用户名: 密码: 验证码:
碳纳米管强韧化氧化铝陶瓷基复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管以其优秀的力学性能在增韧陶瓷基复合材料方面具有独特优势,但是碳纳米管的纠缠团聚状态严重影响了其应用,碳纳米管的分散一直是碳纳米管复合材料领域的难点。本文在总结前人对碳纳米管分散方法的研究基础上,重点探索了碳纳米管直接在氧化铝陶瓷粉体中的分散方法,并分别采用氢气气氛常压烧结、热压烧结、放电等离子烧结制备了碳纳米管-氧化铝复合材料。
     首先,采用剪切挤出法将碳纳米管均匀分散在氧化铝粉中,制备了均匀分散的碳纳米管-氧化铝复合粉体。通过碳纳米管分散方法的研究,发现碳纳米管分散具有3个过程:碳纳米管团聚体的散开,长碳纳米管的剪断,短碳纳米管的分散。粘度、断口缺陷率、SEM结果都显示出剪切挤出法具有三个阶段。
     通过对剪切挤出过程的分析,建立了剪切挤出法分散碳纳米管的分散模型;分散过程的主要驱动力为挤出过程聚合物熔体流动的层流剪切力,陶瓷刚性粉体的相对位移运动是促进碳纳米管分散的关键因素,聚合物熔体的位阻效应可以有效的保持碳纳米管的分散状态;给出了剪切挤出法分散碳纳米管的热力学特征,动力学方程及其边界条件。
     以剪切挤出法制备得到的碳纳米管-氧化铝复合粉体为基础,分别采用氢气气氛常压烧结、热压烧结、放电等离子烧结等烧结工艺制备了碳纳米管-氧化铝复合材料。发现对于常压烧结,当碳纳米管含量为1wt%时碳纳米管-氧化铝复合材料断裂韧性达到6.11MPa﹒m~(1/2),相对不添加碳纳米管提高了93.2%。对于热压烧结,碳纳米管-氧化铝复合材料的致密度达到98.8%以上,当碳纳米管含量为2wt%时复合材料断裂韧性达到6.32MPam~(1/2),相对不添加碳纳米管提高了99.2%。对于放电等离子烧结,在更低的烧结温度更短的烧结时间下,碳纳米管-氧化铝复合材料致密度达98.5%以上的,当碳纳米管含量为2wt%时,复合材料的断裂韧性达到大约6.55MPam~(1/2),相对不添加碳纳米管提高了105%。
     研究发现,在本实验条件下,碳纳米管的含量存在一个最佳值,常压烧结为1wt%,压力烧结为2wt%,继续增加碳纳米管含量,对碳纳米管-氧化铝复合材料的断裂韧性有害。在常压烧结中,由于增加碳纳米管含量,降低了碳纳米管-氧化铝复合材料的致密度,引起断裂韧性的下降。在压力烧结中,增加碳纳米管含量,碳纳米管-氧化铝复合材料致密度保持稳定,断裂韧性依然降低,可能是由于碳纳米管含量的增加使分散的碳纳米管搭接、附着在一起的几率增大,复合材料的缺陷率提高引起的。
     通过对不同烧结方法制得的碳纳米管-氧化铝复合材料进行XRD分析,发现碳纳米管的添加使复合材料中氧化铝基体的峰位漂移,常压烧结的峰位向低角度漂移,压力烧结的峰位向高角度漂移,这可能是残余应力引起的。常压烧结时,碳纳米管与氧化铝基体热失配,引起残余拉应力;压力烧结时,外部压力引起碳纳米管与氧化铝基体间残余压应力。
     通过对不同烧结方法制得的碳纳米管-氧化铝复合材料进行SEM分析,表明碳纳米管均匀弥散于氧化铝基体材料中,增韧机理以拔断增韧和拔出增韧为主。
The agglomerated state of carbon nanotubes seriously damaged to its applications, whichhad excellent mechanical properties with unique advantages in toughened ceramic matrixcomposites. It was a key issue that how to dispersing carbon nanotubes uniformly in thefield of carbon nanotubes composites. In this thesis, with the aim of reinforced ceramic, thestudy of carbon nanotubes reinforced alumina composite was raised, which had greatresearch significance and application value. Dispersing carbon nanotubes uniformly intoalumina powder was studied. Carbon nanotubes reinforced alumina composites werefabricated by hydrogen atmosphere normal pressure sintering, hot pressing sintering andspark plasma sintering.
     Carbon nanotubes was dispersed into alumina matrix, and alumina composite powderof carbon nanotubes was prepared by shear extrusion method.8times shearing was betterin the results of viscosity, fracture defect rate and SEM. To dispersing carbon nanotubesuniformly, three processes were essential, including breaking agglomeration of carbonnanotubes up, breaking long carbon nanotubes off and dispersing short carbon nanotubes.The model of dispersing carbon nanotubes by shear extrusion method was build. Drivingforces included laminar shear stress of melt flow of organic binder and relativedisplacement of rigid ceramic particles. Steric effect of organic binder kept dispersion stateof carbon nanotubes. Thermodynamic characteristics, kinetic equation and boundaryconditions were shown.
     Carbon nanotubes reinforced alumina composites were fabricated by hydrogenatmosphere normal pressure sintering, hot pressing sintering and spark plasma sintering. Byhydrogen atmosphere normal pressure sintering, fracture toughness of composite up to6.11MPa﹒m~(1/2)with1wt%carbon nanotubes contents, relatively increased93.2%. By hotpressing sintering, fracture toughness of composite up to6.32MPa﹒m~(1/2)with2wt%carbon nanotubes contents, relatively increased99.2%. By spark plasma sintering, fracture toughness of composite up to6.55MPa﹒m~(1/2)with2wt%carbon nanotubes contents,relatively increased105%.
     Carbon nanotubes had a better value with1wt%of normal pressure sintering and2wt%of pressing sintering. Increasing contents of carbon nanotubes to continue, fracturetoughness of composites were damaged. In normal pressure sintering, the reason wasreduced density with increased carbon nanotubes contents. In pressing sintering, the reasonwas increased rate of attachment and bonding of carbon nanotubes with increased carbonnanotubes contents.
     results of XRD of carbon nanotubes reinforced alumina composites prepared bydifferent sintering processes show that alumina matrix peaks of carbon nanotubesreinforced alumina composites drift, compared with alumina material, which may be causedby residual stress. In normal pressure sintering, the peaks drift to low angle by residualtensile stress. In pressing sintering, the peaks drift to high angle by residual compressivestress.
     Results of SEM show that carbon nanotubes bonded alumina matrix as a dispersedpart. The main toughness mechanisms of carbon nanotubes were broken drawingtoughening and pulling out toughening.
引文
[1]王坤林.材料工程基础[M].北京:清华大学出版社,2003.
    [2]王零森.特种陶瓷(第二版)[M].长沙:中南大学出版社,2005.
    [3]肖汉宁,高鹏召.高性能结构陶瓷及其应用[M].北京:化学工业出版社,2006.
    [4]张立同.纤维增韧碳化硅陶瓷复合材料--模拟、表征与设计[M].北京:化学工业出版社,2009.
    [5]张金升,张银燕,王美婷.陶瓷材料显微结构与性能[M].北京:化学工业出版社,2007.
    [6]穆柏春.陶瓷材料的强韧化[M].2002:冶金工业出版社,2002.
    [7] Sheldon B W, Curtin W A. nanoceramic composites: tough to test[J]. NatureMaterials.2004,3(8):505-506.
    [8] Wang X T, Padture N P, Tanaka H. contact-damage-resistant ceramic/single-wallcarbon nanotubes and ceramic/graphite composites[J]. Nature Materials.2004,3:539-544.
    [9]陈祖熊,王坚.精细陶瓷--理论与实践[M].北京:化学工业出版社,2005.
    [10] Glandus J C,丘泰.用S.E.N.B.法测量陶瓷材料K_(ic)的研究[J].硅酸盐通报.1991(01):43-46.
    [11]丘泰.用压痕法测定几种高温结构陶瓷K_(1c)值的研究[J].硅酸盐通报.1990(03):44-50.
    [12] Gogotsi G A. fracture toughness of ceramics and ceramic composites[J]. Ceramicsinternational.2003,29:777-784.
    [13]张颖,张军战,蒋明学.氧化铝纤维增强红柱石基复合材料的制备与性能[J].耐火材料.2004,38(4):275-276.
    [14]沈军,张法明,孙剑飞.陶瓷/碳纳米管复合材料的制备、性能及韧化机理[J].材料科学与工艺.2006,14(2):165-170.
    [15] Zhan G D, Kuntz J D, Wan J, et al. Single-wall carbon nanotubes as attractivetoughening agents in alumina-based nanocomposites[J]. nature materials.2002,2:38-42.
    [16]史丹.金属氧化物/碳纳米管复合材料的制备及性能研究[D].浙江大学,2011.
    [17]邓春峰,马艳霞,薛旭斌, et al.碳纳米管增强2024铝基复合材料的力学性能及断裂特性[J].材料科学与工艺.2010,18(2):229-232.
    [18]孟祥钦,王兵,甘孔银, et al.金刚石薄膜/氧化铝陶瓷复合材料的应用研究[J].材料导报.2010,24(6):38-41.
    [19] Ahmad I, Kennedy A, Zhu Y Q. wear resistant properties of muliti-walled carbonnanotbues reinforced Al2O3nanocomposites[J]. Wear.2010,269:71-78.
    [20] Sumfleth J, Prehn K, Wichmann M H G, et al. A comparative study of the electricaland mechanical properties of epoxy nanocomposites reinforced by CVD-andarc-grown multi-wall carbon nanotubes[J]. Composites Science and Technology.2010,70(1):173-180.
    [21] Wu M, Shaw L. electrical and mechanical behaviors of carbon nanotube-filledpolymer blends[J]. Journal of Applied Polymer Sience.2005,99:477-488.
    [22]刘政,赵素.碳纳米管增强复合材料研究进展[J].宇航材料工艺.2005(1):1-5.
    [23] Jou W S, Cheng H Z, Hsu C F. a carbon nanotube polymer-based composite withhigh electromagnetic shielding[J]. Journal of Electronic Materials.2006,35(3):462-470.
    [24]王晋宝.碳纳米管的相关力学问题的研究[D].大连理工大学,2007.
    [25] Chu H, Wei L, Cui R, et al. Carbon nanotubes combined with inorganicnanomaterials: Preparations and applications[J]. Coordination Chemistry Reviews.2010,254(9-10):1117-1134.
    [26] Laurent C, Peigney A, Dumortier O. carbon nanotubes-Fe-alumina nanocompositespart II: mircostructure and mechanical properties of hot-pressed composites[J].Journal of the European Ceramic Society.1998,18(14):2005-2013.
    [27] Ma R Z, Wu J, Wei B Q. Processing and properties of carbon nanotubes-nano-SiCceramic[J]. Journal of Materials Science.1998,33:5243-5246.
    [28] Siegel R W, Chang S K, Ash B J. mechanical behavior of polymer and ceramicmatrix nanocomposites[J]. Scripta Materialia.2001,44:1472-1475.
    [29] Balázsi C, Kónya Z, Wéber F, et al. Preparation and characterization of carbonnanotube reinforced silicon nitride composites[J].2003,23(6-8):1133-1137.
    [30] An J W, You D H, Lim D S. Tribological properties of hot-pressed alumina–CNTcomposites[J].2003,255(1-6):677-681.
    [31] Ning J, Zhang J, Pan Y, et al. Surfactants assisted processing of carbonnanotube-reinforced SiO2matrix composites[J].2004,30(1):63-67.
    [32] Zhang F, Shen J, Sun J. Processing and properties of carbon nanotubes-nano-WC-Cocomposites[J]. Materials Science and Engineering: A.2004,381(1-2):86-91.
    [33]范锦鹏,赵大庆.多壁碳纳米管-氧化铝复合材料的制备及增韧机理研究[J].纳米技术与精密工程.2004,2(3):182-186.
    [34]范锦鹏,赵大庆,徐则宁, et al.多壁碳纳米管-氧化铝复合材料的制备及其力学、电学性能研究[J].中国科学E辑工程科学材料科学.2005,35(9):934-945.
    [35] Wei T, Fan Z, Luo G H, et al. a new structure for multi-walled carbon nanotubesreinforced alumina nanocomposite with high strength and toughness[J]. MaterialsLetters.2008,62:641-644.
    [36] Du H B, Li Y L, Zhou F Q, et al. one-step fabrication pf ceramic and carbonnanotube(CNT) composites by in situ growth of CNTs[J]. Journal of AmaricanCeramic Society.2010,93(5):1290-1296.
    [37] Iijima S. helical microtubules of graphitic carbon[J]. Nature.1991,354(7):56-58.
    [38] Chae H G, Choi Y H, Minus M L, et al. carbon nanotbe reinforced small diameterpolyacrylonitrile based carbon fiber[J]. Composites Science and Technology.2009,69:406-413.
    [39] Costa S, Tripisciano C, Borowiak-Palen E, et al. comparative study on purityevaluation of singlewall carbon nanotubes[J]. Energy Conversion and Management.2008,49:2490-2493.
    [40] Sumfleth J, Prehn K, Wichmann M H G, et al. A comparative study of the electricaland mechanical properties of epoxy nanocomposites reinforced by CVD-andarc-grown multi-wall carbon nanotubes[J].2010,70(1):173-180.
    [41] Li W, Jung H, Duc Hoa N, et al. Nanocomposite of cobalt oxide nanocrystals andsingle-walled carbon nanotubes for a gas sensor application[J]. Sensors andActuators B: Chemical.2010,150(1):160-166.
    [42]王根伟.碳纳米管稳定性及其复合材料的制备和力学性质[D].太原理工大学,2006.
    [43]王赛玉.碳纳米管对Ti(C,N)基金属陶瓷组织性能的影响[D].华中科技大学,2006.
    [44]欧阳玉,彭静翠,王慧, et al.碳纳米管的稳定性研究[J].物理学报.2008,57(1):615-621.
    [45]潘春旭.碳纳米管简介[J].材料导报.2007,35(7):33-39.
    [46] Wang S. optimum degree of functionalization for carbon nanotbues[J]. CurrentApplied Physics.2009,9:1146-1150.
    [47] Ansari R, Hemmatnezhad M. nonlinear vibrations of embedded multi-walled carbonnanotbues using a variational approach[J]. Mathematical and Computer Modelling.2010,96:2763-2769.
    [48] Wong E W, Sheehan P E, Lieber C M. nanobeam mechanics: elasticity, strength, andtoughness of nanorods and nanotubes[J]. Science.1997,277:1971-1976.
    [49]严东生,师昌绪.高技术新材料遍览[M].北京:中国科学技术出版社,1999.
    [50]曾效舒,曹素芝,孙晓刚.高速剪切对碳纳米管/环氧树脂复合材料导电性能的影响[J].机械工程材料.2008(06):50-52.
    [51] Estili M, Kawasaki A, Sakamoto H, et al. The homogeneous dispersion ofsurfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes ina-alumina ceramics for structural reinforcement[J]. Acata Meterialia.2008,56:4070-4079.
    [52]龚晓钟,汤皎宁,古坤明, et al.碳纳米管分散性的研究[J].广东化工.2005(4):7-10.
    [53] Kim Y B, Kim H K, Hong J W. UV-Curable Methacrylic Epoxy Dispersions forCationic Electrodeposition Coating[J]. Journal of Applied Polymer Science.2006,102:5566-5570.
    [54] Schlea M R, Brown T R, Bush J R, et al. dispersion control and characterization inmultiwalled carbon nanotube and phenylethynyl-terminated imide composites[J].Composites Science and Technology.2010,70:822-828.
    [55] Aneesh P M, Jayaraj M K. red luminescence from hydrothermally synthesizedEu-doped ZnO nanoparticles under visible excitation[J]. Bulletin of MaterialsScinece.2010,33(3):227-231.
    [56] Li Q, Viereckl A, Rottmair C A, et al. Improved processing of carbonnanotube/magnesium alloy composites[J]. Composites Science and Technology.2009,69(7-8):1193-1199.
    [57] Pierard N, Fonseca A, Konya Z, et al. production of short carbon nanoubes with opentips by all milling[J]. Chemical Physics Letters.2001,335:1-8.
    [58] Zapata-Massot C, Bolay N L. effect of ball milling in a tumbing ball mill on theproperties of multi-wall carbon nanotubes[J]. Chemical Engineering and Processing.2008,47:1350-1356.
    [59] Kong J L, Zhou Q S, Ren Q, et al. study of electroless Ni-P-CNTs compositeplating[J]. Chinese journal of Chemical Physics.2006,19(3):259-265.
    [60] Sahoo N G, Rana S, Cho J W, et al. Polymer nanocomposites based on functionalizedcarbon nanotubes[J]. Progress in Polymer Science.2010,35(7):837-867.
    [61] Verdejo R, Saiz-Arroyo C, Carretero-Gonzalez J, et al. physical properties of sliconefoams filled with carbon nanotubes and functionalized graphene sheets[J]. EuropeanPolymer Journal.2008,44:2790-2797.
    [62] Premkumar P, Kannan K, Natesan M. effect of menthol coated craft paper oncorrosion of copper in HCl environment[J]. Bulltin of Materials Science.2010,33(3):307-311.
    [63] Liu L, Zheng Z, Gu C, et al. The poly(urethane-ionic liquid)/multi-walled carbonnanotubes composites[J]. Composites Science and Technology.2010,70(12):1697-1703.
    [64] Chungchamroenkit P, Chavadej S, Yanatatsaneejit U, et al. residue catalyst supportremoval and purification of carbon nanotubes by NaOH leaching and frothflotation[J]. Separation and Purification Technology.2008,60:206-214.
    [65]许龙山,陈小华,陈传盛, et al.碳纳米管-超细铜粉复合粉体的制备[J].无机材料学报.2006,21(2):309-315.
    [66]陈传盛,陈小华,李学谦, et al.碳纳米管增强镍磷基复合镀层研究[J].物理学报.2004,53(2):531-536.
    [67]刘天贵,陈传盛,陈小华.碳纳米管增强金属基复合材料[J].化学通报.2006,69(1):1-8.
    [68] Liu Y H, Zhang S H, Yuan J, et al. dispersion of multiwalled carbon nanotubes byionic liquid-type gemini imidazolium surfactants in aqueous solution[J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects.2010,359:66-70.
    [69] Warrier A, Godara A, Rochez O, et al. The effect of adding carbon nanotubes toglass/epoxy composites in the fbre sizing and/or the matrix[J]. Composites: Part A.2010,41:532-538.
    [70]高濂,刘阳桥.碳纳米管的分散及表面改性[J].硅酸盐通报.2005(5):144-149.
    [71]刘宗建,张仁元,毛玲波, et al.碳纳米管的分散性及其光学性质的研究[J].材料研究与应用.2009,3(4):243-248.
    [72] Li M J, Wang X B, Tian R, et al. Preparation, solubility, and electrorheologicalproperties of carbonnanotubes/poly(methyl methacrylate) nanocomposites by in situ functionalization[J].Composites: Part A.2009,40:413-417.
    [73] Cha S I, Kim K T, Lee K H, et al. strengthening and toughening of carbon nanotubereinforced alumina nanocomposite fabricated by molecular level mixing process[J].Scripta Materailia.2005,53:793-797.
    [74]肖建中,武玺旺,夏风, et al.一种碳纳米管的分散方法[P]. CN101607705.2009-12-23.
    [75] Imai M, Akiyama K, Tanaka T, et al. highly strong and conductive carbonnanotube/cellulose composite paper[J]. Composites Science and Technology.2010,70:1564-1570.
    [76]穆柏春,刘秉余,孟丽凯.化学镀碳纤维增强钛酸铝基复合材料的研究[J].新技术新工艺.2004(3):48-50.
    [77] Chu H, Wei L, Cui R, et al. Carbon nanotubes combined with inorganicnanomaterials: Preparations and applications[J].2010,254(9-10):1117-1134.
    [78] Jiang L, Gao L. Densified multiwalled carbon nanotubes–titanium nitridecomposites with enhanced thermal properties[J]. Ceramics International.2008,34(1):231-235.
    [79] Zhang S C, Fahrenholtz W G, Hilmas G E, et al. pressureless sintering of carbonnanotube-Al2O3composyes[J]. Journal of the European Ceramic Society.2010,30:1373-1380.
    [80] Peigney A, Laurent C, Rousset A. Synthesis and characterizati on of alumina matrixnanocomposites containing carbon nanotubes[J]. engineering materails.1997,743-746:132-136.
    [81] Peigney A, Laurent C, Flahaut E, et al. Carbon nanotubes in novel ceramic matrixnanocomposites[J]. ceramics international.2000,26:677-683.
    [82]汪胜祥,郑勇,刘文俊. SPS烧结技术及其在陶瓷材料制备中的应用[J].硬质合金.2003(04):232-236.
    [83]赵嵩珏,王连军,江莞, et al.硅酸钙陶瓷的SPS烧结及其力学性能[J].稀有金属材料与工程.2007(S1):354-356.
    [84]杜学丽,秦明礼,冯培忠, et al. Y_2O_3对SPS烧结纳米AlN粉末的影响[J].稀有金属材料与工程.2007(S3):78-81.
    [85]梅雪珍,贾成厂,尹法章, et al. W-Ni-Fe高比重合金的SPS烧结行为[J].北京科技大学学报.2007(05):475-478.
    [86]李元元,张建兵,李小强, et al. SPS烧结制备WC-6Co-1.5Al硬质合金的研究[J].粉末冶金技术.2006(03):199-202.
    [87]夏珊,叶金文,刘颖, et al.粉末预处理和合金固溶对SPS烧结Ti(CN)基金属陶瓷的影响[J].稀有金属材料与工程.2009(S1):419-423.
    [88] Morsi K, Esawi A M K, Borah P, et al. Properties of single and dual matrixaluminum–carbon nanotube composites processed via spark plasma extrusion(SPE)[J]. Materials Science and Engineering: A.2010,527(21-22):5686-5690.
    [89] Xia Z, Riester L, Curtin W A, et al. direct observation of toughening mechanisms incarbon nanotubes ceramic matrix composties[J]. Acta Materialia.2004,52:931-944.
    [90] Bian Z, Wang R J, Wang W H, et al. carbon-nanotube-reinforced Zr-based bulkmetallic glass composites and their properties[J]. advanced functional materials.2004,14(1):55-63.
    [91] Kim K T, Cha S I, Hong S H. hardness and wear resistance of carbon nanotubereindorced Cu matrix nanocomposites[J]. Materials Science and Engineer A.2007,449-451:46-50.
    [92] Uddin S K, Mahmud T, Wolf C, et al. effect of size and shape of metal particles toimprove hardness and electrical properties of carbon nanotube reinforced copper andcopper alloy composites[J]. Composites Science and Technology.2010,70:2253-2257.
    [93]刘文胜,徐志刚,马运柱. SPS烧结温度对93W-4.9Ni-2.1Fe合金微观结构及性能的影响[J].北京科技大学学报.2009,25:455-456.
    [94] Deng F, Zheng Q S. interaction models for effective thermal and electricconductivities of carbon nanotube composites[J]. Acta Mechanica Solida Sinica.2009,22(1):1-17.
    [95] Stramel A A, Gupta M C, Lee H R, et al. pulsed laser deposition of carbon nanotubeand polystyrens-carbon nanotbue composite thin films[J]. Optics and Lasers inEngineering.2010,48:1291-1295.
    [96] Estili M, Takagi K, Kawasaki A. multiwalled carbon nanotubes as a unique agent tofabricate nanostructure-controlled functionally graded alumina ceramics[J]. ScriptaMaterialia.2008,59:703-705.
    [97]胡小晔,吴玉程,刘家琴.碳纳米管预处理及化学复合镀研究现状[J].电镀与涂饰.2005,25(4):46-50.
    [98]周书助,谭锦灏,胡茂中, et al. SPS烧结WC-5%Co纳米复合粉硬质合金[J].硬质合金.2010(01):14-17.
    [99]宋晓杰,徐静,魏先文.碳纳米管的化学修饰研究进展[J].合成化学.2006,14(2):107-112.
    [100] Yang B X, Shi J H, Pramoda K P, et al. enhancement of the mechanical properties ofpolypropylene using polypropylene-grafted multiwalled carbon nanotubes[J].Composites Science and Technology.2008,68:2490-2497.
    [101]王赛玉. Mo对Ti(C,N)基金属陶瓷组织性能的影响[J].黄石理工学院学报.2009(02):1-5.
    [102]王赛玉.碳纳米管含量对Ti(C,N)基金属陶瓷组织性能的影响[J].黄石理工学院学报.2007(01):8-11.
    [103]吴小莉,岳涛,陆荣荣, et al.碳纳米管的表面修饰及FTIR,Raman和XPS光谱表征[J].光谱学与光谱分析.2005,25(10):1595-1598.
    [104]郭景坤.高性能陶瓷论文集[M].北京:人民交通出版社,1998.
    [105] Xiong J W, Zheng Z, Song W H, et al. microstructure and properties of polyurethanenanocomposites reinforced with methylene-bis-ortho-chloroanilline-graftedmulti-walled carbon nanotubes[J]. Composites: Part A.2008,39:904-910.
    [106] Shao L H, Lou R Y, Bai S L, et al. prediction of effective moduli of carbonnanotube-reinforced composites with waviness and debonding[J]. CompositesStructures.2009,87:274-281.
    [107]梁书全,黄伯云.粉末注射成型流变学[M].长沙:中南大学出版社,2000.
    [108]王建国.材料力学性能测试与评价技术进展[J].工程与试验.2008(S1):1-15.
    [109]王建国.多壁碳纳米管/环氧树脂复合材料结构与性能的研究[D].浙江大学,2006.
    [110]宋显辉.用压痕法测陶瓷材料K_(lc)的研究[J].武汉工业大学学报.1993(04):8-11.
    [111]邓京兰,王继辉,舒庆琏.结构陶瓷断裂韧性测试方法的研究[J].武汉工业大学学报.1997(02):83-87.
    [112]周玉,王双喜,雷廷权, et al.用压痕法测定2Y-ZrO_2/SiCw复合材料断裂韧性的研究[J].试验技术与试验机.1998(Z2):36-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700