用户名: 密码: 验证码:
基于贝叶斯统计的水文模型不确定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水资源短缺、水旱灾害频发,对水文预报和预测的需求巨大。水文模型不仅是水文预报和预测的主要工具,也是研究其他水问题的重要工具,但水文模型中广泛存在参数、输入和结构等不确定性,降低了其应用的价值。本论文研究旨在构建水文模拟的贝叶斯统计推断模型,用于评估和诊断水文模型不确定性。
     论文构建了水文模型系统的层次贝叶斯模型,并提出了基于马尔可夫链蒙特卡洛混合采样策略的求解方法。采用层次贝叶斯模型描述输入误差的层次分布特征,根据流域中各雨量观测站的相对误差来估计降雨的不确定性。为了推导实测流量数据的似然函数,通过径流划分降低数据的异方差性,采用一阶自回归模型描述时间序列的自相关性。贝叶斯模型求解的混合采样策略综合了MH采样、DRAM采样和Gibbs采样等方法,提高了贝叶斯模型的求解效率。
     为了验证贝叶斯模型的有效性,论文选择华北平原典型农田,估计了一维分层土壤水分参数的不确定性。利用农田原位多层土壤含水率的观测数据,利用贝叶斯模型反演得到了分层土壤的持水和导水特征参数,根据土壤参数后验分布中值模拟得到的土壤水分运动过程,比基于实测参数的模拟结果具有更高精度。
     采用论文构建的层次贝叶斯模型研究了分布式水文模型(GBHM)在山洪预报中的不确定性。基于合成数据试验和实际数据的应用结果表明,贝叶斯模型有效地估计了GBHM参数的不确定性,并合理给出了基于GBHM的洪水预报不确定性。基于考虑输入不确定性反演得到的参数后验分布,GBHM模型预报得到的流量系列的概率分布与实测数据具有更好的一致性。降雨误差的后验估计值存在空间负相关关系,说明合理估计分布式模型的输入不确定性还需要更多的信息。
     为了分析水文模型结构不确定性,在贝叶斯框架下引入了可行域为[0,1]区间的残差独立性置信度系数(RIC),建立了经验贝叶斯模型。试验研究表明,RIC的最优值既是对模型结构不确定性的评估,也可作为参数反演中判断匹配不足与过度匹配的依据。当模型系统误差增大时,RIC系数的最优值随之降低。基于贝叶斯模型,采用新安江模型和GBHM分别在滁洲流域和赣江流域开展了洪水概率预报,预报不确定性与实测流量数据中反映的不确定性较为一致。
     论文的主要创新点在于发展了层次贝叶斯模型和经验贝叶斯模型并成功应用于水文模型参数率定和洪水概率预报,为水文模型中的应用推广提供了理论基础。
China is suffering from water shortage problems and frequent flood and droughtdisasters, which places high demand for hydrological forecasting and prediction.Hydrological models are the major tool of hydrological forecasting and prediction, aswell as other water-related problems. However, uncertainties of parameters, inputs andmodel structures involved in hydrological modeling have undermined its applicationvalue. The objective of this dissertation is to develop a Bayesian framework ofhydrological model system to estimate and diagnose the uncertainties involved inhydrological models.
     A hierarchical Bayesian model is first developed for the hydrological model system.A hybrid sampling strategy that employs Markov chain Monte Carlo methods is thendeveloped to explore the Bayesian model. We introduced the hierarchical Bayesianmodel for the hierarchical characters of input uncertainty, and specified inputuncertainty as relative errors in rainfall measurement at the gauges. To conduct thelikelihood function of observed discharge data, we divided the data into low and highflow dataset to reduce the heteroscedasticity, and adopted the first order autoregressivemodel to describe the autocorrelation of the time series. The hybrid sampling strategyfor exploration of the Bayesian model employs Metropolis-Hastings, delay rejectionadaptive Metropolis, and Gibbs sampling methods to improve the sampling efficiency.
     To evaluate the validity of the Bayesian model, we applied it to the dataset in anagricultural land in North China to estimate the uncertainty associated with onedimension soil hydraulic parameters. Multilayer parameters of soil water retention andhydraulic conductivity functions were estimated from in situ measurements of soil watercontent at several depths. The medians of posterior distributions of soil hydraulicparameters led to higher accuracy in simulation of soil moisture variation than theparameters obtained by laboratory test did.
     The developed hierarchical Bayesian model was adopted to estimate theparameters associated with a geomorphology-based hydrological model (GBHM) formountainous flood forecasting. Synthetic case study and field data applicationdemonstrated the effectiveness of the Bayesian model in estimating the uncertainty ofGBHM parameters and in giving reasonable predictive uncertainty for flood period. Jointly estimating input uncertainty with hydrological model parameters led to a lowererror criterion of probabilistic forecasting and higher consistency of the predictivedistribution with the observed data compared with estimating parameter uncertaintyseparately. The negative spatial correlation of estimated input errors suggested thatfurther information was required to improve input uncertainty estimation of distributedmodels.
     To analyze the model structure uncertainty of hydrological models, we developedan informal Bayesian model under the Bayesian framework by introducing a residualindependence coefficient (RIC) with a feasible zone of [0,1]. Case study result showedthat the best RIC coefficient was related to model structure errors and was determined toavoid both overfitting and underfitting. When systematic errors of a hydrological modelincreased, the best RIC coefficient declined. The developed Bayesian model wasapplied separately to a Xinanjiang model of Chuzhou catchment and a GBHM model ofGanjiang catchment for probabilistic flood forecasting. The predictive distributions arewell consistent with the observed data.
     The major innovation points of this dissertation lie in the development of thehierarchical Bayesian model and the empirical Bayesian model, and the application ofthe Bayesian models to the parameter estimation of hydrological models and to thehydrological flood forecasting. The dissertation demonstrates a theoretical base for thewidely application of Bayesian models in hydrological models.
引文
[1]梁家志,刘志雨,编著.中小河流山洪监测与预警预测技术研究.北京:科学出版社;2010.
    [2]姜彤,苏布达, Gemmer M.长江流域降水极值的变化趋势.水科学进展,2008,(05):650-655.
    [3] Schuol J, Abbaspour K C, Srinivasan R, et al. Estimation of freshwater availabilityin the West African sub-continent using the SWAT hydrologic model. Journal ofHydrology,2008,352(1-2):30-49.
    [4] Beven K. A manifesto for the equifinality thesis. Journal of Hydrology,2006,320(1-2):18-36.
    [5]杨大文,夏军,张建云.中国PUB研究与发展//夏军,水问题的复杂性与不确定性研究进展;2004;北京.中国水利水电出版社.
    [6] Faurès J-M, Goodrich D C, Woolhiser D A, et al. Impact of small-scale spatialrainfall variability on runoff modeling. Journal of Hydrology,1995,173(1-4):309-326.
    [7] Baird A. Soil and Hillslope Hydrology//Wainwright J, Mulligan M. EnvironmentalModeling: Finding Simplicity in Complexity. London: John Wiley&Sons,2004.
    [8] Singh V P, Woolhiser D A. Mathematical modeling of watershed hydrology. Journalof Hydrologic Engineering,2002,7(4):270-292.
    [9]王中根,夏军,刘昌明,等.分布式水文模型的参数率定及敏感性分析探讨.自然资源学报,2007,22(4):649-655.
    [10]芮孝芳,黄国如.分布式水文模型的现状与未来.水利水电科技进展,2004,(02).
    [11]芮孝芳,蒋成煜,张金存.流域水文模型的发展.水文,2006,26(3):22-26.
    [12]胡和平,田富强.物理性流域水文模型研究新进展.水利学报,2007,38(5):511-517.
    [13]叶守泽,夏军.水文科学研究的世纪回眸与展望.水科学进展,2002,13(1):93-104.
    [14]牛存稳,王浩,贾仰文.分布式水文模型的发展及其在我国水问题研究中的应用.中国可持续发展研究会2006学术年会;2006.
    [15] Michaelides K, Wainwright J. Modelling fluvial processes and interactions//Wainwright J, Mulligan M. Environmental Modeling: Finding Simplicity inComplexity. London: John Wiley&Sons,2004.
    [16] Beven K. On doing better hydrological science. Hydrological Processes,2008,22(17):3549-3553.
    [17] Clark J S. Why environmental scientists are becoming Bayesians. Ecology Letters,2005,8(1):2-14.
    [18] Tannert C, Elvers H, Jandrig B. The ethics of uncertainty. In the light of possibledangers, research becomes a moral duty. Science and Society,2007,9(10):892-896.
    [19]黄伟军,丁晶.水文水资源系统贝叶斯分析现状与前景.水科学进展,1994,5(03):242-247.
    [20]左其亭,吴泽宁,赵伟.水资源系统中的不确定性及风险分析方法.干旱区地理,2003,(02):116-121.
    [21] Kampf S K, Burges S J. Parameter estimation for a physics-based distributedhydrologic model using measured outflow fluxes and internal moisture states. WaterResources Research,2007,43(12).
    [22] Castaings W, Dartus D, Le Dimet F X, et al. Sensitivity analysis and parameterestimation for distributed hydrological modeling: potential of variational methods.Hydrology and Earth System Sciences,2009,13(4):503-517.
    [23]尹雄锐,夏军,张翔,等.水文模拟与预测中的不确定性研究现状与展望.水力发电,2006,(10):30-34.
    [24] Bayes T. An Essay towards solving a Problem in the Doctrine of Chances.Philosophical Transactions of the Royal Society of London,1763,(53):370-418.
    [25]朱慧明,韩玉启.贝叶斯多元统计推断理论.北京:科学出版社,2006.
    [26] Shannon C E. A MATHEMATICAL THEORY OF COMMUNICATION. BellSystem Technical Journal,1948,27(3):379-423.
    [27] Zadeh L A. FUZZY SETS. Information and Control,1965,8(3):338-&.
    [28] Deng J L. CONTROL-PROBLEMS OF GREY SYSTEMS. Systems&ControlLetters,1982,1(5):288-294.
    [29] Haan C T. Statistical methods in hydrology. Ames: Iowa State Press,2002.
    [30]刘娜,任立良.基于信息熵对新安江水文模型参数及预报结果不确定性的量化分析.西北水电,2010,(3):88-91.
    [31]王淑英.水文系统模糊不确定性分析方法的研究与应用[博士].大连:大连理工大学水文学及水资源,2004.
    [32]谢更新.水环境中的不确定性理论与方法研究——以三峡水库为例[博士]:湖南大学环境科学与工程系,2005.
    [33]刘薇,任立良,徐静,等.基于新安江模型的降雨不确定性传播.水资源保护,2009,(06):33-35+75.
    [34] Cheng C T, Ou C P, Chau K W. Combining a fuzzy optimal model with a geneticalgorithm to solve multi-objective rainfall-runoff model calibration. Journal ofHydrology,2002,268(1-4):72-86.
    [35] Kuczera G, Parent E. Monte Carlo assessment of parameter uncertainty inconceptual catchment models: the Metropolis algorithm. Journal of Hydrology,1998,211(1-4):69-85.
    [36]梁忠民,戴荣,李彬权.基于贝叶斯理论的水文不确定性分析研究进展.水科学进展,2010,21(2):274-281.
    [37] Beven K, Binley A. The Future of Distributed Models-Model Calibration andUncertainty Prediction. Hydrological Processes,1992,6(3):279-298.
    [38] Beven K. Prophecy, Reality and Uncertainty in Distributed Hydrological Modeling.Advances in Water Resources,1993,16(1):41-51.
    [39] Beven K, Freer J. Equifinality, data assimilation, and uncertainty estimation inmechanistic modelling of complex environmental systems using the GLUEmethodology. Journal of Hydrology,2001,249:11-29.
    [40] Freer J, Beven K. Bayesian estimation of uncertainty in runoff prediction and thevalue of data: an application of the GLUE approach. Water Resources Research,1996,32(7):2161-2173.
    [41] Xiong L H, O'Connor K M. An empirical method to improve the prediction limits ofthe GLUE methodology in rainfall-runoff modeling. Journal of Hydrology,2008,349(1-2):115-124.
    [42] Liu Y L, Freer J, Beven K, et al. Towards a limits of acceptability approach to thecalibration of hydrological models: Extending observation error. Journal ofHydrology,2009,367(1-2):93-103.
    [43] Vazquez R F, Beven K, Feyen J. GLUE Based Assessment on the OverallPredictions of a MIKE SHE Application. Water Resources Management,2009,23(7):1325-1349.
    [44] Mantovan P, Todini E. Hydrological forecasting uncertainty assessment:Incoherence of the GLUE methodology. Journal of Hydrology,2006,330(1-2):368-381.
    [45] Gupta H, Beven K, Wagener T. Model Calibration and Uncertainty Estimation//Anderson M G. Encyclopedia of Hydrological Sciences: John Wiley&Sons,2005.
    [46] Thiemann M, Trosset M, Gupta H, et al. Bayesian recursive parameter estimation forhydrologic models. Water Resources Research,2001,37(10):2521-2535.
    [47] Kavetski D, Kuczera G, Franks S W. Bayesian analysis of input uncertainty inhydrological modeling:1. Theory. Water Resour. Res.,2006,42.
    [48] Ajami N K, Duan Q Y, Sorooshian S. An integrated hydrologic Bayesian multimodelcombination framework: Confronting input, parameter, and model structuraluncertainty in hydrologic prediction. Water Resources Research,2007,43(1).
    [49] Renard B, Kavetski D, Kuczera G, et al. Understanding predictive uncertainty inhydrologic modeling: The challenge of identifying input and structural errors. WaterResources Research,2010,46.
    [50] Beven K, Smith P, Freer J. Comment on "Hydrological forecasting uncertaintyassessment: incoherence of the GLUE methodology" by Pietro Mantovan and EzioTodini. Journal of Hydrology,2007,338(3-4):315-318.
    [51] Vicens G J, Rodrigueziturbe I, Schaake J C. Bayesian Framework for Use ofRegional Information in Hydrology. Water Resources Research,1975,11(3):405-414.
    [52] Krzysztofowicz R. Bayesian theory of probabilistic forecasting via deterministichydrologic model. Water Resources Research,1999,35(9):2739-2750.
    [53] Krzysztofowicz R, Kelly K S. Hydrologic uncertainty processor for probabilisticriver stage forecasting. Water Resources Research,2000,36(11):3265-3277.
    [54]王善序.贝叶斯概率水文预报简介.水文,2001,21(5):33-34.
    [55]张洪刚,郭生练,刘攀,等.基于贝叶斯分析的概率洪水预报模型研究.水电能源科学,2004,(01):23-26.
    [56]张铭,李承军,张勇传.贝叶斯概率水文预报系统在中长期径流预报中的应用.水科学进展,2009,(01):42-46.
    [57] Vrugt J A, Diks C G H, Gupta H V, et al. Improved treatment of uncertainty inhydrologic modeling: Combining the strengths of global optimization and dataassimilation. Water Resources Research,2005,41(1).
    [58]李向阳,程春田,林剑艺.基于BP神经网络的贝叶斯概率水文预报模型.水利学报,2006,(03):104-109.
    [59]邢贞相,芮孝芳,崔海燕,等.基于AM-MCMC算法的贝叶斯概率洪水预报模型.水利学报,2007,(12):94-100.
    [60] Thyer M, Renard B, Kavetski D, et al. Critical evaluation of parameter consistencyand predictive uncertainty in hydrological modeling: A case study using Bayesiantotal error analysis. Water Resources Research,2009,45.
    [61]朱元甡.风险分析实践的感悟.水文,2006,(06):7-11+73.
    [62] Lamb R, Beven K, Myrabo S. Use of spatially distributed water table observations toconstrain uncertainty in a rainfall-runoff model. Advances in Water Resources,1998,22:305-317.
    [63] Blazkova S, Beven K, Tacheci P, et al. Testing the distributed water tablepredictions of TOPMODEL (allowing for uncertainty in model calibration): Thedeath of TOPMODEL? Water Resources Research,2002,38(11).
    [64] Marshall L, Nott D, Sharma A. Hydrological model selection: a Bayesian alternative.Water Resources Research,2005,41(10).
    [65] Clark M P, Slater A G, Rupp D E, et al. Framework for Understanding StructuralErrors (FUSE): A modular framework to diagnose differences between hydrologicalmodels. Water Resources Research,2008,44.
    [66] Kuczera G, Kavetski D, Franks S, et al. Towards a Bayesian total error analysis ofconceptual rainfall-runoff models: Characterising model error usingstorm-dependent parameters. Journal of Hydrology,2006,331(1-2):161-177.
    [67] Reichert P, Mieleitner J. Analyzing input and structural uncertainty of nonlineardynamic models with stochastic, time-dependent parameters. Water ResourcesResearch,2009,45.
    [68] Beven K. On undermining the science? Hydrological Processes,2006,20(14):3141-3146.
    [69] Todini E, Mantovan P. Comment on:'On undermining the science?' by Keith Beven.Hydrological Processes,2007,21(12):1633-1638.
    [70] Andrassian V, Lerat J, Loumagne C, et al. What is really undermining hydrologicscience today? Hydrological Processes,2007,21(20):2819-2822.
    [71] Hall J, O'Connell E, Ewen J. On not undermining the science: coherence, validationand expertise. Discussion of Invited Commentary by Keith Beven HydrologicalProcesses,20,3141-3146(2006). Hydrological Processes,2007,21(7):985-988.
    [72] Montanari A. What do we mean by 'uncertainty"? The need for a consistent wordingabout uncertainty assessment in hydrology. Hydrological Processes,2007,21(6):841-845.
    [73] Hamilton S. Just say NO to equifinality. Hydrological Processes,2007,21(14):1979-1980.
    [74] Sivakumar B. Undermining the science or undermining Nature? HydrologicalProcesses,2008,22(6):893-897.
    [75] Duan Q Y, Sorooshian S, Gupta V. Effective and Efficient Global Optimization forConceptual Rainfall-Runoff Models. Water Resour. Res.,1992,28.
    [76]周激流.遗传算法理论及其在水问题中应用的研究[博士].成都:四川大学水文学及水资源,2000.
    [77] Blasone R S, Madsen H, Rosbjerg D. Uncertainty assessment of integrateddistributed hydrological models using GLUE with Markov chain Monte Carlosampling. Journal of Hydrology,2008,353(1-2):18-32.
    [78] Feyen L, Kalas M, Vrugt J A. Semi-distributed parameter optimization anduncertainty assessment for large-scale streamflow simulation using globaloptimization. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,2008,53(2):293-308.
    [79] Vrugt J A, Gupta H V, Bouten W, et al. A Shuffled Complex Evolution Metropolisalgorithm for optimization and uncertainty assessment of hydrologic modelparameters. Water Resources Research,2003,39(8):18.
    [80] van Griensven A, Meixner T. Methods to quantify and identify the sources ofuncertainty for river basin water quality models. Water Science and Technology,2006,53(1):51-59.
    [81] Abbaspour K C, Yang J, Maximov I, et al. Modelling hydrology and water quality inthe pre-ailpine/alpine Thur watershed using SWAT. Journal of Hydrology,2007,333(2-4):413-430.
    [82] Bates B C, Campbell E P. A Markov chain Monte Carlo scheme for parameterestimation and inference in conceptual rainfall-runoff modeling. Water ResourcesResearch,2001,37(4):937-947.
    [83] Schoups G, Vrugt J A. A formal likelihood function for parameter and predictiveinference of hydrologic models with correlated, heteroscedastic, and non-Gaussianerrors. Water Resour. Res.,2010,46(10):W10531.
    [84] Sorooshian S, Dracup J A. Stochastic parameter estimation procedures forhydrologie rainfall-runoff models: Correlated and heteroscedastic error cases. WaterResour. Res.,1980,16(2):430-442.
    [85] Yang J, Reichert P, Abbaspour K C, et al. Hydrological modelling of the chaohebasin in china: Statistical model formulation and Bayesian inference. Journal ofHydrology,2007,340(3-4):167-182.
    [86] Thyer M, Kuczera G, Wang Q J. Quantifying parameter uncertainty in stochasticmodels using the Box-Cox transformation. Journal of Hydrology,2002,265(1-4):246-257.
    [87] Schaefli B, Talamba D B, Musy A. Quantifying hydrological modeling errorsthrough a mixture of normal distributions. Journal of Hydrology,2007,332(3-4):303-315.
    [88] Yang J, Reichert P, Abbaspour K C, et al. Comparing uncertainty analysistechniques for a SWAT application to the Chaohe Basin in China. Journal ofHydrology,2008,358(1-2):1-23.
    [89] Vrugt J A, ter Braak C J F, Clark M P, et al. Treatment of input uncertainty inhydrologic modeling: Doing hydrology backward with Markov chain Monte Carlosimulation. Water Resour. Res.,2008,44.
    [90] Renard B, Kavetski D, Leblois E, et al. Toward a reliable decomposition ofpredictive uncertainty in hydrological modeling: Characterizing rainfall errors usingconditional simulation. Water Resour. Res.,2011,47(11):W11516.
    [91] Ajami N K, Duan Q, Sorooshian S. Reply to Comment by B. Renard et al. on "Anintegrated hydrologic Bayesian multimodel combination framework: Confrontinginput, parameter, and model structural uncertainty in hydrologic prediction''. WaterResources Research,2009,45.
    [92] Renard B, Kavetski D, Kuczera G. Comment on "An integrated hydrologic Bayesianmultimodel combination framework: Confronting input, parameter, and modelstructural uncertainty in hydrologic prediction'' by Newsha K. Ajami et al. WaterResources Research,2009,45.
    [93] Gotzinger J, Bardossy A. Generic error model for calibration and uncertaintyestimation of hydrological models. Water Resources Research,2008,44.
    [94] Huard D, Mailhot A. Calibration of hydrological model GR2M using Bayesianuncertainty analysis. Water Resources Research,2008,44(2).
    [95] Fisher R A. On the Mathematical Foundations of Theoretical Statistics.Philosophical Transactions of the Royal Society of London. Series A, ContainingPapers of a Mathematical or Physical Character,1922,222:309-368.
    [96] Lindley D V. Understanding uncertainty. Minehead: John Wiley&Sons,2006.
    [97] Mackay D. Information theory, inference, and learning algorithms: CambridgeUniversity Press,2003.
    [98]刘嘉焜,王公恕.应用随机过程.北京:科学出版社,2004.
    [99] Metropolis N, Rosenbluth A, Rosenbluth M, et al. Equation of State Calculations byFast Computing Machines. The Journal of Chemical Physics,1953,21(6):1087-1092.
    [100] Hastings W K. Monte Carlo sampling methods using Markov chains and theirapplications. Biometrika,1970,57(1):97-109.
    [101] Geman S, Geman D. Stochastic relaxation, Gibbs distributions and the Bayesianrestoration of images. IEEE Transactions on Pattern Analysis and MachineIntelligence,1984,6(6):721-741.
    [102] Smith T J, Marshall L A. Bayesian methods in hydrologic modeling: A study ofrecent advancements in Markov chain Monte Carlo techniques. Water ResourcesResearch,2008,44.
    [103] Gilks W R, Richardson S, Spiegelhalter D J. Markov Chain Monte Carlo in Practice:Chapman&Hall,1996.
    [104] Kendall W S, Liang F, Wang J S. Markov Chain Monte Carlo: Innovations AndApplications: World Scientific Publishing Company,2005.
    [105]程春田,李向阳.三水源新安江模型参数不确定性分析PAM算法.中国工程科学,2007,(09):49-53.
    [106]梁忠民,李彬权,余钟波,等.基于贝叶斯理论的TOPMODEL参数不确定性分析.河海大学学报(自然科学版),2009,(02):5-8.
    [107] Haario H, Saksman E, Tamminen J. An adaptive Metropolis algorithm. Bernoulli,2001,7(2):223-242.
    [108] Chen J S, Kemna A, Hubbard S S. A comparison between Gauss-Newton andMarkov-chain Monte Carlo-based methods for inverting spectralinduced-polarization data for Cole-Cole parameters. Geophysics,2008,73(6):F247-F259.
    [109] Chen J S, Hoversten G M, Vasco D, et al. A Bayesian model for gas saturationestimation using marine seismic AVA and CSEM data. Geophysics,2007,72(2):WA85-WA95.
    [110] Haario H, Laine M, Mira A, et al. DRAM: Efficient adaptive MCMC. Statistics andComputing,2006,16(4):339-354.
    [111] Marshall L, Nott D, Sharma A. A comparative study of Markov chain Monte Carlomethods for conceptual rainfall-runoff modeling. Water Resources Research,2004,40(2):11.
    [112] Green P, Mira A. Delayed rejection in reversible jump metropolis-hastings.Biometrika,2001,88:1035-1053.
    [113] Gelfand A E, Smith A F M. Sampling-Based Approaches to Calculating MarginalDensities. Journal of the American Statistical Association,1990,85(410):398-409.
    [114] Gelman A, Rubin D. Inference from Iterative Simulation Using Multiple Sequences.Statistical Science,1992,7(4):457-472.
    [115]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述.水科学进展,1999,10(3):311-318.
    [116]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988.
    [117]吕殿青,邵明安.非饱和土壤水力参数的模型及确定方法.应用生态学报,2004,(01):163-166.
    [118] Kumar S, Sekhar M, Reddy D V, et al. Estimation of soil hydraulic properties andtheir uncertainty: comparison between laboratory and field experiment. HydrologicalProcesses,2010,24(23):3426-3435.
    [119]张俊,徐绍辉,刘建立,等.土壤水力性质参数估计的响应界面和敏感度分析.水利学报,2005,36(4):445-451.
    [120] Wohling T, Vrugt J A. Multiresponse multilayer vadose zone model calibrationusing Markov chain Monte Carlo simulation and field water retention data. WaterResources Research,2011,47.
    [121]雷慧闽,杨大文,沈彦俊,等.黄河灌区水热通量的观测与分析.清华大学学报(自然科学版),2007,(06):801-804+813.
    [122] Simunek J, van Genuchten M T, Sejna M. Development and applications of theHYDRUS and STANMOD software packages and related codes. Vadose ZoneJournal,2008,7(2):587-600.
    [123]马欢,杨大文,雷慧闽,等. Hydrus-1D模型在田间水循环规律分析中的应用及改进.农业工程学报,2011,(03):6-12.
    [124] van Genuchten M T. A closed-form equation for predicting the hydraulicconductivity of unsaturated soils. Soil Science Society of America journal,1980,44(5):892-898.
    [125] Immerzeel W W, Droogers P. Calibration of a distributed hydrological model basedon satellite evapotranspiration. Journal of Hydrology,2008,349(3-4):411-424.
    [126] Khu S T, Madsen H, di Pierro F. Incorporating multiple observations for distributedhydrologic model calibration: An approach using a multi-objective evolutionaryalgorithm and clustering. Advances in Water Resources,2008,31(10):1387-1398.
    [127] Marce R, Ruiz C E, Armengol J. Using spatially distributed parameters andmulti-response objective functions to solve parameterization of complexapplications of semi-distributed hydrological models. Water Resources Research,2008,44(2).
    [128] Shrestha R R, Rode M. Multi-objective calibration and fuzzy preference selection ofa distributed hydrological model. Environmental Modelling&Software,2008,23(12):1384-1395.
    [129] Renard B, Garreta V, Lang M. An application of Bayesian analysis and Markovchain Monte Carlo methods to the estimation of a regional trend in annual maxima.Water Resources Research,2006,42(12).
    [130] Hall J W, Manning L J, Hankin R K S. Bayesian calibration of a flood inundationmodel using spatial data. Water Resources Research,2011,47.
    [131] Xie H, Eheart J W, Chen Y G, et al. An approach for improving the samplingefficiency in the Bayesian calibration of computationally expensive simulationmodels. Water Resources Research,2009,45.
    [132] Yang D W. Distributed hydrological model using hillslope discretization based oncatchment area function: development and applications[Ph.D.]. Tokyo: University ofTokyo1998.
    [133] Yang D W, Herath S, Musiake K. A hillslope-based hydrological model usingcatchment area and width functions. Hydrological Sciences Journal,2002,47(1):49-65.
    [134] Yang D W, Koike T, Tanizawa H. Application of a distributed hydrological modeland weather radar observations for flood management in the upper Tone River ofJapan. Hydrological Processes,2004,18:3119-3132.
    [135] Cong Z T, Yang D W, Gao B, et al. Hydrological trend analysis in the Yellow Riverbasin using a distributed hydrological model. Water Resources Research,2009,45:-.
    [136]杨大文,楠田哲也.水资源综合评价模型及其在黄河流域的应用.北京:中国水利水电出版社,2005.
    [137]章四龙.洪水预报系统关键技术研究与实践.北京:中国水利水电出版社,2006.
    [138] Abbott M B, Bathurst J C, Cunge J A, et al. An introduction to the EuropeanHydrological System--Systeme Hydrologique Europeen,"SHE",1: History andphilosophy of a physically-based, distributed modelling system. Journal ofHydrology,1986,87(1-2):45-59.
    [139]许继军.分布式水文模型在长江流域的应用研究[博士].北京:清华大学水利工程,2007.
    [140] Ocallaghan J F, Mark D M. The Extraction of Drainage Networks from DigitalElevation Data. Computer Vision Graphics and Image Processing,1984,28(3):323-344.
    [141] Penman H L. NATURAL EVAPORATION FROM OPEN WATER, BARE SOILAND GRASS. Proceedings of the Royal Society of London Series a-Mathematicaland Physical Sciences,1948,193(1032):120-&.
    [142] Monteith J L. Evaporation and environment. Symposia of the Society forExperimental Biology,1965,19:205-34.
    [143]Sellers P J, Los S O, Tucker C J, et al. A revised land surface parameterization (SiB2)for atmospheric GCMs.2. The generation of global fields of terrestrial biophysicalparameters from satellite data. Journal of Climate,1996,9(4):706-737.
    [144] Robinson J S, Sivapalan M. Instantaneous response functions of overland flow andsubsurface stormflow for catchment models. Hydrological Processes,1996,10(6):845-862.
    [145] Yang D W, Musiake K. A continental scale hydrological model using the distributedapproach and its application to Asia. Hydrological Processes,2003,17:2855-2869.
    [146]杨大文,李翀,倪广恒,等.分布式水文模型在黄河流域的应用.地理学报,2004,(01).
    [147] Chow V T, David R M, Larry W M. Applied Hydrology: McGraw-Hill Inc.,1988.
    [148]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践.北京:中国水利水电出版社,2005.
    [149] New M, Hulme M, Jones P. Representing twentieth-century space-time climatevariability. Part I: Development of a1961-90mean monthly terrestrial climatology.Journal of Climate,1999,12(3):829-856.
    [150] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models, part I, Adiscussion of principles. Journal of Hydrology,1970,10:398-409.
    [151] New M, Hulme M, Jones P. Representing twentieth-century space-time climatevariability. Part II: Development of1901-96monthly grids of terrestrial surfaceclimate. Journal of Climate,2000,13(13):2217-2238.
    [152]都志辉.高性能计算并行编程技术:MPI并行程序设计北京:清华大学出版社,2001.
    [153] Gneiting T, Westveld A, Raferty A, et al. Calibrated probabilistic forecasting usingensemble model output statistics and minimum CRPS estimation. Washington:Department of Statistics, University of Washington;2004.
    [154] McMillan H, Jackson B, Clark M, et al. Rainfall uncertainty in hydrologicalmodelling: An evaluation of multiplicative error models. Journal of Hydrology,2011,400(1-2):83-94.
    [155] Clark M P, Slater A G. Probabilistic quantitative precipitation estimation in complexterrain. Journal of Hydrometeorology,2006,7(1):3-22.
    [156] Beven K, Young P. Comment on "Bayesian recursive parameter estimation forhydrologic models" by M. Thiemann, M. Trosset, H. Gupta, and S. Sorooshian.Water Resources Research,2003,39(5).
    [157] Gupta H, Thiemann M, Trosset M, et al. Reply to comment by K. Beven and P.Young on "Bayesian recursive parameter estimation for hydrologic models''. WaterResources Research,2003,39(5).
    [158] Mantovan P, Todini E, Martina M L V. Reply to comment by Keith Beven, PaulSmith and Jim Freer on "Hydrological forecasting uncertainty assessment:Incoherence of the GLUE methodology". Journal of Hydrology,2007,338(3-4):319-324.
    [159] Sivapalan M. The secret to 'doing better hydrological science': change the question!Hydrological Processes,2009,23(9):1391-1396.
    [160] Blasone R S, Vrugt J A, Madsen H, et al. Generalized likelihood uncertaintyestimation (GLUE) using adaptive Markov chain Monte Carlo sampling. Advancesin Water Resources,2008,31(4):630-648.
    [161] Smith P, Beven K J, Tawn J A. Informal likelihood measures in model assessment:Theoretic development and investigation. Advances in Water Resources,2008,31(8):1087-1100.
    [162] Smith T, Sharma A, Marshall L, et al. Development of a formal likelihood functionfor improved Bayesian inference of ephemeral catchments. Water Resour. Res.,2010,46(12):W12551.
    [163] Li L, Xia J, Xu C-Y, et al. Evaluation of the subjective factors of the GLUE methodand comparison with the formal Bayesian method in uncertainty assessment ofhydrological models. Journal of Hydrology,2010,390(3-4):210-221.
    [164] Zhang Y, Liu H-H, Houseworth J. Modified Generalized Likelihood UncertaintyEstimation (GLUE) Methodology for Considering the Subjectivity of LikelihoodMeasure Selection. Journal of Hydrologic Engineering,2011,16(6):558-561.
    [165] Xu C Y. Statistical analysis of parameters and residuals of a conceptual waterbalance model-Methodology and case study. Water Resources Management,2001,15(2):75-92.
    [166] Beven K, Westerberg I. On red herrings and real herrings: disinformation andinformation in hydrological inference. Hydrological Processes,2011,25(10):1676-1680.
    [167] Vrugt J A, ter Braak C J F, Gupta H V, et al. Equifinality of formal (DREAM) andinformal (GLUE) Bayesian approaches in hydrologic modeling? StochasticEnvironmental Research and Risk Assessment,2009,23(7):1011-1026.
    [168] Vyncke D. Comonotonocity: the perfect dependence[doctoral thesis]: University ofAmsterdam2003.
    [169] Zhao R J. The Xinanjiang model applied in China. Journal of Hydrology,1992,135(1-4):371-381.
    [170]翟家瑞,编著.常用水文预报算法和计算程序.郑州:黄河水利出版社;1995.
    [171] Li M, Yang D, Chen J. Probabilistic flood forecasting by a sampling-based Bayesianmodel. Shuili Fadian Xuebao/Journal of Hydroelectric Engineering,2011,30(3):27-33.
    [172] Liu Y Q, Gupta H V. Uncertainty in hydrologic modeling: Toward an integrated dataassimilation framework. Water Resources Research,2007,43(7).
    [173]邢贞相.确定性水文模型的贝叶斯概率预报方法研究[博士].南京:河海大学水文学与水资源,2007.
    [174] Herr H D, Krzysztofowicz R. Bayesian ensemble forecast of river stages andensemble size requirements. Journal of Hydrology,2010,387(3-4):151-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700