6Al–4V alloy:Experimental and numerical investigation of mechanicalproperties.Journal of Materials Processing Technology,2009,209(3):1199~1208.
    [51] Nishimoto K, Mori H. Hot cracking susceptibility in laser weld metal of highnitrogen stainless steels[J]. Science and Technology of Advanced Materials,2004,5(1-2):231~240.
    [52] Niizuma K, Utsushikawa Y. Effect of treatment temperature on iron nitride foilsirradiated with nitrogen plasma[J].Journal of Materials Science,2000,16(2):143~144.
    [53] Li S, Manory R R. Comparison of compound layer nucleation mechanisms inplasma nitriding and nitrocarburizing: the effect of CHnspecies[J]. Journal ofMaterials Science,1999,34:1045~1049.
    [54] Yildiz F, Yetim A F, Alsaran A, et al. Plasma nitriding behavior of Ti6Al4Vorthopedic alloy[J]. Surface and Coatings Technology,2008,202(11):2471~2476.
    [55] Nishimoto K, Mori H. Hot cracking susceptibility in laser weld metal of highnitrogen stainless steels[J]. Science and Technology of Advanced Materials,2004,5(1-2):231~240.
    [56] Alphonsa I, Chainani A, Raole P M, et al. A study of martensitic stainless steelAISI420modified using plasma nitriding. Surface and Coatings Technology[J],2002,150(2-3):263~268.
    [57]许大庆,赵建生.几种工业用钢的氮化层脆性测试[J].钢铁研究学报,1999,11(1):61~65.
    [58] Zhekova L, Rashev T. Feasibility study on developing high-nitrogen steels byrefining in suspended state under high pressure[J]. Metallurgist,51(1-2):90~96.
    [59] Lin Z, Tian Z L, Yun P, et al. Influence of nitrogen and heat Input on weld metalof gas tungsten arc welded high nitrogen stee[J]l.Journal of Iron and SteelResearch, International,2007,14(5):259~262.
    [60] Durst O, Ellermeier J, Berger C. Influence of plasma-nitriding and surfaceroughness on the wear and corrosion resistance of thin films (PVD/PECVD)[J].Surface and Coatings Technology,2008,203(5-7):848~854.
    [61] Woo I,Kikuchi Y. Weldability of high nitrogen stainless steel[J].ISIJ International,2002,42(12):1334~1343.
    [62] Vernon E.Buchanan. Solidification and microstructual characterization ofiron-chromium based hardfaced coatings deposited by SMAW and electric arcspraying[J].Surface&Coatings Technology,2009,(203):3638~3646.
    [63] Raman S G S, Jayaprakash A, Influence of plasma nitriding on plain fatigue andfretting fatigue behaviour of AISI304austenitic stainless steel[J]. Surface andCoatings Technology,2007,201(12):5906~5911.
    [64]杨可.氮合金化堆焊硬面合金及其冶金行为研究[D].武汉:华中科技大学博士学位论文,2009.
    [65]程江波,梁秀兵,陈永雄等.再制造电弧喷涂成形层的残余应力分析[J].焊接学报,2008,29(6):17~20.
    [66]吴子健.热喷涂技术与应用[M].北京:机械工业出版社,2005.5~6.
    [67]魏寿昆.冶金过程热力学[M].上海:上海科学技术出版社,1980.
    [68] Prokoshkina V, Kaputkina L. Peculiarities of martensitic transformations andmartensite structure in high nitrogen steels[J]. Materials Science and EngineeringA,2008,481-482:726~765.
    [69]许大庆,赵建生.几种工业用钢的氮化层脆性测试[M].钢铁研究学报,1999,11(1):61~65.
    [70] U.卡曼奇.曼德里,R.贝德威著,李晶,黄远华译.高氮钢和不锈钢-生产、性能与应用[M].北京:化学工业出版社,2006.
    [71]刁淑生,徐婷,杨克等.手工电弧堆焊焊条某些合金元素的过渡系数[J].焊接学报,1995,16(4):214~221.
    [72]于月光,郑益民.CO2保护电弧堆焊用药芯焊丝中合金元素的过渡系数[J].机械工程材料,1997,21(4):19~21.
    [73]陈学定,韩文政.表面涂层技术[M].北京:机械工业出版社,1994:92~93.
    [74]周新建.电弧喷涂金属基陶瓷复合涂层耐高温磨粒磨损性能研究[D].北京:北京工业大学,2008.
    [75]栾军.现代试验设计优化方法[M].上海:上海交通大学出版社,1995:254~262.
    [76]陈茂爱,武传松,杨敏等.Ti-V-Nb微合金钢第二相粒子在焊接热循环过程中的变化规律[J].金属学报,2004,40(2):148~154.
    [77]邹慧,王志平,纪朝晖.Ni-Cr-Al合金电弧喷涂工艺对涂层结合强度的影响[J].金属热处理,2010,35(2):51~54.
    [78]张忠礼,赵娇玉等.电弧喷涂马氏体不锈钢涂层残余应力分析[J].沈阳工业大学学报,2009,31(5):504~507.
    [79]徐维普,徐滨士,张伟.高速电弧喷涂涂层的结合强度与结合方式研究[J].热加工工艺,2007,36(7):62~64.
    [80]张洪兵,王艳燕等.电弧喷涂马氏体不锈钢涂层耐磨性[J].沈阳工业大学学报,2009,31(4):388~391.
    [81]张忠礼,赵娇玉,王艳燕,段思华.电弧喷涂马氏体不锈钢涂层残余应力分析[J].沈阳工业大学学报.2009,31(5):504~509.
    [82]陈学定,韩文政.表面涂层技术[M].北京:机械工业出版社,1994:92~93.
    [83]黄林兵.电弧喷涂药芯焊丝及涂层性能研究[D].武汉:华中科技大学硕士学位论文,2011.
    [84]王清宝,刘景凤,沈风刚.超低碳氮强化自保护药芯焊丝的研制及性能分析[J].焊接学报,2006,27(4):81~84.
    [85] Harzenmoser M. Welding of high nitrogen steels[J].Materials and ManufacturingProcesses,2004,19(1):75~86.
    [86] Ke Yang, Shengfu Yu, Yingbin Li, Chenglin Li. Effect of carbonitrideprecipitates on the abrasive wear behaviour of hardfacing alloy[J]. AppliedSurface Science,2008,254(16):5023~5027.
    [87]曹维成,安耿,刘高杰.碳/氮化钼的性能、应用及制备[J].中国钼业,2006,30(5):45~49.
    [88] Shankar V, Gill T P S, Mannan S L, et al. Effect of nitrogen addition onmicrostructure and fusion zone cracking in type316L stainless steel weldmetals[J]. Materials Science and Engineering A,2003,343(2):170~181.
    [89]雍岐龙,郑鲁.固溶度积公式、理想化学配比值与微合金钢化学成分的设计[J].钢铁,1988,23(3):47~51.
    [90]路春娥.过渡金属碳化物、氮化物和硼化物在电子工业中的应用[J].电子器件,1999,22(3):216~222.
    [91]王凯.钒微合金化高强度低合金钢组织超细化与碳氮化物析出动力学研究:
    [D].天津:天津大学博士学位论文,2003.
    [92]董立先,王勇,孙建波等.电弧喷涂工艺参数对3Cr13涂层性能稳定性的影响[J].管道技术与设备,2005,(1):33~35.
    [93] Zhang Y B, Ren D Y. Effect of strong carbide forming elements in hardfacingweld metal[J].Journal of University of Science and Technology Beijing,2004,11(1):71~74.
    [94] Sourmail T. Precipitation in creep resistant austenitic stainless steels[J]. MaterialsScience and Technology,2001,17(1):1~14.
    [95] Bang K S, Park C, Liu S. Effects of nitrogen content and weld cooling time onthe simulated heat-affected zone toughness in a Ti-containing steel[J]. Journal ofMaterals Science,2006,41(18):5994~6000.
    [96]尹桂全,黄龙旺.微Ti钢焊接热循环过程中的第二相粒子[J].焊接学报,2000,21(4):50~53.
    [97] Erneman J, Schwind M, Liu P, et al. Precipitation reactions caused by nitrogenuptake during service at high temperatures of a niobium stabilised austeniticsteel[J]. Acta Materialia,2004,52(14):4337~4350.
    [98]姜越.马氏体时效不锈钢合金化设计与组织性能[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [99] Erneman J, Schwind M, Andren HO, et al. The evolution of primary andsecondary niobium carbonitrides in AISI347stainless steel duringmanufacturing and long-term ageing[J]. Acta Materialia,2006,54(1):67~76.
    [100]曲朝霞.新一代钢铁材料焊接HAZ奥氏体晶粒长大规律的研究[D].天津:天津大学图书馆,2000.
    [101] K llqvist J, Andrén H O. Developmet of precipitate size and volume fraction ofniobium carbonitrides in stabilized stainless steel[J].Materials science andtechnology,2000,16:1181~1185.
    [102]李慕勤,庄明辉,尹柯等.高速火焰喷涂钛-生物玻璃涂层残余应力分析[J].焊接学报.2009,30(2):65~67.
    [103] Kaputkina L M, Prokoshkina V G. Martensitic transformations and martensitestructure in thermomechanically strengthened high-nitrogen steels[J]. MaterialsScience and Engineering A,2006,438-440:228~232.
    [104] Cheng L, Mittemeijer E J. The tempering of iron-nitrogen martensitedilatometric and calorimetric analysis[J]. Metallurgical Transactions A,1990,21(1):13~26.
    [105]雍歧龙,马鸣图,吴宝榕.微合金钢–物理和力学冶金[M].北京:机械工业出版社,1989.
    [106] Colaco R, Vilar R. A model for the abrasive wear of metallic matrix particle-reinforced materials[J]. Wear,2003,254(7-8):625~634.
    [107]倪江涛,李义鹏,张新明.TiAlN复合涂层的应力分析与研究[J].航天制造技术.2008,4:21~25.
    [108]叶义海.WC-CO热喷涂层力学性能与残余应力研究[D].西安交通大学硕士学位论文.2010
    [109]段忠清.等离子喷涂CrZO3-STIO涂层参数优化及残余应力研究[D].河海大学.2007.
    [110]徐祖耀.马氏体相变与马氏体[M].北京:科学出版社,1999.[111]姚国凤,丁艳霞,王敏.界面形貌对残余应力的影响[J].吉林大学学报(工学版).2009,39(3):704~708.
    [112]唐家鹏,李志永.涡轮叶片等离子涂层应力分析[J].弹箭与制导学报.2010,30(6):227~230.
    [113]李延平,赵万华,卢秉恒.热喷涂涂层和基体中残余应力预报与控制研究[J].工程力学.2005,22(5):236~240.
    [114]李志华,李唤喜,徐惠彬等.热障涂层的残余应力分析[J].北京航空航天大学学报.2004,30(3):272~276.
    [115]赵娇玉.热喷涂涂层残余应力产生及控制因素研究[D].沈阳:沈阳工业大学硕士学位论文,2009.
    [116]马维,潘文霞,张文宏等.热喷涂涂层中残余应力分析和检测研究进展[J].力学进展.2002,32(1):41~48.
    [117]郭天旭,李辉,魏琪等.等离子喷涂羟基磷灰石涂层残余应力的研究进展[J].机械工程材料.2010.34(9).94~96
    [118] Yang Y. C. Influence of residual stress on bonding strength of the plasma-sprayed hydroxyl apatite coating after the vacuum heat treatment[J]. Surface andCoatings Technology,2007,201(16):7187~7192.
    [119]鄢建辉,汪久根.双涂层体系最大剪应力分析[J].浙江大学学报(工学版).2004,38(5):621~627.
    [120] Hsueh C H.Thermal stresses in classie multiplayer systems[J].Thin Solid Films,2002,418:182~188.
    [121] Zhang X C,Xu B S,Wang H D,etal.Thcnno-mcchanicla inregrity of coatingswith residual stresses[A].Fracture Mechanics2004-Symposium of EnvironmentEffects on Fracture and Damage[C].Huangshan China2004,225~240.
    [122]王志平,董祖珏,李丽等.热喷涂涂层残余应力的测试与分析[J].焊接学报,1999,20(4):278~285.
    [123] Stephens L S, LiuYan, Meletis E I. Finite element analysis of the initial yieldingbehavior of a hard coating substrate system with functionally graded interfaceunder indentation and friction[J].Journal of tribology,2000,(122):381-387.
    [124]刘彬,董世运,徐滨士等.互相关函数步长影响超声波评价涂层应力的实验研究[J].材料工程.2011,4:54~59.
    [125]王丹,徐滨士,董世运.涂层残余应力实用检测技术的研究进展[J].金属热处理.2011,4:48~55.
    [126]程应科,张建军,徐连勇.涂层弹性模量的测量方法[J].中国科技论文在线.2006.
    [127]程应科,徐连勇,张建军.涂层杨氏模量的测量方法[J].中国科技论文在线.2008.
    [128]伍超群,周克崧,邓畅光等.浅谈热喷涂涂层残余应力的测试技术[J].表面技术.2005,34(5):82~86.
    [129]黄晨光,段祝平,吴承康.热喷涂构件中残余应力的理论分析[J].工程力学.2002,19(4):135~141.
    [130] Hsui Y C, Howard S J. The effect of residual stresses on the debonding ofcoatings:An experimental study of a thermally sprayed system [J].Thin SolidFilms,1994,306:2837~2844.
    [131] Selvadurai U,Reimers W. Charaterization of phase composition and residenalstress state in plasma sprayed ceramic coatings[J].Elsevier science,1990,306:319~327.
    [132] Suhir E.Stresses in Bi-metal thermostats.J Appl Mech,1986,53:657~689
    [133]王志平,董祖珏,李丽,韩松.热喷涂涂层残余应力的测试与分析[J].焊接学报.1999,20(4):278~284.
    [134] Ghafouri-Azar R,Chandra S,Mostaghlmi J.Modeling Residual Stress Build-upin the Coating Micrstrueture[C].The International Thermal Spray Conferenceorlando USA,2003
    [135] Stephens L S,Yan Liu, Meletis E I. Finite Element Analysis of the InitialYielding Behavior of a Hard Coating/Substrate System with Functionally GradedInterfaee Under Indentation and Friction[J].Jomal of Tribology,2000,122:381~387.
    [136]张宝霞,段忠清等.等离子喷涂NiCrAl/Cr2O3-8%TiO2涂层残余应力模拟分析[J].安徽科技学院学报,2010,24(4):10~12.
    [137]董瑞强.航空铝合金残余应力引起构件变形的数值模拟[J].国外金属热处理.2003,24(6):13~17.
    [138]程广萍,李明喜,何宜柱等.激光熔覆层温度场和应力场的数值模拟[J].热处理.2009.24(4):49~55.
    [139]朱晨,刘杨,陈亚军等.界面形貌对热障涂层残余应力影响的数值模拟[J].焊接技术.2010,39(3):10~13.
    [140]罗利强.汽车轮毂轴承淬火残余应力的建模与仿真[D].杭州:浙江工业大学硕士学位论文.2010,4.
    [141]徐颖强,李世杰,杨小辉等.热循环下热障涂层结构不稳定性的数值模拟[J].机械设计与制造.2009,5:115~121.
    [142]李志永,张建宇,鲍蕊等.热障涂层热应力影响因素的正交有限元分析[J].北京航空航天大学学报.2010,36(11):1339~1342.
    [143]刘红兵.316L不锈钢基材防氚渗透Al2O3涂层残余应力测试与数值模拟[D].南京;南京航空航天大学,2007.
    [144]黄自谦,贺跃辉,蔡海涛等.TiAIN涂层的热残余应力分析[J].中国有色金属学报.2007,17(6):897~902.
    [145]李方坡,王引真等.复合金属基/陶瓷涂层的应力分析[J].表面技术2006,35(5):71~74.
    [146]侯平均,王汉功,查柏林等.界面粗糙度对双层热障涂层残余应力影响的数值模拟[J].热加工工艺.2007,36(7):82~84.
    [147]强华.热喷涂涂层残余应力的数值模拟[J].热加工工艺.2011,40(12):143~146.
    [148]高西亚,徐颖强,柳卫东.热障涂层在多次热循环作用下残余应力的模拟[J].机械设计与制造.2007,6:77~81.
    [149]曾庆东,肖金生,覃峰等.陶瓷梯度耐磨涂层中残余热应力的有限元分析[J].武汉理工大学学报.2003,25(1):34~38.
    [150]邹云.复合涂层的应力场三维仿真分析及其可靠性设计[D].武汉:武汉理工大学硕士学位论文.2004,2.
    [151]曾好平,方建成,徐文骥等.基于显微照片的增层模型涂层温度场模拟[J].机械工程学报.2009,45(8):31~35.
    [152]魏洪亮,杨晓光,齐红宇.等离子涂层典型界面损伤与破坏的数值模拟[J].北京航空航天大学学报.2007,33(10):1141~1145.
    [153]罗瑞强.热喷涂涂层中应力研究与分析[D].武汉:武汉理工大学硕士学位论文.2008,4.
    [154] Varacalle D.J., Irons G., et al.一种新型高速燃烧喷涂工艺的模拟和检测.第十五届国际热喷涂大会论文精选.1998,222~228.
    [155] Kelkar M., Hussar N., Schein J. et al.丝材电弧喷涂中气体和液滴流动的光学检测和模拟.第十五届国际热喷涂大会论文精选.1998,182~187.
    [156] Mathur P, Apelian D, Lawley A. Analysis of the spray deposition process[J].Acta Metall.1989,37(2):429~443
    [157] Grant P S, Cantor B, katgerman L. Modeling of droplet dynamic and thermalhistories during spray forming-Ⅱ. Effect of process parameters.Acta Metal[J]l.Mater.,1993,41(11):3109~3118.
    [158] Haidar J, Lowke J. Predictions of Metal Droplet Formation in Arc Welding[J].J.of Phys. D: Applied Phys,1996,29:2951~2960.
    [159] A.P.Newbery, P.S.Grant, R.A.Neiser.The velocity and temperature of steeldroplets during electric arc spraying[J]. Surface&Coatings Technology,2005,(195):91~101.
    [160] Tong T, Ueyama M, Dierkaheide J E. Observations of the phenomenon ofabnormal arc voltage occurring in pulsed inert gas welding of aluminum alloy [J].Science and Technology,2005,10(6):695~698.
    [161] T.Watanable, X.Wang, E.Pfender et al. Correlations between electrodephenomena and coating properties in wire arc spraying[J].Thin Solid Films,1998,(316):169~173.
    [162] Jones L A, Eager T W, Lang J H. A dynamic model of drops detaching from agas metal arc welding[J]. J. of Phys. D: Applied Phys,1998,31:107~123.
    [163]张涛.熔化极气体保护焊熔滴过渡控制策略研究与应用[D].长沙:中南大学博士学位论文,2010.
    [164]朱志明,吴文楷.基于高速CCD摄像的短路过渡焊接熔滴检测与分析[J].焊接学报,2006,27(3):29~31.
    [165]王广伟.基于视觉技术的GMAW-S熔滴过渡瞬时过程研究[D].上海:上海交通大学博士学位论文.2008.
    [166] Lesnewich A.Control of melting rate and metal transfer in gas shielded metalarc welding[J]. Welding Journal,1958,37(8):418~422.
    [167] Rhee S,Kannateyasbu F. Observation of metal transfer during gas metal arcwelding[J]. Welding Journal,1992,71(10):381~385.
    [168] Kawahito Y,Kinshita K et al. Effect of weakly ionised plasma on penetration ofstainless steel weld produced with ultra high power density fibre laser[J]. SciTechno.Weld Jt,2008,(13):750~752.
    [169]包晔峰,周昀等.熔化极气体保护焊熔滴过渡研究[J].电焊机,2006,36(3):55~58.
    [170]仝维维,胡小建.CO2气体保护焊熔滴过渡控制的数值模拟[J].现代焊接,2010,(3):16~19.
    [171]李桓,李国华等.熔化极电弧焊熔滴过渡过程的高速摄影[J].中国机械工程,2006,13(9):796~798.
    [172]张玲丽,彭祺,张丽琴.CO2焊接过程的高速摄影与电信号分析[J].电焊机,2008,38(3):30~33.
    [173]刘海云,贺定勇.自保护药芯焊丝立向下焊接熔滴过渡观察与分析[J].北京工业大学学报,2011,37(8):1212~1215.
    [174]韦辉亮,李恒.激光-MIG电弧的复合作用及对熔滴过渡的影响[J].焊接学报,2011,32(11):41~44.
    [175]胡连海,黄坚等.激光与电弧间距对激光复合熔滴过渡的影响[J].焊接学报,2010,31(2):49~52.
    [176] Jun Wang,Chunming Wang, et al. Study on the periodic oscillation of plasma/vapour induced during high power fibre laser penetration welding[J].Optics&Laser Technology,44(2012):67~70.
    [177] Jun Wang, Chunming Wang, et al. Interaction between laser-induced plasma/vapor and arc plasma during fiber laser-MIG hybrid welding[J].Journal ofMechanical Science and Technology,25,(6)44(2011):1529~1533.
    [178]于龙华.熔化极气体保护焊熔滴过渡图像分析系统[D].哈尔滨:哈尔滨工业大学博士学位论文,2008.
    [179]张顺善.双丝间接电弧焊电弧特性及熔滴过渡研究[D].济南:山东大学博士学位论文,2010
    [180]王军.钨极-熔化极间接电弧焊电弧行为及其特点研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700