用户名: 密码: 验证码:
染料聚醚衍生物在母体分散染料颗粒界面吸附行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分散剂在分散、还原染料商品化加工和应用过程中起着至关重要的作用。因此为获得稳定的染料分散体系以及提高高温染色时染料对纤维的吸附和扩散速率,合理设计和优化选择分散剂一直是染料工作者研究的重点。分散剂是通过吸附在颗粒表面产生静电排斥或空间位阻等作用使体系呈稳定的分散状态,其在染料颗粒界面的吸附主要与分散剂/染料颗粒表面的相互作用、分散剂的疏水性以及吸附层厚度有关。据此课题组在前期研究中设计并制备了一类连接基团为脲基的染料聚醚衍生物,本论文详细探讨了这类分散剂在水溶液中的性质、对母体分散染料的分散效率和在染料颗粒界面的吸附行为,以了解其分散作用机理;结合标度理论和分散稳定性理论构建了染料聚醚衍生物分子结构—分散稳定性—吸附行为之间的关系,并借助于多种计算机模拟方法从微观和介观两个方面对染料聚醚衍生物及聚醚在染料界面的吸附行为进行了模拟,以期为超分散剂分子结构的设计和优化等提供理论指导。本论文的研究内容和得到的结论主要如下:
     基于超分散剂的结构特点,设计并制备了一种连接基团为三嗪环的染料聚醚衍生物,利用红外光谱、核磁共振氢谱和元素分析等方法对其结构进行了表征,并研究了它对母体分散染料的分散效率以及由其制备的染料分散体系的应用性能。结果表明,在用量很少的情况下,这种染料聚醚衍生物具有优异的分敞效率,制得的染料分散体系具有很好的稳定性;将自制的分散体系对聚酯纤维进行实验染色,并和商品染料进行了对比,结果表明自制分散体系的上染速率高于商品染料,在无需还原清洗步骤情况下染色织物的匀染性和染色牢度即能达到商品染料的水平,而其染色残液的CODCr值较低,基本无色。
     利用表面张力、稳态荧光和动态光散射等测定方法研究了聚醚、连接基为脲基的染料聚醚衍生物的表面活性及在水溶液中的聚集行为。结果表明聚醚的表面张力—浓度曲线变化趋势类似于高PEO含量聚合物,即具有2个转折点:第1个转折点是由于分子结构转变而导致其在气/液界面排列比较致密,第2个转折点为聚醚的临界胶束浓度;而染料聚醚衍生物的表面张力—浓度曲线类似于一般的表面活性剂,其cmc值小于相应的聚醚,相同浓度下其表面活性优于相应的聚醚。聚醚由于分子结构中疏水PPO链段较短,疏水性不强,在水溶液不能形成稳定的聚集体;而疏水性分散染料分子的引入改善了其在水溶液中的聚集趋势,在浓度0.5g/L以上可形成稳定的、流体力学直径在50-150nm的聚集体,根据其分子结构推测其形成的聚集体结构比较疏松,内部被水分子高度溶胀。
     对聚醚和染料聚醚衍生物在母体分散染料界面的吸附行为进行了研究,并借助于标度理论对上述聚合物在染料界面的吸附层结构进行了分析,结果表明聚合物在染料颗粒界面的吸附等温线均为Langmuir型;二者在染料界面的饱和吸附量与聚合物的分子量和疏水性有很大关系,分子量的增大或疏水性的增加都会使聚合物在染料界面的饱和吸附量增加;染料聚醚衍生物的饱和吸附量是相应聚醚的2倍以上,且其对染料表面的吸附自由能高于相应聚醚,这说明分散染料分子的引入使聚合物分子结构中含有π电子,因而染料聚醚衍生物可与染料表面形成较强的π-π堆积作用;基于相关文献,推断出二者主要是以单分子刷状构型吸附在染料颗粒表面;由吸附模型得到的吸附层厚度与Zeta电位计算的结果相差不大,染料分子的引入使聚合物在染料表面的吸附层厚度增加了约2nm。
     基于相关文献计算了染料聚醚衍生物和聚醚在染料颗粒界面饱和吸附时颗粒间的总势能,结果表明在饱和吸附情况下,所有的聚合物都可提供较强的空间位阻;势能曲线存在一浅引力井,此时分散体系不稳定,易形成颗粒聚集体,当吸附层厚度从5.1nm增加到16.7nm时,引力井从-2.4kT变为-0.3kT,这说明相同颗粒大小下,聚合物吸附层厚度越大,引力井绝对值越小,体系更稳定;染料聚醚衍生物总势能的数值明显大于相应的聚醚,说明含染料聚醚衍生物的分散体系更为稳定;影响势能的因素主要包括吸附层厚度、链段密度和分子量等,这与实验结果相一致;与理论相悖的是分散稳定性也与吸附能有重要关系,可能原因是由于聚合物分子中PEO含量较高,聚合物与水之间的相互作用较大可使聚合物从染料表面解析下来,从而造成颗粒絮凝或沉淀。因此要想获得较好的分散稳定性,聚合物的锚固基团疏水性必须很强才能提供较大的吸附能,而且在设计和优化分散剂时也必须考虑平衡和动态等因素。
     利用分子动力学和Monte Carlo模拟退火法分别计算了聚醚及染料聚醚衍生物与染料表面的相互作用能、吸附能,并模拟了水溶液中聚醚和染料聚醚衍生物在染料表面(002)的吸附行为,探讨了两种体系在动力学平衡过程中聚合物在染料表面吸附构象以及能量的变化情况。结果表明染料聚醚衍生物与染料表面的相互作用能和吸附能数值均大于相应的聚醚,二者在染料表面的吸附构象有很大区别:聚醚分子近似不吸附在染料表面,而仍存在于溶液中,说明由于聚醚分子中PEO链段较长,因而使PEO链段与水分子的相互作用大于PPO链段与染料表面的相互作用,最终使聚醚分子不能吸附在染料表面;而对于染料聚醚衍生物,可明显看出其染料分子部分和PPO链段吸附在染料表面上,而PEO链段伸展到溶液中,从而达到稳定染料颗粒的目的。
     利用粗粒化的MesoDyn方法模拟研究了聚醚和染料聚醚衍生物在水溶液中相行为,并详细研究了聚合物分子结构和浓度对聚合物形成的胶束结构的影响和胶束形成过程。结果表明染料聚醚衍生物可在水溶液中形成球状胶束、蠕虫状胶束、胶束簇以及双连续结构;形成的球状胶束和蠕虫状胶束结构都是以珠子Dye和PO为核,EO为壳;在一定浓度下,染料聚醚衍生物体系可形成胶束簇,此时珠子Dye和PO仍形成胶束的内核,而EO以近似连续相的形式、不规则多边形包裹着多个胶束内核,这与由实验得出的推论一致;其胶束形成过程可分为诱导阶段、开始形成阶段、演化阶段和平衡稳定四个阶段;提高初始聚合物的浓度可缩短形成胶束的诱导时间,并提高平衡后的有序参数,而且在胶束的平衡阶段可发生胶束碰撞融合现象。
     利用耗散粒子动力学方法对聚醚和染料聚醚衍生物在染料界面的吸附行为进行了模拟,结果表明,聚醚分子结构中由于疏水PPO链段较短,疏水性较弱,因而其在染料表面(Wall)的吸附量较低,大部分仍以单分子链的形式分布在水溶液中;而将疏水性染料分子引入聚醚分子改善了其分子的疏水性,其在染料表面(Wall)的吸附量较大;从吸附构象来看,大部分染料聚醚衍生物分子是以单分子刷状的形式吸附在染料表面(Wall),这与实验得到的结论和推论吻合。
Dispersants play a crucial role in the dye commercialization and application of disperse and vat dye. To make stable dye dispersions and improve dye adsorption and diffusion into fiber during the dyeing process at high temperatures, a great deal of effort has been spent on developing methodologies for specifying and reasoning about the selection or design of dispersants. The adsorption of dispersant on dye surface is mainly determined by three factors:the interaction of the dispersant with the dye surface, the hydrophobicity of the dispersant and the adsorbed thickness layer. Based on the above considerations, a series of dye-polyether derivatives was synthesized and applied to disperse its hydrophobic parent dye in our previous work. In order to understand the dispersion mechanism of dye-polyether derivatives, its characterization in aqueous solutions, the dispersing efficiency to its parent dye and the adsorption behavior on dye surface were studied in this paper. By means of the scaling theory and dispersion stability theory, the relationship among molecular structure of dye-polyether derivatives, dispersion stability and adsorption behavior is constructed. Also the adsorption behavior of dye-polyether derivatives and polyethers on dye surface was simulated by utilizing a variety of computer simulation techniques from microscopic and mesoscopic aspects. And these results can provide some guidance on the design and optimization of hydro-dispersant. The main contents and conclusions are summarized as follows:
     Based on structural characteristics of hyper-dispersant, another dye-polyether derivative, in which the dye molecule (C.I. Disperse Red60) is bonded onto polyether via a triazine ring, was synthesized and characterized by FTIR,1H NMR and elemental analysis. This dispersant exhibits unique dispersing performance for C.I. Disperse Red60. The dyeing performance of the prepared dye dispersions on polyester fabrics also was comparing with that of commercial dye. The dyed fabrics showed very good to excellent fastness to washing and rubbing while the dyeing effluent was colorless. Also the reduction clearing is not necessary in the dyeing process of the prepared dye dispersions, and this can save large amounts of energy, water and chemicals. It is indicated that this dispersant has excellent solubilization effect to C.I. Disperse Red60and can increase the apparent solubility of disperse dye effectively during the dyeing process at high temperatures.
     The characterization of dye-polyether derivatives and polyethers in aqueous solutions was studied by the measurement of surface tension, steady-state fluorescence, and dynamic light scattering. For polyethers, the plots of surface tension exhibit two breaks as a characteristic for polymers with high percent of PEO:the first break at low concentration originates from a structural transformation in the polymer molecule resulting in a more compact polymer layer at the surface while the second one corresponds to the critical micelle concentration (cmc) and signifies the formation of polymolecular micelles. However, these polymers are all unlike common surfactants and do not exhibit a clear cmc, which is consistent with the possibility that the aggregation structures are more complicated than conventional micelles. In comparison, the surface tension curves of dye-polyether derivatives are more like those of ordinary surfactants. The cmc values of dye-polyether derivatives are less than that of their polyethers counterparts. Polyethers fail to form stable aggregates in the aqueous solutions even at concentration above2g/L due to the lacking hydrophobicity of PPO. The introduction of aromatic dye molecule into the highly hydrophilic polyethers promotes their aggregation in solution. And when the concentration of dye-polyether derivatives is greater than0.5g/L, they can form stable, larger aggregates with a hydrodynamic diameter in the range of50-150nm in aqueous solutions, and the speculated micelle structure is loose packing and highly swollen by large amount of water penetrating inside its core.
     The adsorption behavior of polyethers and dye-polyether derivatives on dye surface was studied by experimental measurements. The results showed that adsorption isotherms of these polymers on the dye surface are the Langmuir type. The saturation adsorbed amounts of polymers occur after the critical micelle concentration (cmc) has been reached and are increased with molecular weight and hydrophobicity. For dye-polyether derivatives, the saturation adsorbed amounts are about2times of those of their polyethers counterparts. It is indicated that the introduction of parent dye molecule into the polyethers structure increases their molecular hydrophobicity due to the existence of π electrons present in the structure, and results an additional adsorption driving forces, the strong π-π stacking between the polymer and the dye surface. It is speculated that these polymers are adsorbed on the dye surface in a brush-like monolayer conformation. The calculated values of average distance between two neighboring chains are less than the values of Flory radius indicates the brush conformation is formed. Good correspondence of values of adlayer thickness is observed between prediction by the adsorption model and calculation from the Zeta potential experiments. And the introduction of dye molecule into the polyethers increases the adlayer thickness by about2nm.
     The total potential energy between two dye particles under saturated adsorption was calculated according to the related literatures. The results showed that all the polymers lead to strong steric barriers against agglomeration under saturation coverage, because of the overlap of molecules adsorbed at the two approaching particle surfaces. However, a shallow attractive well is observed in all the potential energy curves, which might lead to the formation of relatively weak particle agglomerates. As it shows, the total interaction energy is a strong function of the adsorbed layer thickness. When the adlayer thickness increases from5.1to16.7nm, and the magnitude of the attractive well decreases from approximately2.4to0.3kT. This relatively weak attractive potential was observed to have some impact on the dispersion stability of dye dispersions. For the dispersions with dye-polyether derivatives, the magnitude of the total potential energy is much higher than that of their polyethers counterparts obviously. The good coincidence between theory prediction and experiment data suggests that dye-polyether derivatives improve the dispersion stability by increasing adlayer thickness and chain density. For the effect of polyethers chains, however, the potential energy curves appear to be greatly influence by adlayer thickness or molecular weight. In disagreement with theoretical expectations, the dispersion stability is significantly related to the adsorption energy as well. Because of the high percent of PEO, the strong polymer-water interaction is so powerful that it is greater than the anchoring energy, thus, as the particles approach each other, the polymers are desorbed and squeezed out of the space between them, allowing particles to flocculate or coagulate. Good dispersion stability requires a large hydrophobic anchor to provide high adsorption energy. It also can be informed that both equilibrium and dynamic considerations should be taken into account for designing or selecting of dispersants. The above results indicated that the dispersion stability could be enhanced by increasing the adlayer thickness or adsorption energy.
     The interaction energy and adsorption energy between polymers and dye surface, the adsorption behavior of L207and RL207on dye surface (002) were simulated using molecular dynamics and Metropolis Monte Carlo method. The conformation of polymers on dye surface and the change in the energy of the systems were also explored. The results showed that the magnitude of interaction energy and adsorption energy of dye-polyether derivatives are larger than those of their polyethers counterparts, and the adsorption conformation of two polymers is different. L207is almost not adsorbed on dye surface and exit in aqueous solution. Because the longer PEO chains of L207, the strong polymer-water interaction is so powerful that it is greater than the interaction between PPO chains and dye surface and make it not adsorb onto the dye surface. For RL207, the dye molecule segment and PPO chains can adsorb onto the dye surface because of strong π-π stacking between dye molecule segment of RL207and dye surface, while the PEO chains interact favorably with the aqueous medium and stretch into the solution, so as to achieve the purpose of stabilizing the dye particles.
     The aggregation behavior of dye-polyether derivatives and polyethers in aqueous solution was investigated by MesoDyn simulation, and the influences of molecular structure and concentration of dye-polyether derivatives on their microphase behavior were discussed. In the aqueous solution, dye-polyether derivatives can form different morphologies at different volume fractions and three aggregation types were observed:spherical micelle, worm-like micelle and micellar cluster. The structure of the spherical micelle and worm-like micelle consists of a core of the Dye and PO beads surrounded by a solvent-swollen corona of the EO beads, while a very few water molecules remaining in its core. Due to the coalescence among micelles, bigger and irregular shape micellar clusters are formed at the certain concentration. In this situation, the Dye and PO beads still form the micellar core, while the EO beads wrap multiple micellar cores in the form of continuous phase. The formation of micelle can be divided into four stages:the induction stage, pre-formation stage, evolution stage and the final equilibrium stage. The increase of the initial concentration of dye-polyether derivatives can shorten the induction time and increase the order parameter after equilibrium stage.
     The adsorption behavior of dye-polyether derivatives and polyethers on dye surface was simulated by dissipative particle dynamics method. The results showed that the adsorbed amounts of polyethers on dye surface are low and most polymers are still exit as single chain in aqueous solution. This is because the PPO chains are short and not sufficiently hydrophobic. However, the introduction of parent dye molecule into the polyethers structure increases their molecular hydrophobicity, and the adsorption behavior of dye-polyether derivatives on dye surface (Wall) shows big difference compared to their polyethers counterparts. The adsorption of dye-polyether derivatives on dye surface (Wall) is in a brush-like monolayer conformation. The above simulated results are consistent with the experimental conclusions.
引文
[1]Brandani P, Stroeve P. Adsorption and desorption of PEO-PPO-PEO triblock copolymers on a self-assembled hydrophobic surface. Macromolecules,2003,36(25):9492-9501.
    [2]Lazzari M, Lopez-Quintela M A. Block copolymers as a tool for nanomaterial fabrication. Adv. Mater.,2003,15(19):1583-1594.
    [3]Hamley I. Block Copolymers in Solution:Fundamentals and Applications.2005, John Wiley & Sons, Ltd., West Sussex,241-283.
    [4]赵国玺,朱(?)瑶.表面活性剂作用原理.2003,中国轻工业出版社,北京,1-26.
    [5]Holmberg K, Jonsson B, Kronberg B, Lindman B. Surfactants and Polymers in Aqueous Solution.2003,2nd edition. John Wiley & Sons, Ltd., West Sussex,1-38.
    [6]Mata J, Joshi T, Varade D, Ghosh G, Bahadur P. Aggregation behavior of a PEO-PPO-PEO block copolymer+ionic surfactants mixed systems in water and aqueous salt solutions. Colloids Surf. A:Physicochem. Eng. Aspects,2004,247(1-3):1-7.
    [7]Zhang Z, Xu G Y, Wang F, Dong S L, Li Y M. Characterization and demulsification of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. J. Colloid Interface Set,2004,277(2):464-470.
    [8]Dong J, Chowdhry B Z, Leharne S A. Altering the spreading coefficient of coal tar systems using ethylene oxide-propylene oxide block copolymers. Colloids Surf. A:Physicochem. Eng. Aspects,2005,266(1-3):191-199.
    [9]Alexandridis P, Athanassiou V, Fukuda S, Hatton T A. Surface activity of poly(ethylene oxide)-6lock-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. Langmuir,1994, 10(8):2604-2612.
    [10]Halperin A. Rod-coil copolymers:their aggregation behavior. Macromolecules,1990,23(10): 2724-2731.
    [11]Williams D R M, Fredrickson G H. Cylindrical micelles in rigid-flexible diblock copolymers. Macromolecules,1992,25(13):3561-3568.
    [12]Zhang L, Eisenberg A. Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J. Am. Chem. Soc.,1996,118(13):3168-3181.
    [13]Quemener D, Deratani A, Lecommandoux S. Dynamic assembly of block-copolymers. Top. Curr. Chem.,2012,322:165-192.
    [14]Merrett F M. The interaction of polymerizing systems with rubber and its homologues. Part 2.—Interaction of rubber in the polymerization of methyl methacrylate and of styrene. Trans. Faraday Soc.,1954,50:759-767.
    [15]Zhang L, Eisenberg A. Multiple morphologies of "crew-cut" aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science,1995,268(5218):1728-1731.
    [16]Lazzari M, Lopez-Quintela M A. Block copolymers as a tool for nanomaterial fabrication. Adv. Mater.,2003,15(19):1583-1594.
    [17]Hamley I W. Nanotechnology with soft materials. Angew. Chem. Int. Ed.,2003,42(15): 1692-1712.
    [18]Bhargava P, Zheng J X, Li P, Quirk R P, Harris F W, Cheng S Z D. Self-assembled polystyrene-block-poly(ethylene oxide) micelle morphologies in solution. Macromolecules,2006, 39(14):4880-4888.
    [19]Liu X, Kim J, Wu J, Eisenberg A. Bowl-shaped aggregates from the self-assembly of an amphiphilic random copolymer of poly(styrene-co-methacrylic acid). Macromolecules,2005, 38(16):6749-6751.
    [20]Alexandridis P, Lindman B. Amphiphilic Block Copolymers:Self-Assembly and Applications. 2000, Elsevier Science B.V., Amsterdam,1-190,347-376.
    [21]Halperin A, Tirrell M, Lodge T P. Tethered chains in polymer microstructures. Adv. Polym, Sci.,1992,100(1):31-71.
    [22]Riess G. Micellization of block copolymers. Prog. Polym. Sci.,2003,28(7):1107-1170.
    [23]Israelachvili J N, Mitchell D J, Ninham B W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans.2,1976,72:1525-1568.
    [24]Kunz W, Testard F, Zemb T. Correspondence between curvature, packing parameter, and hydrophilic-lipophilic deviation scales around the phase-inversion temperature. Langmuir,2009, 25(1):112-115.
    [25]Blanazs A, Armes S P, Ryan A J. Self-assembled block copolymer aggregates:from micelles to vesicles and their biological applications. Macromol. Rapid Commun.,2009,30(4-5):267-277.
    [26]王万卷.新型嵌段共聚物的合成及自组装.中山大学博士学位论文,2010,2-14.
    [27]Zhulina E B, Borisov O V. Theory of block polymer micelles:recent advances and current challenges. Macromolecules,2012,45(11):4429-4440.
    [28]Allen C J. Polycaprolactone-b-poly(ethylene oxide) copolymer micelles:physico-chemical characterization and application in drag delivery.1999, Doctoral Dissertation of McGill University, 1-31.
    [29]江明,A.艾森伯格,刘国军,张希等.大分子自组装.2006,科学出版社,北京,1-22.
    [30]Daoud M, Cotton J P. Star shaped polymers:a model for the conformation and its concentration dependence.J. Phys. France,1982,43(3):531-538.
    [31]Guerrero-Sanchez C, Wouters D, Fustin C, Gohy J, Lohmeijer B G G, Schubert U S. Structure-property study of diblock copolymer micelles:core and corona radius with varying composition and degree of polymerization. Macromolecules,2005,38(24):10185-10191.
    [32]Halperin A, Alexander S. Polymeric micelles:their relaxation kinetics. Macromolecules, 1989,22(5):2403-2412.
    [33]Halperin A. Polymeric micelles:a star model. Macromolecules,1987,20(11):2943-2949.
    [34]Halperin A. Microphase separation in binary polymeric micelles. J. Phys. France,1988, 49(1):131-137.
    [35]Hamley I W. The Physics of Block Copolymers.1998, Oxford University Press, Oxford, 131-277.
    [36]Noolandi J, Hong K M. Theory of block copolymer micelles in solution. Macromolecules, 1983,16(9):1443-1448.
    [37]Leibler L, Orland H, Wheeler J C. Theory of critical micelle concentration of solutions of block copolymers. J. Chem. Phys.,1983,79(7):3550-3557.
    [38]Nagarajan R, Ganesh K. Block copolymer self-assembly in selective solvents:theory of solubilization in spherical micelles. Macromolecules,1989,22(11):4312-4325.
    [39]郑忠.胶体分散体系的空缺稳定理论.大学化学,1988,8(4):10-13.
    [40]Lozsan A, Garcia-Sucre M, Urbina-Villalba G. Steric interaction between spherical colloidal particles. Phys. Rev. E,2005,72(6):1-6.
    [41]Dobias B, Qiu X, von Rybinski W. Solid-liquid Dispersions.1999, Marcel Dekker, Inc., New York,244-275.
    [42]Verwey E J W, Overbeek J T G. Theory of the Stability of Lyophobic Colloids:the Interaction of Sol Particles Having an Electric Double Layer.1948, Elsevier Publishing Company, Inc., New York,135-182.
    [43]Butt H, Graf K, Kappl M. Physics and Chemistry of Interfaces.2003, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim,80-116.
    [44]Shaw D J. Introduction to Surface and Colloid Chemistry.1992,4th edition. Butterworth-Heinemann, Oxford,174-209.
    [45]Lewis J A. Colloidal processing of ceramics. J. Am. Ceram. Soc.,2000,83(10):2341-2359.
    [46]郑忠.胶体科学导论.1989,高等教育出版社,北京.305-385.
    [47]Myers D. Surfaces, Interfaces, and Colloids:Principles and Applications.1999, second edition. John Wiley & Sons, Inc., New York,40-96.
    [48]Tadros T F. Colloid Stability:the Role of Surface Forces, Part Ⅰ.2007, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim,1-22.
    [49]Sato T, Ruch R. Stabilization of Colloidal Dispersions by Polymer Adsorption.1980, Marcel Dekker, Inc., New York,37-119.
    [50]Gurumoorthy A V P, Khan K H. Polymers at interfaces:biological and non-biological applications. Rec. Res. Sci. Tech.,2011,3(2):80-86
    [51]Somasundaran P, Markovic B, Yu X, Krishnakumar S. Colloid Systems and Interfaces— Stability of Dispersions through Polymer and Surfactant Adsorption. In:Birdi K. S (ed.), Handbook of Surface and Colloid Chemistry.2003,2nd edition. CRC Press LLC, Boca Raton, 387-435.
    [52]Mackor E L. A theoretical approach of the colloid-chemical stability of dispersions in hydrocarbons. J. Colloid Sci.,1951,6(5):492-495.
    [53]Sato T. Adsorption of polyamides and the stability of dispersion. J. Appl. Polym. Sci.,1971, 15(5):1053-1067.
    [54]Jackel K. Uber die Funktionen des Schutzkolloids. Kolloid-Z. Z. Polym.,1964,197(1-2): 143-151.
    [55]Fischer E W. Elektronenmikroskopische Untersuchungen zur Stabilitat von Suspensionen in makromolekularen Losungen. Kolloid-Z.,1958,160(2):120-141.
    [56]Sato T. Stability of dispersion. J. Coat. Technol.,1993,65:113-121.
    [57]Ottewill R H, Walker T. The influence of non-ionic surface active agents on the stability of polystyrene latex dispersions. Kolloid-Z. Z. Polym.,1968,227(1-2):108-116.
    [58]Bagchi P. Enthalpic repulsion between two identical spherical particles coated with a polymeric adsorption layer. J. Colloid Interface Sci.,1972,41(2):380-382.
    [59]Meier D J. Theory of polymeric dispersants. Statistics of constrained polymer chains. J. Phys. Chem.,1967,71(6):1861-1868.
    [60]Hesselink F T. On the density distribution of segments of a terminally adsorbed macromolecule. J. Phys. Chem.,1969,73(10):3488-3490.
    [61]Hesselink F T. On the theory of the stabilization of dispersions by adsorbed macromolecules. Ⅰ. Statistics of the change of some configurational properties of adsorbed macromolecules on the approach of an impenetrable interface. J. Phys. Chem.,1971,75(1):65-71.
    [62]Hesselink F T, Vrij A, Overbeek J T G. On the theory of the stabilization of dispersions by adsorbed macromolecules. Ⅱ. Interaction between two flat particles. J. Phys. Chem.,1971,75(14): 2094-2103.
    [63]Tadros T F. Steric stabilisation and flocculation by polymers. Polym. J.,1991,23(5): 683-696.
    [64]Evans R, Napper D H. Steric stabilization Ⅰ Comparison of theories with experiment. Kolloid-Z. Z. Polym.,1973,251(6):409-414.
    [65]Evans R, Napper D H. Steric stabilization Ⅱ A generalization of Fischer's solvency theory. Kolloid-Z. Z. Polym.,1973,251(5):329-336.
    [66]Vincent B. The effect of adsorbed polymers on dispersion stability. Adv. Colloid Interface Sci.,1974,4(2-3):193-277.
    [67]Napper D H. Steric stabilization. J. Colloid Interface Sci.,1977,58(2):390-407.
    [68]Vincent B, Edwards J, Emmett S, Jones A. Depletion flocculation in dispersions of sterically-stabilised particles ("soft spheres"). Colloids Surfaces,1986,18(2^4):261-281.
    [69]Vincent B, Luckham P F, Waite F A. The effect of free polymer on the stability of sterically stabilized dispersions. J. Colloid Interface Sci.,1980,73(2):508-521.
    [70]任俊,沈健,卢寿慈.颗粒分散科学与技术.2005,化学工业出版社,北京,1-65.
    [71]刘付胜聪.纳米氧化物表面高分子修饰及其对聚丙烯酸酯复合涂层性能的影响.湖南大学博十学位论文,2005,12-14.
    [72]Fleer G J, Cohen Stuart M A, Scheutjens J M H M, Cosgrove T, Vincent B. Polymers at Interfaces.1993, Chapman & Hall, London,101-233,301-342.
    [73]Gujrati P D, Chhajer M. New statistical mechanical treatment of systems near surfaces. Ⅰ. Theory and principles. J. Chem. Phys.,1997,106(13):5599-5614.
    [74]Edwards S F. The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc, 1965,85(4):613-624.
    [75]de Gennes P G. Some conformation problems for long macromolecules. Rep. Prog. Phys., 1969,32(1):187-205.
    [76]Helfand E, Tagami Y. Theory of the interface between immiscible polymers. II. J. Chem. Phys.,1972,56(7):3592-3601.
    [77]Ploehn H J, Russel W B, Hall C K. Self-consistent field model of polymer adsorption: generalized formulation and ground-state solution. Macromolecules,1988,21(4):1075-1085.
    [78]Roe R. Multilayer theory of adsorption from a polymer solution. J. Chem. Phys.,1974, 60(11):4192-4207.
    [79]Helfand E. Theory of inhomogeneous polymers:Lattice model for polymer-polymer interfaces. J. Chem. Phys.,1974,63(5):2192-2198.
    [80]Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interracial free energy. J. Chem. Phys.,1958,28(2):258-267.
    [81]Rowlinson J S. Translation of J. D. van der Waals' "The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density". J. Stat. Phys.,1979,20(2):197-200.
    [82]燕云峰.嵌段共聚物在表面的吸附.中国科学技术大学博十学位论文,2007,1-18.
    [83]Simha R, Frisch H L, Eirich F R. The adsorption of flexible macromolecules. J. Phys. Chem., 1953,57(6),584-589.
    [84]Frisch H L, Simha R. The adsorption of flexible macromolecules. Ⅱ. J. Phys. Chem.,1954, 58(6):507-512.
    [85]Silberberg A. The adsorption of flexible macromolecules. Part Ⅰ. The isolated macromolecule at a plane interface. J. Phys. Chem.,1962,66(10):1872-1883.
    [86]Silberberg A. The adsorption of flexible macromolecules. Part Ⅱ. The shape of the adsorbed molecule; the adsorption isotherm surface tension, and pressure. J. Phys. Chem.,1962,66(10): 1884-1907.
    [87]Hoeve C A J. Adsorption isotherms for polymer chains adsorbed from (?) solvents. J. Chem. Phys.,1966,44(4):1505-1509.
    [88]A. Silberberg. Adsorption of flexible macromolecules. IV. Effect of solvent-solute interactions, solute concentration, and molecular weight. J. Chem. Phys.,1968,48(7):2835-2851.
    [89]Ash S G, Everett D H, Findenegg G H. Multilayer theory for adsorption from solution. Mixtures of monomers+dimers. Trans. Faraday Soc.,1968,64:2645-2666.
    [90]Ash S G, Everett D H, Findenegg G H. Multilayer theory for adsorption from solution. A general theory for the adsorption of r-mers and its application to flexible tetramers and trimers. Trans. Faraday Soc.,1970,66:708-722.
    [91]Roe R. Multilayer theory of adsorption from a polymer solution. J. Chem. Phys.,1974, 60(11):4192-4207.
    [92]Scheutjens J M H M, Fleer G J. Statistical theory of the adsorption of interacting chain molecules.1. Partition function, segment density distribution, and adsorption isotherms. J. Phys. Chem.,1979,83(12):1619-1635.
    [93]Scheutjens J M H M, Fleer G J. Statistical theory of the adsorption of interacting chain molecules.2. Train, loop, and tail size distribution. J. Phys. Chem.,1980,84(2):178-190.
    [94]Evers O A, Fleer G J, Scheutjens J M H M, Lyklema J. Adsorption of weak polyelectrolytes from aqueous solution. J. Colloid Interface Sci.,1986,111(2):446-454.
    [95]van Lent B, Scheutjens J M H M. Adsorption of random copolymers from solution. J. Phys. Chem.,1990,94(12):5033-5040.
    [96]Evers O A, Scheutjens J M H M, Fleer G J. Statistical thermodynamics of block copolymer adsorption.1. Formulation of the model and results for the adsorbed layer structure. Macromolecules,1990,23(25):5221-5233.
    [97]Wijmans C M, Leermakers F A M, Fleer G J. Chain stiffness and bond correlations in polymer brushes. J. Chem. Phys.,1994,101(9):8214-8223.
    [98]van der Linden C C, Leermakers F A M, Fleer G J. Adsorption of comb polymers. Macromolecules,1996,29(3):1000-1005.
    [99]Israels R, Scheutjens J M H M, Fleer G J. Adsorption of ionic block copolymers: self-consistent-field analysis and scaling predictions. Macromolecules,1993,26(20):5405-5413.
    [100]Kawaguchi M. Sequential polymer adsorption:competition and displacement process. Adv. Colloid Interface Sci.,1990,32(1):1-41.
    [101]Fleer G J. Polymers at interfaces and in colloidal dispersions. Adv. Colloid Interface Sci., 2010,159(2):99-116.
    [102]Munch M R, Gast A P. Block copolymers at interfaces.2. Surface adsorption. Macromolecules,1988,21(5):1366-1372.
    [103]Whitmore M D, Noolandi J. Theory of adsorbed block copolymers. Macromolecules,1990, 23(13):3321-3339.
    [104]de Gennes P G. Conformations of polymers attached to an interface. Macromolecules,1980, 13(5):1069-1075.
    [105]Daoud M. Adsorption of polymers. Polym. J.,1991,23(5):651-658.
    [106]Freed K F. Excluded volume effects in polymers attached to surfaces:Chain conformational renormalization group. J. Chem. Phys.,1983,79(6):3121-3132.
    [107]Obey T M, Griffiths P C. Polymer Adsorption:Fundamentals. In:Goddard E D and Gruber J V (Eds.), Principles of Polymer Science and Technology in Cosmetics and Personal Care.1999, Marcel Dekker, Inc., New York,51-72.
    [108]Theng B K G. Clay-polymer interactions:summary and perspectives. Clay. Clay Miner., 1982,30(1):1-10.
    [109]Somasundaran P, Huang L. Adsorption/aggregation of surfactants and their mixtures at solid-liquid interfaces. Adv. Colloid Interface Sci.,2000,88(1-2):179-208.
    [110]Tadros T. Polymeric surfactants in disperse systems. Adv. Colloid Interface Sci.,2009, (147-148):281-299.
    [111]Shar J A, Obey T M, Cosgrove T. Adsorption studies of polyethers Part 1. Adsorption onto hydrophobic surfaces. Colloids Surf. A:Physicochem. Eng. Aspects,1998,136(1-2):21-33.
    [112]Shar J A, Obey T M, Cosgrove T. Adsorption studies of polyethers Part Ⅱ:adsorption onto hydrophilic surfaces. Colloids Surf. A:Physicochem. Eng. Aspects,1999,150(1-3):15-23.
    [113]Auroy P, Auvray L, Leger L. The scattering by grafted polymers. Physica A,1991. 172(1-2):269-284.
    [114]Schroen C G P H, Cohen Stuart M A, van der Voort Maarschalk K, van der Padt A, van't Riet K. Influence of preadsorbed block copolymers on protein adsorption:surface properties, layer thickness, and surface coverage. Langmuir,1995,11(8):3068-3074.
    [115]Tadros T F. Applied Surfactants:Principles and Applications.2005, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,85-114.
    [116]Bijsterbosch H D, Cohen Stuart M A, Fleer G J. Adsorption kinetics of diblock copolymers from a micellar solution on silica and titania. Macromolecules,1998,31(26):9281-9294.
    [117]Huang N, Csucs G, Emoto K, Nagasaki Y, Kataoka K, Textor M, Spencer N D. Covalent attachment of novel poly(ethylene glycol)-poly(DL-lactic acid) copolymeric micelles to TiO2 surfaces. Langmuir,2002,18(1):252-258.
    [118]Siffert B, Li J F. Adsorbed polymer layer thickness determination at the solid-liquid interface by different techniques. Colloids Surfaces,1992,62(4):307-314.
    [119]Sennett P, Olivier J P. Colloidal dispersions, electrokinetic effects, and the concept of zeta potential. Ind. Eng. Chem.,1965,57(8):32-50.
    [120]Brooks D E, Seaman G V F. The effect of neutral polymers on the electrokinetic potential of cells and other charged particles:I. Models for the zeta potential increase. J. Colloid Interface Sci., 1973,43(3):670-686.
    [121]Garvey M J, Tadros T F, Vincent B. A comparison of the volume occupied by macromolecules in the adsorbed state and in bulk solution:Adsorption of narrow molecular weight fractions of poly(vinyl alcohol) at the polystyrene/water interface. J. Colloid Interface Sci., 1974,49(1):57-68.
    [122]Barsted S J, Nowakowska L J, Wagstaff I, Walbridge D J. Measurement of steric stabilizer barrier thickness in dispersions of poly(methyl methacrylate) in aliphatic hydrocarbon. Trans. Faraday Soc.,1971,67(0):3598-3603.
    [123]Stromberg R R, Tutas D J, Passaglia E. Conformation of polystyrene adsorbed at the θ-temperature. J. Phys. Chem.,1965,69(11):3955-3963.
    [124]Takahashi A, Kawaguchi M, Hirota H, Kato T. Adsorption of polystyrene at the θ temperature. Macromolecules,1980,13(4):884-889.
    [125]Beaussart A, Mierczynska-Vasilev A, Beattie D A. Adsorption of dextrin on hydrophobic minerals. Langmuir,2009,25(17):9913-9921.
    [126]李海普,李星,张莎莎,钟志辉.高分子在固液界面吸附构象的研究方法及手段.化学通报,2011,74(5):417-423.
    [127]Marques C, Joanny J F, Leibler L. Adsorption of block copolymer in selective solvents. Macromolecules,1988,21(4):1051-1059.
    [128]Marques C M, Joanny J F. Block copolymer adsorption in a nonselective solvent. Macromolecules,1989,22(3):1454-1458.
    [129]董仕晋.分子动力学与介观动力学模拟在聚合物多相体系中的应用.吉林大学博十学位论文,2011,1-6.
    [130]Chen S, Doolen G D. Lattice Boltzmann method for fluid flow. Annu. Rev. Fluid Mech., 1998,30:329-363.
    [131]Bratianu C, Atluri S N. A hybrid finite element method for stokes flow:Part Ⅰ—Formulation and numerical studies. Comput. Methods Appl. Mech. Engrg.,1983,36(1):23-37.
    [132]李一鸣,苑世领,徐桂英.计算机模拟技术在表面活性剂研究中的应用.物理化学学报,2003,19(10):986-992.
    [133]Shelley J C, Shelley M Y. Computer simulation of surfactant solutions. Curr. Opin. Colloid Interface Sci.,2000,5(1-2):101-110.
    [134]陈正隆,徐为人,汤立达.分子模拟的理论与实践.2007,化学工业出版社,北京,67-88.
    [135]Fraaije J G E M, van Vlimmeren B A C, Maurits N M, Postma M, Evers O A, Hoffmann C, Altevogt P, Goldbeck-Wood G. The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts.J. Chem. Phys.,1997, 106(10):4260-4269.
    [136]Hoogerbrugge P J, Koelman J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett.,1992,19(3):155-160.
    [137]Koelman J M V A, Hoogerbrugge P J. Dynamic simulations of hard-sphere suspensions under steady shear. Europhys. Lett.,1993,21(3):363-368.
    [138]McCrackin F L. Configuration of isolated polymer molecules adsorbed on solid surfaces studied by Monte-Carlo computer simulation. J. Chem. Phys.,1967,47(6):1980-1986.
    [139]Konstadinidis K, Prager S, Tirrell M. Monte Carlo simulation of irreversible polymer adsorption:Single chains.J.Chem. Phys.,1992,97(10):7777-7780.
    [140]Sommer J U, Daoud M. Adsorption of multiblock copolymers at interfaces between selective solvents:Single-chain properties. Phys. Rev. E,1996,53(1):905-920.
    [141]Kopf A, Baschnagel J, Wittmer J, Binder K. On the adsorption process in polymer brushes: A Monte Carlo study. Macromolecules,1996,29(5):1433-1441.
    [142]Cosgrove T, Finch N A, Webster J R P. Monte Carlo simulations of adsorbed random copolymers. Macromolecules,1990,23(13):3353-3357.
    [143]Wang Y, Mattice W L. Adsorption of homopolymers on a solid surface:A comparison between Monte Carlo simulation and the Scheutjens-Fleer mean-field lattice theory. Langmuir, 1994,10(7):2281-2288.
    [144]Tadros T. Polymeric Surfactants. In Holmberg K (Ed.), Novel Surfactants:Preparation Applications and Biodegradability.2003, second edition, revised and expanded. Marcel Dekker, Inc., New York,546.
    [145]Tadros T. Principles of emulsion stabilization with special reference to polymeric surfactants. J. Cosmet. Sci.,2006,57(2):153-169.
    [146]何瑾馨,刘栋良,董霞,潘大伟,董志军.一种自分散染料的制备方法200710170883.0.
    [147]董霞.染料聚醚衍生物类超分散剂的合成、性能及理论研究.东华大学博士学位论文,2010,37-48.
    [148]何瑾馨,董霞,阮迪,刘栋良.一种pH敏感型分散染料聚醚衍生物的合成方法.200810039129.8.
    [149]Dong X, He J. PH-sensitive dye-polyether derivatives as dispersants for its parent dye. Part 1:synthesis and hydrolysis behavior. J. Dispersion Sci. Technol.,2010,31(6):750-755.
    [I]Nuysink J, Koopal L K. The effect of polyethylene oxide molecular weight on determination of its concentration in aqueous solutions. Talanta,1982,29(6):495-501.
    [2]Shar J A, Obey T M, Cosgrove T. Adsorption studies of polyethers Part 1. Adsorption onto hydrophobic surfaces. Colloids Surf. A:Physicochem. Eng. Aspects,1998,136(1):21-33.
    [3]Dudley J R, Thurston J T, Schaefer F C, Holm-Hansen D, Hull C J, Adams P. Cyanuric chloride derivatives. III. Alkoxy-s-triazines. J. Am. Chem. Soc.,1951,73(7):2986-2990.
    [4]Blotny G. Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis. Tetrahedron,2006,62(41):9507-9522.
    [5]Brewer S A, Burnell H T, Holden I, Jones B G, Willis C R. Synthesis of a series of dichloroamino- and dihalosulfonamido-1,3,5-triazines and investigation of their hindered rotation and stereodynamic behaviour by NMR spectroscopy. J. Chem. Soc., Perkin Trans.2,1999, (6): 1231-1234.
    [6]格里菲思 J.侯毓汾,吴祖望,胡家振等译.颜色与有机分子结构.1985,化学工业出版社,北京,181-189.
    [7]Maradiya H R, Patel V S. Dyeing of hydrophobic fabrics with disperse dyes.J. Serb. Chem. Soc.,2001,66(6):367-376.
    [8]Kissa E. Partitioning and particle size of dye dispersions. Textile Res. J.,1989,59(2):66-72.
    [9]Olivares O, Likhanova N V, Gomez B, Navarrete J, Llanos-Serrano M E, Arce E, Hallen J M. Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment. Appl. Surf. Sci.,2006,252(8):2894-2909.
    [10]Lyklema J. Fundamentals of Interface and Colloid Science. Vol.1, Fundamentals.1991, Academic press, London,2.68-2.78.
    [11]de Gennes P G. Conformations of polymers attached to an interface. Macromolecules,1980, 13(5):1069-1075.
    [12]Marques C, Joanny J F, Leibler L. Adsorption of block copolymers in selective solvents. Macromolecules,1988,21(4):1051-1059.
    [13]Marques C M. Joanny J F. Block copolymer adsorption in a nonselective solvent. Macromolecules,1989,22(3):1454-1458.
    [14]Schroeder H E, Boyd S N. Dyes for the hydrophobic fibers. Textile Res.J.,1957,27(4): 275-285.
    [15]Hoffmann K, Mcdowell W, Weingarten R. The behaviour of mixtures of disperse dyes. J. Soc. Dyers Colour.,1968,84(6):306-309.
    [16]Schott H. Solubilization of a water-insoluble dye. Ⅱ. J. Phys. Chem.,1967,71(11): 3611-3617.
    [17]Burkinshaw S M, Kumar N. The reduction clearing of dyed polyester. Part 1:colour strength. Dyes Pigm.,2008,76(3):799-809.
    [18]Aspland J R. Chapter 8:disperse dyes and their application to polyester. Textile Chemists & Colorists,1992,24(12):18-23.
    [19]Avinc O, Bone J, Owens H, Phillips D, Wilding M. Preferred alkaline reduction-clearing conditions for use with dyed Ingeo poly(lactic acid) fibres. Color. Technol.,2006,122(3): 157-161.
    [1]李外郎,张宝音,顾惕人.聚醚型表面活性剂在界面上的分子取向Ⅱ.环氧乙烷环氧丙烷共聚多元醇在水面上的表面膜.物理化学学报,1987,3(1):42-47.
    [2]Malmsten M, Linse P, Cosgrove T. Adsorption of PEO-PPO-PEO block copolymers at silica. Macromolecules,1992,25(9):2474-2481.
    [3]Dong X, He J. PH-sensitive dye-polyether derivatives as dispersants for its parent dye. Part 1: synthesis and hydrolysis behavior. J. Dispersion Sci. Technol.,2010,31(6):750-755.
    [4]Dong X, Zheng Z, He J. PH-sensitive dye-polyether derivatives as dispersants for its parent dye. Part 2:dispersion stability and dyeing performance. J. Dispersion Sci. Technol.,2010,31(9): 1188-1194.
    [5]Nilsson S, Holmberg C, Sundelof L -O. Aggregation numbers of SDS micelles formed on EHEC. A steady state fluorescence quenching study. Colloid Polym. Sci.,1995,273(1):83-95.
    [6]J格里菲思著.侯毓汾,吴祖望,胡家振等译.颜色与有机分子结构.1985,化学工业出版社,北京,181-189.
    [7]赵国玺,朱(?)瑶.表面活性剂作用原理.2003,中国轻工业出版社,北京,135-149.
    [8]Mata J, Joshi T, Varade D, Ghosh G, Bahadur P. Aggregation behavior of a PEO-PPO-PEO block copolymer+ionic surfactants mixed systems in water and aqueous salt solutions. Colloids Surf. A:Physicochem. Eng. Aspects,2004,247(1-3):1-7.
    [9]Dong J, Chowdhry B Z, Leharne S A. Altering the spreading coefficient of coal tar systems using ethylene oxide-propylene oxide block copolymers. Colloids Surf. A:Physicochem. Eng. Aspects,2005,266(1-3):191-199.
    [10]Alexandridis P, Athanassiou V, Fukuda S, Hatton T A. Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. Langmuir,1994, 10(8):2604-2612.
    [11]Rauf A, Baloch M K, Durrani G F. Effect of molecular mass of polyethylene oxide over its aggregation behavior. J. Chem. Soc. Pak.,2010,32(2):168-171.
    [12]Holmberg K, Jonsson B, Kronberg B, Lindman B. Surfactants and Polymers in Aqueous Solution.2003,2nd edition. John Wiley & Sons, Ltd., West Sussex,337-347.
    [13]de Gennes P G. Conformations of polymers attached to an interface. Macromolecules,1980, 13(5):1069-1075.
    [14]董阳,金勇,魏德卿.高分子表面活性剂的溶液性能.化学通报,2005,68:w017.
    [15]Halperin A, Tirrell M, Lodge T P. Tethered chains in polymer microstructure. Adv. Polym. Sci., 1992,100(1):31-71.
    [16]江明,A.艾森伯格,刘国军,张希等.大分子自组装.2006,科学出版社,北京,1-22.
    [17]Halperin A, Tirrell M, Lodge T P. Tethered chains in polymer microstructures. Adv. Polym. Sci.,1992,100(1):31-71.
    [18]Halperin A. Polymeric micelles:a star model. Macromolecules,1987,20(11):2943-2946.
    [19]Moffitt M, Khougaz K, Eisenberg A. Micellization of ionic block copolymers. Acc. Chem. Res.,1996,29(2):95-102.
    [20]Nagarajan R, Ganesh K. Block copolymer self-assembly in selective solvents:theory of solubilization in spherical micelles. Macromolecules,1989,22(11):4312-4325.
    [21]Alexandridis P, Lindman B. Amphiphilic Block Copolymers:Self-Assembly and Applications. 2000, Elsevier Science B.V., Amsterdam,1-190.
    [22]Su Y, Wang J, Liu H. FTIR spectroscopic study on effects of temperature and polymer composition on the structural properties of PEO-PPO-PEO block copolymer micelles. Langmuir, 2002,18(14):5370-5374.
    [1]Milner S T. Polymer brushes. Science,1991,251(4996):905-914.
    [2]de Gennes P G. Conformations of polymers attached to an interface. Macromolecules,1980, 13(5):1069-1075.
    [3]李海普,李星,张莎莎,钟志辉.高分子在固液界面吸附构象的研究方法及手段.化学通报,2011,74(5):417-423.
    [4]Kissa E. Partitioning and stability of aqueous dispersions. Particle size of dye dispersionst. Langmuir,1990,6(2):478-481.
    [5]Lee K W, Kim J P. Effect of ultrasound on disperse dye particle size. Textile Res. J.,2001, 71(5):395-398.
    [6]Chung Y S. Turbidimetric evaluation of the dispersion properties of disperse dyes. Textile Res. J.,2000,70(6):550-554.
    [7]Sze A, Erickson D, Ren L, Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. J. Colloid Interface Sci.,2003,261(2):402-410.
    [8]Kirby B J, Hasselbrink E F. Zeta potential of microfluidic substrates:1. Theory, experimental techniques, and effects on separations. Electrophoresis,2004,25(2):187-202.
    [9]Swiatkowski A, Pakula M, Biniak S, Walczyk M. Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(Ⅱ) ions. Carbon,2004,42(15):3057-3069.
    [10]Georgiou P, Walton J, Simitzis J. Surface modification of pyrolyzed carbon fibres by cyclic voltammetry and their characterization with XPS and dye adsorption. Electrochim. Acta,2010, 55(3):1207-1216.
    [11]Kissa E. Dispersions:Characterization, Testing, and Measurement.1999, Marcel Dekker, Inc, New York,1-41.
    [12]任俊,沈健,卢寿慈.颗粒分散科学与技术.2005,化学工业出版社,北京,4-9.
    [13]蒋庆哲,宋昭峥,赵密福,柯明.表面活性剂科学与应用.2006,中国石化出版社,北京,359-366.
    [14]赵国玺,朱(?)瑶.表面活性剂作用原理.2003,中国轻工业出版社,北京,651-656.
    [15]刘广文.染料加工技术.1999,化学工业出版社,北京,38-42.
    [16]Tadros T F. Rheology of Dispersions:Principles and Applications.2010, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,37-64.
    [17]Herb C A, Ross S. The rheology of lignosulfonate-stabilized dispersions of a textile dye. Colloids Surfaces,1980,1(1):57-77.
    [18]周煜.C.I.颜料红122分散稳定化和流变性能研究.东华大学博士学位论文,2003,75-97.
    [19]Jones D A R, Leary B, Boger D V. The rheology of a concentrated colloidal suspension of hard spheres. J. Colloid Interface Sci.,1991,147(2):479-495.
    [20]Hughes D F K, Robb I D. Rheology of concentrated dispersions of copper phthalocyanine pigments in organic solvents. Langmuir,1999,15(26):8795-8799.
    [21]Schramm G. A Practical Approach to Rheology and Rheometry.2000,2nd Edition. Gebrueder HAAKE GmbH, Karlsruhe,215-243.
    [22]M'Pandou A, Siffert B. Polyethyleneglycol adsorption at the TiO2-H2O interface:distortion of ionic structure and shear plane position. Colloids Surfaces,1987,24(2-3):159-172.
    [23]Siffert B, Li J F. Adsorbed polymer layer thickness determination at the solid-liquid interface by different techniques. Colloids Surfaces,1992,62(4):307-314.
    [24]Prestidge C A, Barnes T, Simovic S. Polymer and particle adsorption at the PDMS droplet-water interface. Adv. Colloid Interface Sci.,2004.108-109:105-118.
    [25]Garvey M J, Tadros TH F, Vincent B. A comparison of the adsorbed layer thickness obtained by several techniques of various molecular weight fractions of poly(vinyl alcohol) on aqueous polystyrene latex particles. J. Colloid Interface Sci.,1976,55(2):440-453.
    [26]Sennett P, Olivier J P. Colloidal dispersions, electrokinetic effects, and the concept of zeta potential. Ind. Eng. Chem.,1965,57(8):32-50.
    [27]Shaw D J. Introduction to Surface and Colloid Chemistry.1992,4th edition. Butterworth-Heinemann, Oxford,174-209.
    [28]Shar J A, Obey T M, Cosgrove T. Adsorption studies of polyethers part 1. Adsorption onto hydrophobic surfaces. Colloids Surf. A:Physicochem. Eng. Aspects,1998,136(1):21-33.
    [29]Tadros T F, Vincent B. Influence of temperature and electrolytes on the adsorption of poly(ethylene oxide)-poly(propylene oxide) block copolymer on polystyrene latex and on the stability d the polymer-coated particles. J. Phys. Chem.,1980,84 (12):1575-1580.
    [30]Giles C H, Smith D, Huitson A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci.,1974,47(3):755-765.
    [31]Giles C H, D'Silva A P, Easton I A. A general treatment and classification of the solute adsorption isotherm part. Ⅱ. Experimental interpretation. J. Colloid Interface Sci.,1974,47(3): 766-778.
    [32]Tadros T F, Vincent B. Influence of temperature and electrolytes on the adsorption of poly(ethylene oxide)-poly(propylene oxide) block copolymer on polystyrene latex and on the stability d the polymer-coated particles. J. Phys. Chem.,1980,84(12):1575-1580.
    [33]Kayes J B, Rawlins D A. Adsorption characteristics of certain polyoxyethylene-polyoxypropylene block co-polymers on polystyrene latex, Colloid Polym. Sci., 1979,257(6):622-629.
    [34]Brandani P, Stroeve P. Adsorption and desorption of PEO-PPO-PEO triblock copolymers on a self-assembled hydrophobic surface. Macromolecules,2003,36(25):9492-9501.
    [35]de Gennes P G. Conformations of polymers attached to an interface. Macromolecules,1980, 13(5):1069-1075.
    [36]Marques C, Joanny J F, Leibler L. Adsorption of block copolymers in selective solvents. Macromolecules,1988,21(4):1051-1059.
    [37]Marques C M, Joanny J F. Block copolymer adsorption in a nonselective solvent. Macromolecules,1989,22(3):1454-1458.
    [38]Cosgrove T. Colloid science:Principles, Methods and Applications.2010, second Edition. John Wiley & Sons Ltd, West Sussex,151-180.
    [39]Nguyen D T. Use of novel polyetheralkanolamine comb polymers as pigment dispersants for aqueous coating systems. J. Coat. Technol. Res.,2007,4(3):295-309.
    [40]Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol. Res.,2010,62(2):90-99
    [41]Sedev R, Exerowa D. DLVO and non-DLVO surface forces in foam films from amphiphilic block copolymers. Adv. Colloid Interface Sci.,1999,83(1-3):111-136.
    [42]Diakova B, Plantikanov D, Atanassov R, Kaisheva M. Thin wetting films from aqueous solutions of a polyoxyethylene-polyoxypropylene block copolymer on silicon carbide surface. Adv. Colloid Interface Sci.,2003,104(1-3):25-36.
    [43]Sato T, Ruch R. Stabilization of Colloidal Dispersions by Polymer Adsorption.1980, Marcel Dekker, Inc., New York,65-119.
    [44]Gregory J. Approximate expressions for retarded van der Waals interaction. J. Colloid Interface Sci.,1981,83(1):138-145.
    [45]Nitsche J M, Chang H, Weber P A, Nicholson B J. A transient diffusion model yields unitary gap junctional permeabilities from images of cell-to-cell fluorescent dye transfer between Xenopus oocytes. Biophys. J.,2004,86(4):2058-2077.
    [46]Napper D H. Steric stabilization. J. Colloid Interface Sci.,1977,58(2):390-407.
    [47]Vincent B, Edwards J, Emmett S, Jones A. Depletion flocculation in dispersions of sterically-stabilised particles ("soft spheres"). Colloids Surfaces,1986,18(2-4):261-281.
    [48]Vincent B, Luckham P F, Waite F A. The effect of free polymer on the stability of sterically stabilized dispersions. J. Colloid Interface Sci.,1980,73(2):508-521.
    [49]Hurter P N, Scheutjens J M H M, Hatton T A. Molecular modeling of micelle formation and solubilization in block copolymer micelles.1. A self-consistent mean-field lattice theory, Macromolecules,1993,26(21):5592-5601.
    [50]van Krevelen D W, te Nijenhuis K. Properties of Polymers:Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions.2009, fourth, completely revised edition. Elsevier, Amsterdam,79.
    [51]Chen S H, Liao C, Fratini E. Baglioni P. Mallamace F. Interaction, critical, percolation and kinetic glass transitions in pluronic L-64 micellar solutions. Colloids Surf. A:Physicochem. Eng. Aspects,2001,183-185:95-111.
    [52]Studart A R, Amstad E, Antoni M, Gauckler L J. Rheology of concentrated suspensions containing weakly attractive alumina nanoparticles. J. Am. Ceram. Soc.,2006,89(8):2418-2425.
    [53]Myers D. Surfaces, Interfaces, and Colloids:Principles and Applications.1999, second edition. John Wiley & Sons, Inc., New York,214-252.
    [1]陈正隆,徐为人,汤立达.分子模拟的理论与实践.2007,化学工业出版社,北京,67-88.
    [2]Frenkel D, Smit B. Understanding Molecular Simulation:From Algorithms to Applications. 1996, Academic Press, San Diego,63-107.
    [3]Sun H, Ren P, Fried J R. The COMPASS force field:parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci.,1998,8(1-2):229-246.
    [4]Sun H. COMPASS:An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J. Phys. Chem. B,1998, 102(38):7338-7364.
    [5]Bunte S W, Sun H. Molecular modeling of energetic materials:the parameterization and validation of nitrate esters in the COMPASS force field. J. Phys. Chem. B,2000,104(11): 2477-2489.
    [6]McQuaid M J, Sun H, Rigby D. Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains. J. Comput. Chem.,2004,25(1):61-71.
    [7]Zhao L, Liu L, Sun H. Semi-ionic model for metal oxides and their interfaces with organic molecules. J. Phys. Chem. C,2007,111(28):10610-10617.
    [8]Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A, Haak J R. Molecular dynamics with coupling to an external bath. J. Chem. Phys.,1984,81(8):3684-3690.
    [9]Holtje H -D, Sippl W, Rognan D, Folkers G. Molecular Modeling:Basic Principles and Applications.1997, third, revised and expanded edition. VCH Verlagsgesellschaft mbH, Weinheim,9-60.
    [10]Leach A R. Molecular Modelling:Principles and Applications.2001, second edition. Pearson Education Limited, Harlow,353-406.
    [11]Woolfson M M, Pert G J. An Introduction to Computer Simulation.1999, Oxford University Press, Oxford,129-153.
    [12]Kirkpatrick S. Gelatt C D, Vecchi M P. Optimization by simulated annealing. Science,1983, 220:671-679.
    [13]Black S N, Davey R J, O'Mahoney C A, Williams D J. Structure of 1-amino-4-hydroxy-2-phenoxy-9,10-anthracenedione. Acta Crystallogr. Sect. C,1992,48(2): 321-323.
    [14]Dochertyt R, Clydesdale G, Roberts K J, Bennema P. Application of Bravais-Friedel-Donnay-Harker, attachment energy and Ising models to predicting and understanding the morphology of molecular crystals. J. Phys. D:Appl Phys.,1991,24(2):89-99.
    [15]Berkovitch-Yellin Z. Toward an ab initio derivation of crystal morphology. J. Am. Chem. Soc, 1985,107(26):8239-8253.
    [16]Bruns W, Bansal R. Molecular dynamics study of a single polymer chain in solution. J. Chem. Phys.,1981,74(3):2064-2072.
    [17]Bahar I, Badur B, Doruker P. Solvent effect on translational diffusivity and orientational mobility of polymers in solution:A molecular dynamics study. J. Chem. Phys.,1993,99(3): 2235-2246.
    [18]Lu K, Tung K. Molecular dynamics simulation study of the effect of PMMA tacticity on free volume morphology in membranes. Korean J. Chem. Eng.,2005,22(4):512-520.
    [19]Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys.,1980,72(4):2384-2393.
    [20]任华.分子模拟在界面相互作用计算中的应用.西北工业大学硕十学位论文,2007,18-39.
    [21]Steed J W, Atwood J L. Supramolecular Chemistry.2009,2nd edition. John Wiley & Sons, Ltd, West Sussex,33-35.
    [22]Hunter C A, Lawson K R, Perkins J, Urch C J. Aromatic interactions. J. Chem. Soc., Perkin Trans.2,2001,5:651-669.
    [23]Hunter C A, Sanders J K M. The nature of π-π interactions.J. Am. Chem. Soc.,1990,112(14): 5525-5534.
    [1]Fraaije J G E M, van Vlimmeren B A C, Maurits N M, Postma M, Evers O A, Hoffmann C, Altevogt P, Goldbeck-Wood G. The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts. J. Chem. Phys.,1997, 106(10):4260-4269.
    [2]庞瑾瑜,吕鑫,张健,苑世领,徐桂炎.介观模拟方法研究高分子表面活性剂在水介质中的聚集行为.物理化学学报,2011,27(3):520-529.
    [3]Hoogerbrugge P J, Koelman J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett.,1992,19(3):155-160.
    [4]Koelman J M V A, Hoogerbrugge P J. Dynamic simulations of hard-sphere suspensions under steady shear. Europhys. Lett.,1993,21(3):363-368.
    [5]Espanol P, Warren P. Statistical mechanics of dissipative particle dynamics. Europhys. Lett., 1995,30(4):191-196.
    [6]Groot R D, Warren P B. Dissipative particle dynamics:bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys.,1997,107(11):4423-4435.
    [7]Groot R D, Madden T J. Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys.,1997,108(20):8713-8724.
    [8]van Vlimmeren B A C, Maurits N M, Zvelindovsky A V, Sevink G J A, Fraaije J G E M. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)13(propylene oxide)30(ethylene oxide)13 and (propylene oxide)19(ethylene oxide)33(propylene oxide)19. Application of dynamic mean-field density functional theory. Macromolecules,1999,32(3):646-656.
    [9]Chen S, Guo C, Hu G, Liu H, Liang X, Wang J, Ma J, Zheng L. Dissipative particle dynamics simulation of gold nanoparticles stabilization by PEO-PPO-PEO block copolymer micelles. Colloid Polym. Sci.,2007,285(14):1543-1552.
    [10]Liu X, He F, Salas C, Pasquinelli M A, Genzer J, Rojas O J. Experimental and computational study of the effect of alcohols on the solution and adsorption properties of a nonionic symmetric triblock copolymer. J. Phys. Chem. B,2012,116(4):1289-1298.
    [11]Wescott J T, Qi Y, Subramanian L, Capehart T W. Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes. J. Chem. Phys.,2006,124(13): 124702-01-124702-14.
    [12]Bicerano J. Prediction of Polymer Properties.2002, third edition, revised and expanded. Marcel Dekker, Inc., New York,81,201.
    [13]van Krevelen D W, te Nijenhuis K. Properties of Polymers. Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions.2009, fourth, completely revised edition. Elsevier, Amsterdam,189-225.
    [14]Gong H, Xu G, Shi X, Liu T, Sun Z. Comparison of aggregation behaviors between branched and linear block polyethers:MesoDyn simulation study. Colloid Polym. Sci.,2010,288(16-17): 1581-1592.
    [15]钱旭红,林艳,任绳武.分散染料溶解度参数的计算及应用.华东化工学院学报,1987,13(5):573-580.
    [16]Scherer J R. The partial molar volume of water in biological membranes. Proc. Natl. Acad. Sci. USA,1987,84(22):7938-7942.
    [17]Khayet M, Matsuura T. Pervaporation and vacuum membrane distillation processes: modeling and experiments. AIChE Journal,2004,50(8):1697-1712.
    [18]Maiti A, McGrother S. Bead-bead interaction parameters in dissipative particle dynamics: relation to bead-size, solubility parameter, and surface tension. J. Chem. Phys.,2004,120(3): 1594-1601.
    [19]Zhang X, Yuan S, Wu J. Mesoscopic simulation on phase behavior of ternary copolymeric solution in the absence and presence of shear. Macromolecules,2006,39(19):6631-6642.
    [20]Hurter P N, Scheutjens J M H M, Hatton T A. Molecular modeling of micelle formation and solubilization in block copolymer micelles.2. Lattice theory for monomers with internal degrees of freedom. Macromolecules,1993,26(19):5030-5040.
    [21]Hurter P N, Scheutjens J M H M, Hatton T A. Molecular modeling of micelle formation and solubilization in block copolymer micelles.1. A self-consistent mean-field lattice theory. Macromolecules,1993,26(21):5592-5601.
    [22]Su Y, Wang J, Liu H. FTIR spectroscopic study on effects of temperature and polymer composition on the structural properties of PEO-PPO-PEO block copolymer micelles. Langmuir, 2002,18(14):5370-5374.
    [23]张秀青Pluronic嵌段共聚物相行为的介观模拟研究.山东大学硕十学位论文,2007,28-40.
    [24]Yang S, Yuan S, Zhang X, Yan Y. Phase behavior of tri-block copolymers in solution: Mesoscopic simulation study. Colloids Surf. A:Physicochem. Eng. Aspects,2008,322(1-3): 87-96.
    [25]Guo L, Colby R H, Lin M Y, Dado G P. Micellar structure changes in aqueous mixtures of nonionic surfactants. J. Rheol.,2001,45(5):1223-1243.
    [26]董仕晋.分子动力学与介观动力学模拟在聚合物多相体系中的应用.吉林大学博十学位论文,2011,61-74.
    [27]Guo S L, Hou T J, Xu X J. Simulation of the phase behavior of the (EO)13(PO)30(EO)13(Pluronic L64)/water/p-xylene system using MesoDyn. J. Phys. Chem. B, 2002,106(43):11397-11403.
    [28]靖波,张健,吕鑫,朱玥珺,张凤久,姜伟,谭业邦.Triton X-100/甲苯/水三元体系界面张力的耗散颗粒动力学模拟.物理化学学报,2011,27(1):65-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700