用户名: 密码: 验证码:
氧化钼纳米复合结构的合成及其增强的气敏特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气敏传感器可以监测有毒、有害气体,在环境保护、交通、食品安全、工矿企业安全生产以及军事等领域都有重要应用。目前,针对纳米材料在气敏传感器中的应用研究的较为深入。但是,单一的纳米材料还存在选择性差、工作温度高等缺点。本论文主要以三氧化钼为基础材料,通过表面修饰的方法来提高气敏传感器的气敏特性,包括降低工作温度,提高选择性,增加灵敏度等。
     通过液相化学方法制备了α-MoO_3/TiO_2核壳纳米棒。XRD、SEM和TEM分析显示该核壳纳米棒中的晶态TiO_2层可以控制在15-45nm之间。与单一α-MoO_3相比,核壳纳米棒表现出了增强的气敏特性,尤其是壳层厚度比较薄的核壳纳米棒。根据异质结势垒的变化给出了其气敏特性增强机理,并通过CeO_2/TiO_2核壳纳米棒的气敏特性对该机理进行了验证。
     利用简单的液相方法制备出了氧化钼铁基纳米复合结构。对其生长过程所获得样品的晶态和微观结构进行了细致的分析,提出了它们的生长机理。深入研究了这些纳米复合结构对乙醇气体的响应特性,发现它们表现出对乙醇具有明显的气敏增强特性。根据第二相的物理化学特性,对其气敏特性增强机理进行了讨论与分析。
     以简单液相化学方法制备了α-MoO_3/CuO P-N结纳米复合结构。该结构对H_2S气体表现出较强的响应特性,与纯α-MoO_3相比,其灵敏度提高了1个数量级。根据α-MoO_3和CuO的能带以及P-N结势垒在不同气氛下的变化,对其增强的H_2S气敏特性进行了解释。同时,利用CuO在接触H_2S前后微观结构的变化对该机理进行了实验方面的验证。
     利用简单液相化学方法可控制备了α-MoO_3/SnO_2纳米复合结构,对其微结构进行了详细表征与分析。这些纳米复合结构表现出了H_2S增强气敏特性,对其气敏特性增强机理进行了分析。
     利用水热法制备了α-MoO_3/ZnO笼状复合结构,这些结构由条状纳米线和片状纳米结构组成。该笼状α-MoO_3/ZnO纳米复合结构对H_2S表现出较好的响应特性。例如,在工作温度为270℃时,可以检测浓度为500ppb H_2S气体。同时,该笼状复合结构与α-MoO_3和ZnO相比表现出H_2S气敏增强特性。根据该复合结构的形貌、结构特征等提出了其气敏增强特性的相关解释。
     综上所述,通过表面修饰,可以大幅提升α-MoO_3纳米棒的气敏特性。这也为高性能气体传感器的制备提供了有效的途径和方法。
Gas sensors can monitor toxic gases, and thus they have very important applications inmany aears such as environmental protection, traffic safety, food safety, and even in militaryfields. Now, More in-depth study had been done in the application of nanomaterials for gassensors. However, there are some issuse need to be solved for single nanostructures, such asthe bad selectivity and the high working temperature. In the thesis, the sensing properties ofgas sensors based on molybdenum oxide were improved by the surface modification. Thoseenhanced sensing properties include the decrease in the working temperature and the increasein the sensitivity and selectivity.
     α-MoO_3/TiO_2core/shell nanorods were synthesized by a wet chemical method. XRD,SEM and TEM analyses showed that the thickness of crystalline TiO_2in the nanorods couldbe controlled to be15-45nm. It was found that the core/shell nanorods exhibited enhancedsensing properties compared to the bare α-MoO_3nanorods, especially for one with thiner shell.The enhanced sensing mechanism was proposed in terms of the change of heterojunctionbarrier, which was experimently proved by the gas sensitive properties of CeO_2/TiO_2core/shell nanorods.
     α-MoO_3/iron based nano composites were synthesized by a simple wet chemical method.The growth mechanism about the nanocomposits was proposed according to the analyses ofthe crystalline micro-structures. The response properties of the nanocomposites to alcoholwere investigated, and it was found that the samples showed enhanced sensing properties toalcohol. The enhanced sensing mechanism was discussed and analyzed in terms of thechemical and physical characteristics of the second phase.
     α-MoO_3/CuO PN junction nanocomposite was synthesized by a simple wet chemicalmethod. The nanocomposite showed enhanced sensing properties to H_2S gas. The sensitivityof the namocomposite was one order of magnitide higher than that of the bare nanorods. Theenhanced sensing properties to H_2S gas were explained in terms of the data of energy band ofCuO and α-MoO_3and the change in P-N junction barrier. The mechanism was proved by theexperiment in which the CuO structure was changed when the nanocomposite contacted withH_2S gas.
     α-MoO_3/SnO_2nanocomposites were synthesized by a wet chemical method. The microstructure of the sample was carefully analyzed. These nanocomposites showed enhancedsensing properties to H_2S gas. The mechanism of enhanced sensing properties was analyzed.
     α-MoO_3/ZnO cage-like composite which, consists of nanowires and nanosheets wassynthesized by a hydrothermal method. The cage-like α-MoO_3/ZnO composite showed goodcorresponding properties to H_2S gas. For example, it could detect500ppb H_2S at270℃. Atthe same time, the cage-like composite exhibited enhanced sensing properties compared to thebare α-MoO_3nanorods. The mechanism was explained in term of shape and structuralcharacters of the cage-like composite.
     Therefore, the sensing properties of α-MoO_3can be significantly enhanced by surfacemodification mechods. This provide effective approachs and methods to fabricate gassensor with high performance.
引文
[1]刘新,李淑娥.气体传感器的应用与发展.中国西部科技.2008,14:14-15
    [2]黄敏桐.气敏传感器在工业和民用领域的应用.福建建材.2006,04:2-3
    [3]康昌鹤,唐省吾等.气、湿敏感器件及其应用.北京:北京科学出版社,1988
    [4]张立德,古宏晨.超微粉体制备与应用技术.北京:石油化工出版社,2001
    [5] D. Kohl. Surface processes in the detection of reducing gases with SnO2-based devices.Sens. Actuators B,1989,18:71-113
    [6]田敬民,李守智.金属氧化物半导体气敏机理探析.西安理工大学学报,2002,18:144-147
    [7]孔祥霞,孙良彦,平田光寿.高选择性常温NH3传感器.传感器技术,2003,22:78-80
    [8]秦树基,叶坚.酞箐气体传感器发展趋势.传感器技术学报,2004,23:6-10
    [9]吴兴惠,王彩君.传感器与信号处理.北京:电子工业出版社,1998
    [10] S.R.Morrison. Selectivity in semiconductor gas Sensor. Sens. Actuators,1983,12:425-440
    [11]奥默尔M.A.固体物理学基础.北京师范大学出版社,1987
    [12] S.R.Morrison. Selectivity in semiconductor gas Sensors. Sens. Actuators,1983,12:425-440
    [13] Z. X. Chen, W. B. Bu, N. Zhang, and J. L. Shi. Controlled Construction of MonodisperseLa2(MoO4)3: Yb, Tm Microarchitectures with Upconversion Luminescent Property. J.Phys. Chem. C.2008,112:4378-4383
    [14] X. K. Hu, Y. T. Qian, Z. T. Song, J. R. Huang, R. Cao, and John Q. Xiao. ComparativeStudy on MoO3and HxMoO3Nanobelts: Structure and Electric Transport. Chem. Mater.2008,20:1527–1533
    [15] Jolanta Swiatowska-Mrowiecka, Soline de Diesbach, Vincent Maurice, Sandrine Zanna,Lorena Klein, Emrick Briand, Ian Vickridge, and Philippe Marcus. Li-Ion Intercalationin Thermal Oxide Thin Films of MoO3as Studied by XPS, RBS, and NRA. J. Phys.Chem. C.2008,112:11050-11058
    [16] L. Chen. On the Mechanisms of Hydrogen Spillover in MoO3. J. Phys. Chem. C.2008,122:1755-1758
    [17] W. J. Dong, Z. Shi, J. J. Ma, C. M. Hou, Q. Wan, S. H. Feng, Andrew Cogbill, and Z.Ryan Tian. One-Pot Redox Syntheses of Heteronanostructures of Ag Nanoparticles onMoO3Nanofibers. J. Phys. Chem. B.2006,110:5845-5848
    [18] J. Arbiol, J.R. Morante, P. Bouvier, T. Pagnier, E.A. Makeeva, M.N. Rumyantseva, andA.M. Gaskov. SnO2/MoO3-nanostructure and alcohol detection. Sensors and ActuatorsB.118,2006:156-162
    [19] J. Yu, M. Shafiei, W. Wlodarski, Y. X. Li and K. Kalantar-zadeh. Enhancement ofelectric field properties of Pt/nanoplatelet MoO3/SiC Schottky diode. J. Phys. D: Appl.Phys.2010,43:1-8(025103)
    [20] H. Noh, D. Wang, S. Luo, Ted B. Flanagan, R. Balasubramaniam, Y. Sakamoto.Hydrogen Bronze Formation within Pd/MoO3Composites. J. Phys. Chem. B2004,108:310-319
    [21] C. Imawan, H.Steffes, F.Solzbacher, and E. Obermeier. Structural and gas-sensingproperties of V2O5-MoO3thin films for H2detection. Sensors and Actuators B2001,77:346-351
    [22] Petre Badica, Preparation through the Vapor Transport and Growth Mechanism of theFirst-Order Hierarchical Structures of MoO3Belts on Sillimanite Fibers. Crystal Growth&Design.2007,7:794-801
    [23] X. W. Sha, Liang Chen, Alan C. Cooper, Guido P. Pez, and H. S. Cheng. HydrogenAbsorption and Diffusion in Bulk α-MoO3. J. Phys. Chem. C.2009,113:11399-11407
    [24] H. C. Zeng, W. K. Ng, L. H. Cheong, F. Xie, and R. Xu. Insertion Direction of Hydrogenin Protonation of α-MoO3. J. Phys. Chem. B.2001,105:7178-7181
    [25] E. Comini, L. Yubao, Y. Brando, G. Sberveglieri. Gas sensing properties of MoO3nanorods to CO and CH3OH. Chem. Phys. Lett.2005,407:368-371
    [26] S. Triwahyono, A. A. Jalil, S. N. Timmiati, N. N. Ruslan, and H. Hattori. Kinetics studyof hydrogen adsorption over Pt/MoO3. Applied Catalysis A: General2010,372:103-107
    [27] J. Yu, S. J. Ippolito, M. Shafiei, D. Dhawan, W. Wlodarski, and K. Kalantar-zadeh.Reverse biased Pt/nanostructured MoO3/SiC Schottky diode based hydrogen gas sensors.Applied Physics Letters.2009,94:013504-013504-3
    [28] C. Imawan, F. Solzbacher, H. Steffes, and E. Obermeier. Gas-sensing characteristics ofmodified-MoO3thin films using Ti-overlayers for NH3gas sensors. Sensors andActuators B.2000,64:193-197
    [29] E. Bontempi, E. Zampiceni, G. Sberveglieri, and L. E. Depero. StructuralCharacterization of Tin and Molybdenum Oxides Thin Films Deposited by RGTO. Chem.Mater.2001,13:2608-2612
    [30] Fabrice Leroux, Linda F. Nazar. Uptake of lithium by layered molybdenum oxide and itstin exchanged derivatives: high volumetric capacity materials. Solid State Ionics2000,133:37-50
    [31] K.Galatsis, Y.X.Li, W. Wlodarski, E. Comini, G. Faglia, G. Sberveglieri. SemiconductorMoO3-TiO2thin film gas sensors. Sensors and Actuators B.2001,77:472-477
    [32] S.Barazzouk, R.P. Tandon, and S. Hotchandani. MoO3-based sensor for NO, NO2andCH4detection. Sensors and Actuators B.2006,119:691-694
    [33] M. M. Mohamed. Effect of ceria-doped titania on the structure and acidic properties ofMoO3/TiO2catalysts. Applied Catalysis A: General.2004,267:135-142
    [34] T. Xia, Q. Li, X. D. Liu, J. Meng, and X. Q. Cao. Morphology-Controllable Synthesisand Characterization of Single-Crystal Molybdenum Trioxide. J. Phys. Chem. B.2006,110(5):2006-2012
    [35] X. W. Lou and H. C. Zeng. Complex α-MoO3Nanostructures with External BondingCapacity for Self-Assembly. J. Am. Chem. Soc.2003,125:2697-2704
    [36] S. Hu and X. Wang. Single-Walled MoO3Nanotubes. J. Am. Chem. Soc.2008,130:8126–8127
    [37] X. M. Wei and H. C. Zeng. Large-Scale Organizations of MoO3Nanoplatelets withSingle-Crystalline MoO3(4,4′-bipyridyl)0.5. J. Phys. Chem. B.2003,107:2619-2622
    [38] G. R. Patzke, A. Michailovski, F. Krumeich, R. Nesper, J.–D. Grunwaldt, and A. Baiker.One-Step Synthesis of Submicrometer Fibers of MoO3. Chem. Mater.2004,16:1126-1134
    [39] L. Fang, Y. Y. Shu, A. Q Wang, and T. Zhang. Green Synthesis and Characterization ofAnisotropic Uniform Single-Crystal-MoO3Nanostructures. J. Phys. Chem. C.2007,111:2401-2408
    [40] X. W. Lou and H. C. Zeng. Hydrothermal Synthesis of α-MoO3Nanorods viaAcidification of Ammonium Heptamolybdate Tetrahydrate. Chem. Mater.2002,14:4781-4789
    [41] J. N. Yao, Y. A. Yang, and B. H. Loo. Enhancement of Photochromism andElectrochromism in MoO3/Au and MoO3/Pt Thin Films. J. Phys. Chem. B1998,102:1856-1860
    [42] W. Y. Li, F. Y. Cheng, Z. L. Tao, and J. Chen. Vapor-Transportation Preparation andReversible Lithium Intercalation/Deintercalation of α-MoO3Microrods. J. Phys. Chem. B.2006,110:119-124
    [43] H. G. Yang and H. C. Zeng. Self-Aligned Growth of Hexagonal TiO2Nanosphere Arrayson α-MoO3(010) Surface. Chem. Mater.2003,15:3113-3120
    [44] M. Riskin, B. Basnar, Y. Huang, and I. Willner, Magnetoswitchable Charge Transportand Bioelectrocatalysis Using Maghemite-Au Core-Shell Nanoparticle/PolyanilineComposites. Adv. Mater.2007,19:2691-2695
    [45] X. Y. Xue, Z. H. Chen, C. H. Ma, L. L. Xing, Y. J. Chen, Y. G. Wang, and T. H. Wang.One-Step Synthesis and Gas-Sensing Characteristics of Uniformly Loaded Pt@SnO2Nanorods. J. Phys. Chem. C.2010,114:3968–3972
    [46] Y. J. Chen,F. Zhang, G. G Zhao, X. Y. Fang, H. B. Jin, P. Gao, C. L. Zhu, M. S. Cao, andG. Xiao. Synthesis, Multi-Nonlinear Dielectric Resonance, and ExcellentElectromagnetic Absorption Characteristics of Fe3O4/ZnO Core/Shell Nanorods. J. Phys.Chem. C2010,114:9239–924.
    [47] C. L. Zhu, M. L. Zhang, Y. J. Qiao, G. Xiao, F. Zhang, and Y. J. Chen. Fe3O4/TiO2Core/Shell Nanotubes: Synthesis and Magnetic and Electromagnetic Wave AbsorptionCharacteristics, J. Phys. Chem. C.2010,114:16229–16235
    [48] Y. J. Chen, P. Gao, R. X. Wang, C.–L. Zhu, L. J. Wang, M. S. Cao, and H. B. Jin.Porous Fe3O4/SnO2Core/Shell Nanorods: Synthesis and Electromagnetic Properties. J.Phys. Chem. C.2009,113:10061–10064
    [49] X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, B. Lv, J. P. Lei,and C. G. Lee. Microwave absorption properties of the carbon-coated nickelnanocapsules. Applied Physics Letters.2006,89:053115-053115-3
    [50] X. G. Liu, D. Y. Geng, H. Meng, P. J. Shang, and Z. D. Zhang. Microwave-absorptionproperties of ZnO-coated iron nanocapsules. Applied Physics Letters.2008,92:173117-173117-3
    [51] Y. J. Chen, C. L. Zhu, X. Y. Xue, X. L. Shi, and M. S. Cao. High capacity and excellentcycling stability of single-walled carbon nanotube/SnO2core-shell structures asLi-insertion materials. Applied Physics Letters.2008,92:223101-223101-3
    [52] X. Y. Xue, Z. H. Chen, L. L. Xing, S. Yuan, and Y. J. Chen. SnO2/a-MoO3core-shellnanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes,Chem. Commn.2011,47:5205-5207
    [53] D. W. Kim, I. S. Hwang, S. J. Kwon, H. Y. Kang, K. S. Park, Y. J. Choi, K. J. Choi, and J.G. Park. Highly Conductive Coaxial SnO2-In2O3Heterostructured Nanowires for Li IonBattery Electrodes. Nanolett.2007,7:3041-3045
    [54] Y. J. Chen, C. L. Zhu, L. J. Wang, P. Gao, M. S. Cao, and X. L. Shi. Synthesis andenhanced ethanol sensing characteristics of α-Fe2O3/SnO2core–shell nanorods.Nanotechnology.2009,20:045502-6p
    [55] C.L. Zhu, Y.J. Chen, R.X.Wang, L.J.Wang. M.S. Cao, X.L. Shi. Synthesis and enhancedethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sensors and ActuatorsB.2009,140:185–189
    [56] Y. J. Chen, C. L. Zhu, and T. H. Wang, The enhanced ethanol sensing properties ofmulti-walled carbon nanotubes/SnO2core/shell nanostructures. Nanotechnology.2006,17:3012-3017
    [57] X. Y. Kong, Y. Ding, and Z. L. Wang. Metal-semiconductor Zn-ZnO core-shellnanobelts and nanotubes. J. Phys. Chem. B.2004,108:570-574
    [58] M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. D. Yang.ZnO-Al2O3and ZnO-TiO2Core-Shell Nanowire Dye-Sensitized Solar Cells. J. Phys.Chem. B.2006,110:22652-22663
    [59] P. T. Park, K. Dong. Controlled growth of core–shell Si–SiOxand amorphous SiO2nanowires directly from NiO/Si. Nanotechnology.2004,15:365-370
    [60] Y. J. Dong, G. H. Yu, M. C. McAlpine, W. Lu, and C. M. Lieber. Si/a-Si Core/Shell Nanowiresas Nonvolatile Crossbar Switches. Nanoletters.2008,8:386-391
    [61] H. J. Lee and J. Cho. Sn78Ge22@Carbon Core-Shell Nanowires as Fast and High-CapacityLithiumStorage Media. Nanoletters.2007,7:2638-2641
    [62] H. M. Jia, H. Xu, Y. Hu, Y. W. Tang, and L. Z. Zhang. TiO2@CdS core–shell nanorodsfilms: Fabrication and dramatically enhanced photoelectrochemical properties.Electrochemistry Communications.2007,9:354-360
    [63] J. G. Yu, W. Liu, and H. G. Yu. A One-Pot Approach to Hierarchically NanoporousTitania Hollow Microspheres with High Photocatalytic Activity. Crystal Growth&Design.2008,3(8):930-934
    [64] H. J. Yun, H. Lee, J. B. Joo, W. Kim, and J. Yi. Influence of Aspect Ratio of TiO2Nanorods on the Photocatalytic Decomposition of Formic Acid. The Journal of PhysicalChemistry C.2009,113:3050-3055
    [65] T. C. Jagadale, S. P. Takale, R. S. Sonawane, H. M. Joshi, S. I. Patil, B. B. Kale, and S. B.Ogale. N-Doped TiO2Nanoparticle Based Visible Light Photocatalyst by ModifiedPeroxide Sol-Gel Method. The Journal of Physical Chemistry C.2008,112:14595-14602
    [66] C. K. Xu, Y. J. Zhan, K. Q. Hong, and G. H. Wang. Growth and mechanism of titaniananowires. Solid State Communications.2003,126:545-549
    [67] Syoufian A, Satriya O H, Nakashima K. Photocatalytic activity of titania hollow spheres:Photodecomposition of methylene blue as a target molecule. Catalysis Communications.2007,8:755-759
    [68]殷好勇,汪玲,聂秋林,袁求理,徐铸德. TiO2纳米管的制备及其电化学储锂性能.信阳师范学院学报:自然科学版.2009,3(22):431-434
    [69] Pradhan S K, Reucroft P J, Yang F Q, and Dozier A. Growth of TiO2nanorods bymetalorganic chemical vapor deposition. Journal of Crystal Growth.2003,256:83-88
    [70] Zhu Y C, Li H L, Koltypin Y, Hacohenb Y R and Gedanken A. Sonochemical synthesisof titania whiskers and nanotubes. Chem. Commun.2001:2616-2617
    [71] B. Koo, J. Park, Y. Kim, S. H. Choi, Y. E. Sung, and T. Hyeon. Simultaneous Phase-andSize-Controlled Synthesis of TiO2Nanorods via Non-Hydrolytic Sol-Gel Reaction ofSyringe Pump Delivered Precursors. The Journal of Physical Chemistry B,2006,110:24318-24323
    [72] L. Yue, W. Gao, D. Y. Zhang, X. F. Guo, W. P. Ding, and Y. Chen. Colloids SeededDeposition: Growth of Titania Nanotubes in Solution. J. Am. Chem. Soc.2006,128:11042-11043
    [73] L. Yue and X. M. Zhang. Preparation of highly dispersed CeO2/TiO2core-shellnanoparticles. Mater. Lett.2008,62:3764-3766
    [74] C. L. Zhu, M. L. Zhang, Y. J. Qiao, G. Xiao, F. Zhang, and Y. J. Chen. Fe3O4/TiO2core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorptioncharacteristics. J. Phys. Chem. C.2010,114:16229–16235
    [75] Y. J. Chen, L. Nie, X. Y. Xue, Y. G. Wang, and T. H. Wang, Linear ethanol sensing ofSnO2nanorods with extremely high sensitivity. Appl. Phys. Lett.2006,88:083105
    [76] X. Y. Xue, Z. H. Chen, C. H. Ma, L. L. Xing, Y. J. Chen, Y. G. Wang, and T. H. Wang.One-Step Synthesis and Gas-Sensing Characteristics of Uniformly Loaded Pt@SnO2Nanorods. J. Phys. Chem. C.2010,114:3968-3972
    [77] Y. J. Chen, C. L. Zhu, L. J. Wang, P. Gao, M. S. Cao, and X. L. Shi. Synthesis andenhanced ethanol sensing characteristics of α-Fe2O3/SnO2core–shell nanorods.Nanotechnology20,2009:045502
    [78] C. L. Zhu, Y. J. Chen, R. X. Wang, L. J. Wang, M. S. Cao, and X. L. Shi. Synthesis andenhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sensors andActuators B.2009,140:185-189
    [79] Y. J. Chen, C. L. Zhu, X. L. Shi, M. S. Cao, and H. B. Jin. The synthesis and selectivegas sensing characteristics of SnO2/α-Fe2O3hierarchical nanostructures. Nanotechnology.2008,19:205603
    [80] H. Ogawa, M. Nishikawa, and A. Abe. Hall measurement studies and an electricalconduction model of tin oxide ultrafine particle films. J. Appl. Phys.1982,53:4448-4455
    [81] N. Barsan and U. Weimar. Conduction Model of Metal Oxide Gas Sensers. J.Electroceramics.2001,7:143-167
    [82] S. H. Elder, F. M. Cot, Y. Su, S. M. Heald, A. M. Tyryshkin, M. K. Bowman, Y. Gao, A.G. Joly, M. L. Balmer, A. C. Kolwaite, K. A. Magrini, and D. M. Blake. The Discoveryand Study of Nanocrystalline TiO2-(MoO3) Core Shell Materials. J. Am. Chem. Soc.2000,122:5138-5146
    [83] C. H. Wang, C. L. Shao, X. T. Zhang, and Y. C. Liu, SnO2Nanostructures-TiO2Nanofibers Heterostructures: Controlled Fabrication and High Photocatalytic Properties.Inorg. Chem.2009,48:7261-7268
    [84] E. Comini, G. Faglia, G. Sberveglieri, C. Cantalini, M. Passacantando, S. Santucci, Y. Li,W. Wlodarski, and W. Qu, Carbon monoxide response of molybdenum oxide thin filmsdeposited by different techniques. Sens. Actuators B.2000,68:168-174
    [85] Jens Meyer, Rebecca Khalandovsky, Patrick G rrn, and Antoine Kahn. MoO3FilmsSpin-Coated from a Nanoparticle Suspension for Efficient Hole-Injection in OrganicElectronics. Adv. Mater.2011,23(1):70-73
    [86] H. X. Mai, L. D. Sun, Y. W. Zhang, R. Si, W. Feng, H. P. Zhang, H. C. Liu, and C. H.Yan, Shape-Selective Synthesis and oxygen storage behavior of ceria nanopolyhedra,nanorods, and nanocubes. J. Phys. Chem B.2005,109:24380-24385
    [87] A. Pfau, K. D. Schierbaum, and W. Gopel, The eletronic structure of CeO2thin films: theinfluence of Rh surface dopants. Surf. Science.1995,331-333(Part B):1479-1485
    [88] F. X. Liu, C. Y. Wang, Q. D. Su, T. P. Zhao, and G. W. Zhao, Optical properties ofnanocrystalline ceria, Appl. Optics.1997,36:2796-2798
    [89] T. Y. Yu, B. K. Lim, and Y. N. Xia, Aqueous-phase synthesis of single-crystal ceriananosheets, Angew. Chem. Int. Ed.2010,49:4484-4487
    [90] A. Fujishima, and K. Honda, Electrochemical Photolysis of Water at a SemiconductorElectrode. Nature.1972,238(07):37
    [91] A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Enhanced GasSensing by Individual SnO2Nanowires and Nanobelts Functionalized with Pd CatalystParticles. Nano Lett.2005,5:667-673
    [92] B. C. Yadav, A. Yadav, T. Shukla, and S. Singh, Experimental Investigations on SolidState Conductivity of Cobaltzincate Nanocomposite for Liquefied Petroleum Gas Sensing.Sens. Lett.2009,7:1119-1123
    [93] M. Chen, D. Kumar, C.–W, Yi, and D. W. Goodman. The Promotional Effect of Gold inCatalysis by Palladium-Gold. Science.2005,310:291-293
    [94] D. A. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F., Carley, A. A. Herzing,M. Watanabe, C. J. Kiely, D. W. Kinight, G. J. Hutchings. Solvent-Free Oxidation ofPrimary Alcohols to Aldehydes Using Au-Pd/TiO2Catalysts. Science.2006,311:362-365
    [95] P. H. C. Camgrgo, Y. J. Xiong, L. Ji, J. M. Zuo, and Y. N. Xia. Facile Synthesis ofTadpole-like Nanostructures Consisting of Au Heads and Pd Tails. J. Am. Chem. Soc.2007,129:15452-15453
    [96] D. Ferrer, A.Torres-Castro, X. Gao, S. Sepúlveda-Guzmán, U. Ortiz-Méndez, and M.José-Yacamán. Three-Layer Core/Shell Structure in Au-Pd Bimetallic Nanoparticles.Nano Lett.2007,7:1701-1705
    [97] T. Pellegrino, A. Fiore, E. Carlino, C. Giannini, P. D. Cozzoli, G. Ciccarella, M. Respaud,L. Palmirotta, R. Cingolani, and L. Manna. Heterodimers Based on CoPt3-AuNanocrystals with Tunable Domain Size. J. Am. Chem. Soc.2006,128:6690-6698
    [98] H. W. Gu, Z. M. Yang, J. H. Gao, C. K. Chang, and B. Xu. Heterodimers ofNanoparticles: Formation at a Liquid-Liquid Interface and Particle-Specific SurfaceModification by Functional Molecules. J. Am. Chem. Soc.2005,127:34-35
    [99] H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun. Dumbbell-likeBifunctional Au-Fe3O4Nanoparticles. Nano Lett.2005,5:379-382
    [100] J. H. Gao, W. Zhang, P. Huang, B. Zhang, X. X. Zhang, and B. Xu. Intracellular SpatialControl of Fluorescent Magnetic Nanoparticles. J. Am. Chem. Soc.2008,130:3710-3711
    [101] Z. X. Wang, L. M. Wu, M. Chen, and S. X. Zhou. Facile Synthesis of SuperparamagneticFluorescent Fe3O4/ZnS Hollow Nanospheres. J. Am. Chem. Soc.,2009,131:11276-11277
    [102] D. S. Wang, J. He, N. Rosenzweig, and Z. Rosenzweig. Superparamagnetic Fe2O3Beads-CdSe/ZnS Quantum Dots Core? Shell Nanocomposite Particles for Cell Separation.Nano Lett.2004,4:409-413
    [103] H. W. Gu, r. k. Zheng, X. X. Zhang, and B. Xu. Facile One-Pot Synthesis of BifunctionalHeterodimers of Nanoparticles: A Conjugate of Quantum Dot and MagneticNanoparticles. J. Am. Chem. Soc.2004,126:5664-5665
    [104] A. Kolmakov, D. O. Klenov, Y. Liach, S. Stemmer, and M. Moskovits. Enhanced GasSensing by Individual SnO2Nanowires and Nanobelts Functionalized with Pd CatalystParticles. Nano Lett.2005,5(4):667-673
    [105] R. C. Che, L. M. Peng, X. F. Duan, Q. Chen, and X. L. Liang. Microwave AbsorptionEnhancement and Complex Permittivity and Permeability of Fe Encapsulated withinCarbon Nanotubes. Adv. Mater.2004,16:401-405
    [106] S. H. Elder, F. M. Cot, Y. Su, S. M. Heald, A. M. Tyryshkin, M. Bowman, Y. Gao, A. G.Joly, M. L. Balmer, A. C. Kolwaite, K. A. Magrini, and D. M. Blake, The Discovery andStudy of Nanocrystalline TiO2-(MoO3) Core Shell Materials, J. Am. Chem. Soc.2000,122:5138-5146
    [107] C. V. Gopal Reddy, W. Cao, O. K. Tan and W. Zhu. Preparation of Fe2O3(0.9)–SnO2(0.1)byhydrazine method: application as an alcohol sensor. Sensors Actuators B2002,81:170-175
    [108] M. Gratzel. Photoelectrochemical cells. Nature.2001,414:338-344
    [109] C. H. Lu, L. M. Qi, J. H. Yang, D. Y. Zhang, N. Z. Wu and J. M. Ma. SimpleTemplate-Free Solution Route for the Controlled Synthesis of Cu(OH)2and CuONanostructures. J. Phys. Chem. B.2004,108:17825-17831
    [110] Hu J, T. W. Odom, and C. M. Lieber. Chemistry and Physics in One Dimension:Synthesis and Properties of Nanowires and Nanotubes. Acc. Chem. Res.1999,32:435-445
    [111] D. Q. Gao, G. J. Yang, J. Y. Li, J. Zhang, J. L. Zhang and D. S. Xue. Room-TemperatureFerromagnetism of Flowerlike CuO Nanostructures. J. Phys. Chem. C.2010,114:18347-18351
    [112] G. F. Zou, H. Li, D. W. Zhang, K. Xiong, C. Dong and Y. T. Qian. Well-Aligned Arraysof CuO Nanoplatelets. J. Phys. Chem. B.2006,110:1632-1637
    [113] M. Vaseem, A. Umar, S. H. Kim and Y. B. Hahn. Low-Temperature Synthesis ofFlower-Shaped CuO Nanostructures by Solution Process: Formation Mechanism andStructural Properties. J. Phys. Chem. C.2008,112:5729-5735
    [114] J. Hu, D. D. Li, J. G. Lu and R. Q. Wu. Effects on Electronic Properties of MoleculeAdsorption on CuO Surfaces and Nanowires. J. Phys. Chem. C.2010,114:17120-17126
    [115] X. Y. Xue, L. L. Xing, Y. J. Chen, S. L. Shi, Y. G. Wang and T. H. Wang. Synthesis andH2S Sensing Properties of CuO-SnO2Core/Shell PN-Junction Nanorods. J. Phys. Chem.C.2008,112:12157-12160
    [116] H. J. Zhou and S. S. Wong. A Facile and Mild Synthesis of1-D ZnO, CuO, and-Fe2O3Nanostructures and Nanostructured Arrays. ACS nano.2008,5:944-958
    [117] K. M. Shrestha, C. M. Sorensen and K. J. Klabunde. Synthesis of CuO Nanorods,Reduction of CuO into Cu Nanorods, and Diffuse Reflectance Measurements of CuO andCu Nanomaterials in the Near Infrared Region. J. Phys. Chem. C.2010,114:14368-14376
    [118] X. C. Jiang, T. Herricks and Y. N. Xia. CuO Nanowires Can Be Synthesized by HeatingCopper Substrates in Air. Nano Letters.2002,12:1333-1338
    [119] Y. L. Liu, L. Liao, J. C. Li, and C. X. Pan. From Copper Nano crystalline to CuONanoneedle Array: Synthesis, Growth Mechanism, and Properties. J. Phys. Chem. C.2007,111:5050-5056
    [120] N. Serin, T. Serin, S. Horzum, and Y. Celik, Annealing effects on the properties ofcopper oxide thin films prepared by chemical deposition, Semicond. Sci. Technol.2005,20:398-401
    [121] W. Y. Sung, W. J. Kim, S. M. Lee, H. Y. Lee, Y. H. Kim, K. H. Park, and S. Lee, Fieldemission characteristics of CuO nanowires by hydrogen plasma treatment. Vacuum.2007,81:851–856
    [122] L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X.Zhang, H. Gong, J. C. Li, and T. Yu, Multifunctional CuO nanowire devices:p-type fieldeffect transistors and CO gas sensors. Nanotechnology.2009,20:085203
    [123] J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee and S. T. Lee.Large-Scale Rapid Oxidation Synthesis of SnO2Nanoribbons. The Journal PhysicalChemistry. B.2002,106:3823-3826
    [124] G. S. Pang, S. G. Chen, Y. Koltypin, Y. Koltypin, A. Zaban, S. H. Feng and A. Gedanken.Controlling the Particle Size of Calcined SnO2Nanocrystals. Nano Letters.2001,12(1):723-726
    [125] B. Cheng, J. M. Russell, W. S. Shi, L. Zhang and E. T. Samulski. Large-Scale,Solution-Phase Growth of Single-Crystalline SnO2Nanorods. J. Am. Chem. Soc.2004,126(19):5972-5973
    [126] T. F. Baumann, S. O. Kucheyev, A. E. Gash and J. H. Satcher, Facile J. Synthesis of aCrystalline, High-Surface-Area SnO2Aerogel. Adv. Mater.2005,17:1546-1548
    [127] Y. Liu and M. Liu. Growth of Aligned Square-Shaped SnO2Tube Arrays. AdvancedFunctional Materials.2005,15(1):57-62
    [128] S. Mathur, S. Barth, H. Shen, J. C. Pyun and U. Werner. Size-DependentPhotoconductance in SnO2Nanowires. Small.2005,7(1):713-717
    [129] V. N. Urade and H. W. Hillhouse. Synthesis of Thermally Stable Highly OrderedNanoporous Tin Oxide Thin Films with a3D Face-Centered Orthorhombic Nanostructure.The Journal of Physical Chemistry B Letters.2005,109:10538-10541
    [130] Y. Wang and J. Y. Lee. Molten Salt Synthesis of Tin Oxide Nanorods: Morphologicaland Electrochemical Features. The Journal of Physical Chemistry B.2004,108:17832-17837
    [131] B. Liu and H. C. Zeng. Salt-Assisted Deposition of SnO2on α-MoO3Nanorods andFabrication of Polycrystalline SnO2Nanotubes. The Journal Physical Chemistry. B,2004,108:5867-5874
    [132] T. Gao and T. H. Wang. Sonochemical synthesis of SnO2nanobelt/CdS nanoparticlecore/shell heterostructures. Chem. Commun.2004,2558-2559
    [133] A. Kolmakov, Y. X. Zhang, G. S. Cheng and M. Moskovits. Detection of CO and O2Using Tin Oxide Nanowire Sensors. Advanced Materials.2003,12(15):997-1000
    [134] D. Calestani, M. Zha, R. Mosca, A. Zappettini, M. C.Carotta, V. D. Natale, and L.Zanotti, Growth of ZnO tetrapods for nanostructure-based gas sensors. Sensors andActuators B.2010,144:472-478
    [135] Y. N. Zhao, M. S. Cao, J. G. Li, and Y. J. Chen, A novel and simple combustion routetowards long legs nanotetrapod ZnO. Materials Research Bulletin.2005,40:1745-1750
    [136] Y. J. Chen. M. S. Cao, W. Zhou, and X. L. Shi, Dynamic response and reinforcementmechanism of composites embedded with tetraneedlelike ZnO nanowhiskers. AppliedPhysics Letters.2007,91:021912.
    [137] Y. J. Chen, C. L. Zhu, and G. Xiao, Ethanol sensing characteristics of ambienttemperature sonochemically synthesized ZnO nanotubes, Sensors and Actuators B.2008,129:639-642
    [138] Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, Fabrication and ethanol sensingcharacteristics of ZnO nanowires gas sensors. Applied Physics Letters.2004,84:3654-3656
    [139] Z. L. Wang and J. H. Song, Piezoelectric Nanogenerators based on zinc oxide nanowirearrays. Science.2006,312:242-246
    [140] Y. N. Zhao, M. S. Cao, H. B. Jin, X. L. Shi, X. Li, and S. Agathopoulos, Combustionoxidization synthesis of unique cage-Like nanotetrapod ZnO and its optical property. J.Nanosci. Nanotechnol.2006,6:2525-2528
    [141] D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xie, S. L. Shi, and S. J. Xu, Differentorigins of visible luminescence in ZnO nanostructures fabricated by the chemical andevaporation methods. Appl. Phys. Lett.2004,85:1601-1603
    [142] Y. J. Chen, M. S. Cao, T. H. Wang, and Q. Wan, Microwave absorption properties of theZnO nanowire-polyester composites, Appl. Phys. Lett.2004,84:3367-3369
    [143] M. S. Cao, X. L. Shi, X. Y. Fang, H. B. Jin, Z. L. Hou, W. Zhou, and Y. J. Chen.Microwave absorption properties and mechanism of cagelike ZnO/SiO2nanocomposites,Appl. Phys. Lett.2007,91:203110
    [144] Q. H. Li, Q. Wan, Y. J. Chen, T. H. Wang, H. B. Jia, and D. P. Yu, Stable field emissionfrom tetrapod-like ZnO nanostructures. Applied Physics Letters.2004,85:636-638.
    [145] Z. Gui, J. Liu, Z. Z Wang, L. Song, Y. Hu, W. C. Fan, and D. Y. Chen, FromMuticomponent Precursor to Nanoparticle Nanoribbons of ZnO. J. Phys. Chem. B.2005,109:1113-1117
    [146] D. Feng. Zhang, L. D. Sun, J. L. Yin, C. H. Yan, and R. M. Wang, Attachment-DrivenMorphology Evolvement of Rectangular ZnO Nanowires. J. Phys. Chem. B.2005,109:8786-8790
    [147] S. Y. Bae, H. W. Seo, H. C. Choi, Jeunghee Park, and Jucheol Park, Heterostructures ofZnO Nanorods with Various One-Dimensional Nanostructures, J. Phys. Chem. B.2004,108:12318-12326
    [148] C. Justin. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally. Optical Cavity Effects inZnO Nanowire Lasers and Waveguides. J. Phys. Chem. B.2003,107:8816-8828
    [149] S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, On a Theory of the van derWaals Adsorption of Gases, J. Am. Chem. Soc.1940,62:1723-1732
    [150] Y. J. Chen, C. L. Zhu, and T. H. Wang, The enhanced ethanol sensing properties ofmulti-walled carbon nanotubes/SnO2core/shell nanostructures. Nanotechnology.2006,17:3012
    [151] Y. J. Chen, C. L. Zhu, and G. Xiao, Reduced-temperature ethanol sensing characteristicsof flower-like ZnO nanorods synthesized by a sonochemical method. Nanotechnology.2006,17:4537
    [152] M. T. Niu, F. Huang, L. Cui, P. Huang, Y. L. Yu, and Y. S. Wang. HydrothermalSynthesis, Structural Characteristics, and Enhanced Photocatalysis of SnO2/α-Fe2O3Semiconductor Nanoheterostructures. ACS nano.2010,4:681-688
    [153] S. Barazzouk, R. P. Tandon, and S. Hotchandani. MoO3-based sensor for NO, NO2andCH4detection. Sens.Actuators B.2006,119:691-694

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700