用户名: 密码: 验证码:
输气管道漏磁内检测器速度控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长距离输气管道是我国天然气传输的主要方式,管道的安全运行是关系到国计民生的重大问题。进行定期管道检测是保证管道正常运行的重要手段。由于输气管道多埋于地下或水下,因而管道内检测技术是国际上公认最为有效的输气管道检测方法。在众多内检测技术中,漏磁检测对检测环境的要求低、检测效果好、应用最为广泛。以漏磁检测技术为原理的内检测器运行速度过快影响检测效果甚至无法检测管道缺陷,因而内检测器对运行速度有严格的要求。控制内检测器运行速度,使之运行在合理的速度范围之内,对提高检测精度、提升检测效率都起着重要的作用。论文针对管道漏磁内检测速度控制的有关难题,紧密结合检测实际需要,通过理论分析和实验系统分析,剖析内检测器运行过程中管道流场的状态,对以内部调速法和加压站调压法为手段调节内检测器运行速度进行了深入研究。
     论文研究内检测器在管道运行过程中与管道流场之间的相互作用。应用流体力学原理,建立不同泄流面积内检测器所在流场模型;应用动网格与用户自定义函数的手段模拟内检测器在水平直管道中启动、运行的整个过程;分析不同状态条件下内检测器周围速度、压力等多个参数对内检测速度的影响。完成在相同工况条件下内检测器在输气管道中运行的仿真计算与场地实验,并且将实验数据进行了对比。为分析输气管道内检测器速度影响因素、控制内检测器速度研究奠定理论基础。
     深入地研究了以泄流方式调整内检测器运行速度的方法。通过分析得出在急加速过程中,由于里程轮打滑,内检测器无法采集速度信号。通过分析输气管道结构特点,将输气管道模型视为由水平直管道、坡道上升、垂直上升、坡道下降、垂直下降等几种二维管线构成;依据力学分析,得出不同管道上内检测器加速度与泄流面积之间的关系,并推导出速度控制模型;在内检测器内部安装加速度计和倾角器。利用加速度计以及倾角器实时采集内检测器加速度值及内检测运行方向与大地水准面的倾角,确定加速度控制模型的参数。利用加速度值作为速度控制器的输入参数调节内检测器速度。通过分析得出速度控制模型适用于不同管道类型、不同运行状态下的内检测器速度控制结论,并完成了速度控制仿真。从仿真的结果上看,无论处于急加速还是正常运行过程中,内检测器的速度都能被有效控制在适于检测的速度范围之内。
     深入地研究了以加压站调压方式调整内检测器运行速度的方法。由于磁钢、轭铁等部件呈周向分布在内检测器的内部,使得泄流面积被大大压缩,因而利用泄流方式调整内检测器速度的能力有限。论文以运行在大口径、高压力、大流量的输气管道中的内检测器为研究对象,分析了影响其运行速度的主因,得出了输气管道压力差决定内检测器运行速度的结论。根据气体压力梯度公式推导出漏磁内检测器的压力-速度模型,由流体力学原理确定了模型的参数,并由全压、动压、静压、表压等关系完善该模型,使其具有可操作性。在实际输气管道上完成了压力速度模型有效性验证,实验结果表明该模型能够有效地计算不同压力差条件下内检测器运行速度。当内检测器的速度需要进行调整时,可以将其调整过程视为一种稳态条件下运行速度变化为另一种稳态条件下运行速度。利用压力速度模型计算出内检测器调整到目标速度所需上下游压力,从而通过改变压力达到调节内检测器运行速度的目的。计算出内检测器不同速度状态下的管道运行调节参数,并给出了管道压力调节策略。在西气东输二线上完成了速度调整实验验证,实验结果表明:加压站调压方法可有效地调整内检测器运行速度。
     输气管道内检测器的速度控制问题的研究,开拓了解决国内输气管道漏磁检测过程中速度控制的思路,为输气管道漏磁内检测设备的研制作出了有益的探索工作。
Long-distance gas pipeline is the main way to transmit Chinese natural gas. The safe operation of the pipeline is considered as the major political and economical issue for China. Regular pipeline inspection is an important path to ensure the normal operation of the pipeline. Gas pipelines are mostly buried underground or underwater, thus detection technology in the pipeline is globally recognized as the most effective detection method of gas pipeline. Among so many detection technologies the magnetic flux leakage inspection which can operate in the formidable environment with high detection accuracy is most widely used. If the detector runs too fast the testing results can not even detect pipeline drawbacks, thus pipeline detector based on the magnetic flux leakage inspection technology requires a decent speed. Controlling the detector's speed which makes it runs within a reasonable speed range plays an important role to improve accuracy. Aiming to the troubles of the detector's controlling speed which is closed to actual needs, by using theoretical analysis and experimental system analysis and by analyzing pipeline flow field of the detector during the operating state. In-depth studies of discharge mode and pressure regulating way to adjust the detector speed have been discussed in this paper.
     The interaction among the pipeline flow fields and running detector through the pipeline has been studied. Application principles of fluid mechanics, detection is in the discharge area where the flow field model has been constructed; by using dynamic grid and self-defined functions, the entire starting process of the detector in the horizontal straight pipeline is simulated; Analyzing the flow field parameters such as gas velocity, pressure etc to affect the speed of the detector with different discharge area; Under the certain operating conditions by using the simulation tools the detector's actual speed can be speculated.
     The method to adjust the detector speed has been deeply studied here. After analysis the speed of the detector will be determined when the detector is accelerated after getting blocked and in the normal state. After the analysis and experiments, the detector acquires speed signal from odometer wheel; adjust the detector speed by setting up different openings of the discharge area; Control model is constructed by experimented values during the normal operation. After getting blocked in the acceleration process, the detector speed signal can't be collected effectively as the odometer wheel skids and as a result detector's speed will lose its control. By analyzing the above mentioned problem, an accelerometer is installed in the detector to solve the problem that the odometer wheel can not collect speed signal when the odometer wheel are skidding. Analyzing the structural characteristics of the gas pipeline and ignoring the small factor associated with the detector speed, the gas pipeline model has been simplified to the horizontal straight pipe, uprising sloped line, the vertical rising line, downward sloping line, vertically dropped line and several types of two-dimensional pipelines. According to the mechanical analysis the relationship between the detector's speed and discharge area is obtained by deducing the acceleration control model. By using the accelerometer and inclinometer, the acceleration value and the traveling direction can be acquired respectively to determine the parameters of the acceleration control model. The fusion of speed control model and acceleration control model will establish a new model so that it can control the detector's speed under different operating conditions. Simulation is accomplished. From the results of simulation under certain operating conditions, the detector's speed can be controlled effectively within the speed range which is suitable for detection.
     The method to adjust the detector's speed by adjusting the pressure difference has been studied deeply. As there are many parts inside of the detector, the discharge area covers only12%of cross-sectional area of the detector, thus it has very limited ability to adjust the detector's speed. In this paper the detector's running through the gas pipeline with having large diameter, high pressure, high-speed has been studied. Here, the main cause of the detector's speed is analyzed. The detector's speed is determined by the pressure difference of the pipeline which is the result to be obtained. Based on the gas pressure gradient the pressure-speed model of the detector is derived. According to the fluid mechanics, parameters of the model are determined. To make the model operable the model is refined by using the relationship of the total pressure, dynamic pressure, static pressure, and gauge pressure. Pressure velocity model validation is tested in the actual Gas Transmission Pipeline. Experimental results show that the model can calculate the detector's speed in different pressure conditions. When the speed of the detector needs to be adjusted, the adjustment process can be regarded as the running speed of the particle running speed of a steady-state condition which will get changed to another steady state condition of the particle. The detector's speed which is adjusted to the target speed requires up and down stream pressure and the pressure value can be calculated using the pressure-velocity model. By using the pressure value, parameters of the pipeline are changed to adjust the detector's speed where the adjustment strategies are given. In Second West-East natural gas transmission project the pressure-velocity model is being verified. Experimental results show that the detector speed can adjust effectively by this model.
     The study of the detector's controlling speed in the gas pipeline opens up the thinking that gas pipeline defects can not be detected by magnetic flux leakage testing, and makes a useful exploration work for developing Magnetic Flux leakage detection in Gas pipeline.
引文
[1]Bp公司.BP能源统计.Http://www.bp.com.2011-5-26.
    [2]童晓光.大力提高天然气在能源构成中比例的意义和可能性.天然气工业,2010,(10):1-6.
    [3]宋艾玲,梁光川,王文耀.世界油气管道现状与发展趋势.油气储运,2006,25(10):1-6.
    [4]戚爱华.“十二五”我国油气管道运输发展趋势分析.综合运输,2011,(4):15-18.
    [5]张国光.管道周向励磁漏磁内检测技术的研究:(博士学位论文).沈阳:沈阳工业大学,2010.
    [6]王功礼,工莉.油气管道技术现状与发展趋势.石油规划设计,2004,15(4):1-7.
    [7]黄志潜.管道完整性及其管理.焊管,2004,27(3):1-8.
    [8]路民旭,白真权,赵新伟等.油气采集储运中的腐蚀现状及典型案例.腐蚀与防护,2002,23(3):105-113.
    [9]李文波,苏国胜.国外长输管道安全管理与技术综述.安全、健康和环境,2005,5(1):1-3.
    [10]王弢,帅健.管道完整性管理标准及其支持体系.天然气工业,2006,26(11):126-129.
    [11]梅云新.中国管道运输的发展与建设.交通运输系统工程与信息,2005,5(2):108-111,115.
    [12]李世荣,宋艾玲,张树军.我国油气管道现状与发展趋势.油气田地面工程,2006,25(6):7-8.
    [13]余洋.中国油气管道发展现状及前景展望.国际石油经济,2007,15(3):27-29,33.
    [14]余洋.2007年中国油气管道发展综述.国际石油经济,2008,16(3):45-51.
    [15]高福庆.管道内检测技术应用及发展.石油规划设计,2000,11(001):40-41.
    [16]张国宝. 中国70%的原油和99%的天然气靠管道运输http://energy.people.com.cn/GB/12809828.html.2010-9-25.
    [17]中国网. 中华人民共和国石油天然气管道保护法(全文).http://www.china.com.cn/policy/txt/2010-06/26/content_20354146.htm.2012-4-17.
    [18]杜艳,谢英,王子豪等.天然气管道事故分析.管道技术与设备,2009,(2):16-18,37.
    [19]王玉梅,郭书平.国外天然气管道事故分析.油气储运,2000,(7):5.
    [20]郭新庆.关于石油天然气管道安全问题[R].北京:国家安全生产监督管理总局.2006.
    [21]杨筱蘅,严大凡.逐步实施我国油气管道的完整性管理.天然气工业,2004,24(11):120-123.
    [22]中国石油天然气总公司.SY6186-1996石油天然气管道安全规程.北京:石油工业出版社,2004.
    [23]潘家华.普及和发展我国管道内检测技术.油气储运,1996,15(3):1-4.
    [24]杨诺.泄流状态下输气管道内检测器的流场计算研究:(硕士学位论文).沈阳:沈阳工业大学,2009.
    [25]Atherton D. L. Pipeline Inspection Tool Speed Alters MFL Signals. Oil and Gas Journal,1990, 5(1):84-86.
    [26]F Wein Garten Js Chapman. An analysis of the motion of PIGs through gas pipelines. Journal of Fluids Engineering,1984,106(12):374-379.
    [27]Mathews L. Kennard M. Velocity Control of Pigs in Gas Pipelines.Pipeline Pigging and Integrity Monitoring Conference.Amsterdam.1997.35-47.
    [28]戴波,赵晶,周炎.超声波管道内检测腐蚀缺陷分类识别研究.机床与液压,2008,36(7): 194-198,240.
    [29]钟家维,沈建新,贺志刚等.管道内腐蚀检测新技术和新方法.化工设备与防腐蚀,2003,6(4):31-35.
    [30]周明.在役管道壁厚超声检测爬机技术.无损检测,1999,21(6):249-259.
    [31]关洪光,李正利.管道纵向缺陷的超声检测.山东电力技术,2000,(1):4-5.
    [32]李东升,王昌明,施祖康等.管道壁缺陷超声波在役检测的量化分析研究.仪器仪表学报,2002,23(2):131-134.
    [33]刘海峰,胡剑,杨俊.国内油气长输管道检测技术的现状与发展趋势.天然气工业,2004,24(11):]47-150.
    [34]魏茂安.油气管道MFL检测信号处理与管道缺陷评估技术研究:(博士学位论文).天津:天津大学,2004.
    [35]王玉忠,陈建兰.漏磁检测技术在我国管道中的应用.化学清洗,1998,14(5):24-27.
    [36]余浩然,吴斌.漏磁通法油气管道在役检测技术.实用测试技术,1997,(5):1-9.
    [37]林俊明.漏磁检测技术及发展现状研究.无损探伤,2006,30(1):1-5,11.
    [38]陈文明,何辅云,陈琨等.石油管道检测中缺陷类型判别方法的研究.合肥工业大学学报:自然科学版,2008,31(12):1929-1932.
    [39]唐莺,潘孟春,罗飞路等.基于三维场测量的脉冲漏磁检测技术.仪器仪表学报,2011,32(10):2297-2302.
    [40]蒋奇.管道缺陷漏磁检测量化技术及其应用研究:(博士学位论文).天津:天津大学,2003.
    [41]杨理践,刘刚,高松巍等.检测装置运行速度对管道漏磁检测的影响.化工自动化及仪表,37(5):57-59.
    [42]A Braga. Transient pig motion through gas and liquid pipelines. Energy Resources Technology, 2001,12(123):1513-1519.
    [43]Nguyen T. T., Yoo H. R., W. Rho Y., et al. Modeling and Simulation for PIG with Bypass Flow Control in Natural Gas Pipeline. KSME International Journal,2001,15(9):1302-1310.
    [44]Kim D. K., Nguyen T. T., Yoo H. R., et al. Analysis of PIG Dynamics through Curved Section in Natural Gas Pipeline. Journal of the Korean Insttute of Gas,2002,3(6):1-9.
    [45]Kim Dk., Nguyen T. T., Cho S. H., et al. Verification of the Theoretical Model for Analyzing Dynamic Behavior of the PIG from Actual Pigging. KSME International Journal,2003,9(17): 1349-1357.
    [46]F. Rahe. Optimizing The Active Speed Control Unit For InLine Inspection Tools In Gas.6th International Pipeline Conference. Calgary,Alberta,Canada.2006.
    [47]O'Donoghue, Aidan. Pig Behavior in Gas Pipelines Understanding Pig Motion and Velocity Excursions:http://www.pipeline-research.com.2011-3-11.
    [48]F. Esmaeilzadeh, Mowla D., Asemani M. S. U.Modeling of Pig Operations in Natural Gas and Liquid Pipeline.2006 SPE Annual Technical Conference and Exhibition.San Antonio,Texas.2006.24-27.
    [49]Azevedo L. F. A., Gomes M. G. F. M., Braga A. M. B., et al. Simple Hydrodynamic Models For The Prediction Of Pig Motion In Pipelines. Offshore Technology Conference. Houston,Texas. 1996.
    [50]Azevedo L. F. A., Braga A. M. B., M. Gomes M. G. F. Experimental Validation of Analytical Models for By-pass Flow and Contact Forces in Pig Cups. The Pipeline Pigging Conference. Houston, Texas.1997.
    [51]Kruyer J., Redberger P. J., S. Ellis H. The Pipeline Flowof Capsules. J. Fluid Mech.,1967,30(3): 513-517.
    [52]Campo E. V., Rachid F. B. Modeling of Pig Motion Under Transient Fluid Flow. XIV COBEM. SP, Brazil.1997.
    [53]R Lima P. C., A Petrobras S., H Yeung. Modeling of transient two-phase flow operations and off-shore pigging. SPE 49208.1998.
    [54]R Lima P. C., A Petrobras S., H Yeung. Modeling of pigging operations. SPE 56586.1999.
    [55]Tolmasquim S. T., Nieckele A. O. Design and control of pig operations through pipelines. Journal of Petroleum Science and Engineering,2008,62(3-4):102-110.
    [56]Caleyo F., J M. Hallen, J L. Gonzalez. Pipeline inspection-reliability-based method assesses corroding pipelines. Oil&Gas Journal,2003,101(1):54-58.
    [57]K One J., D Kerr, K Bouazza-Marouf. Design of a semi-autonomous modular robotic vehicle for gas pipeline inspection. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering,2003,217(12):109-122.
    [58]Anon. Pipeline inspection failure blamed for oil spill. Pipeline&Gas Journal,2002,229(9):2-5.
    [59]M Podgorbunskikh A., E Loskutov V. Improving the quality of diagnostics of gas-main pipelines by using a device for automated control of the velocity of pig flaw detectors. Russian Journal of Nondestructive Testing,2008,44(5):43-53.
    [60]Podgorbunskikh A. Devices for automated regulation of the velocity of in-tube pig flaw detectors (Review). Russian Journal of Nondestructive Testing,2008,44(5):343-350.
    [61]Van Leer B. Towards the ultimate conservative difference scheme V:A second order equal to Godunov's method. J Comp Phys,1979,32:101-136.
    [62]蔡武昌.新型流量检测仪表.北京:化学工业出版社,2005.
    [63]A Jameson, W Schmidt, E Turkel. Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes. AIAA Paper.1981.
    [64]黄松岭,赵伟.天然气管道缺陷检测器泻流装置.清华大学学报:自然科学版,2008,48(1):13-15.
    [65]吕平,吴明,栗佳等.清管器在输汕管道中的运动规律研究.管道技术与设备,2006,(5):42-44.
    [66]张立军,蔡耀光,刘保余等.输气管道内检测器模型试验系统的设计.管道技术与设备,2010,(2):28-30.
    [67]綦耀升,李娜,张立军等.水平输气管道中内检测器运移速度分析.石油机械,2011,39(5):5-8.
    [68]孟浩龙,李著信,王菊芬等.管道内差压驱动机器人相关流场数值模拟研究.应用力学学报,2007,24(1):102-106.
    [69]孟浩龙,李著信,王菊芬等.管内检测机器人在水平直管内运动的数值研究.中国石汕大学学报(自然科学版),2007,31(3):103-108.
    [70]孟浩龙,李著信,王菊芬等.管内检测机器人周围流场的三维数值计算.石汕学报,2006,27(6):128-132.
    [71]耿岱,张仕民,刘恒等.天然气管道速度可控清管器的设计.油气储运,2010,29(9):698-700.
    [72]李汉勇,宫敬,于达.水试压后输气管道的清管过程瞬态分析及程序设计.北京石油化工学院学报,2005,13(3):50-55.
    [73]白港生,黄凯,季峰等.漏磁腐蚀检测器在输气管道中的运行速度分析.管道技术与设备,2003,(5):13-14.
    [74]张春野.沈阳工业大学输气管道内检测设备技术填补国内空白.科技日报.2011-12-5:5.
    [75]Versteeg H. K., Malalasekera W. An Introduction to Computational Fluid Dynamics:The Finite Volume Method. Wiley. New York,USA.1995.
    [76]李长俊.天然气管道输送.北京:石油工业出版社,2000.44-45.
    [77]Schlichting H. Boundary Layer Theory.8th.McGrawHill. New York,USA.1979.
    [78]陶文栓.数值传热学(第二版).西安:西安交通大学出版社,2001.
    [79]殷惠君.膜结构风荷载的数值模拟研究:(博士学位论文).上海:同济大学,2006.
    [80]戴干策,陈敏恒.化工流体力学(第二版).北京:化学工业出版社,2005.17-23.
    [81]Piller Marzio, Nobile Enrico, Thomas J. DNS study of turbulent transport at low Prandtl numbers in a channel flow. Journal of Fluid Mechanics,2002,458:419-441.
    [82]Wissink J. G. DNS of separating low Reynolds Number flow in a turbine cascade with incoming wakes. International Journal of Heat and Fluid Flow,2003,24(4):626-635.
    [83]Giancarlo Alfonsi, G. Alfonsi. Reynolds-averaged Navier-Stokes equations for turbulence modeling. Applied Mechanics Reviews,2009,7:1-20.
    [84]Baker D. W., Sayre C. L. Decay of swirling turbulent flow of incompressible fluids in long Pipes. Proc.Symp.On Flow,1974,1:301-312.
    [85]A Steven, Chen Orszag Hudong, Succi Sauro. Turbulence Effects on Kinetic Equations. Journal of Scientific Computing,2006,28(9):459-465.
    [86]Rahman M. M., Siikonen T., Agarwal R. K. Improved Low-Reynolds-Number One-Equation Turbulence Model. American Institute of Aeronautics and Astronautics,2011,4(49):735-747.
    [87]Deck Sebastien, Duveau Philippe, Espiney Paulod, et al. Aerospace Science and Technology, 2002:171-183.
    [88]郭同庆.多段翼型粘性绕流N-S方程计算:(博士学位论文).南京:南京航空航天大学,2002.
    [89]章本照.流体力学中的有限元法.北京:机械工业出版社,1986.
    [90]Zhang Kenn K. Q., Shotorban B., Minkowycz W. J., et al. A compact finite difference method on staggered grid for Navier-Stokes flows. International Journal for Numerical Methods in Fluids, 2006,9(52):867-881.
    [91]Fukuchi T. Numerical calculation of fully-developed laminar flows in arbitrary cross-sections using finite difference method. American Institute of Physics Advances,2011,12(1):109-134.
    [92]Seok-Ki Choi, Ching-Long Lin. A simple finite-volume formulation of the lattice Boltzmann method for laminar and turbulent flows. Numerical Heat Transfer,2010,10(58):242-261.
    [93]S Shterev K., Stefanov S. K. Pressure based finite volume method for calculation of compressible viscous gas flows. Journal of Computational Physics,2010,1(29):461-480.
    [94]Margherita Cadorin, Mirko Morini, Pinelli Michele. Numerical analyses of high Reynolds number flow of high pressure fuel gas through rough pipes. International Journal of Hydrogen Energy, 2010,7(35):7568-7579.
    [95]V Breslavsky P., Mazhukin V. I. Simulation of interacting discontinious solutions on dynamically adaptive grids. Computational Methods in Applied Mathematics,2007,2(7):103-111.
    [96]Theuns E., Vierendeels J., Vandevelde P. A moving grid model for the pyrolysis of charring materials. International Journal of Numerical Methods for Heat and Fluid Flow,2002,12(5): 541-559.
    [97]FLUENT动网格教程.http://wenku.baidu.com/view/cb62b6d5b14e852458fb57b4.html. 2011-6-25.
    [98]Gaikwad Surendra, Arora Kunal, Korivi Vamshi, et al. Steady and transient cfd approach for port optimization. SAE International Journal of Materials and Manufacturing,2009,1(1):754-762.
    [99]Binder John D. Faster flow of progress for CFD. Aerospace America,2003,41(10):20-22.
    [100]王福军.计算流体动力学分析:CFD软件原理与应用.北京:清华大学出版社,2004.
    [101]施保华,杨三青,周凤星.计算机控制技术.武汉:华中科技大学出版社,2007.154-189.
    [102]戴干策,陈敏恒.化工流体力学(第二版).北京:化学工业出版社,2005.29.
    [103]Ikoku. Natural Gas Production Enginering.北京:石汕工业出版社,1990.184-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700