用户名: 密码: 验证码:
福建东南沿海地区三维形变场监测及动力学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
福建地区属于华南褶皱系武夷-戴云隆折带,该地区紧连环太平洋地震带,属于中国地震活动较活跃的地区之一。从板块构造角度看,福建地区位于亚欧板块的东南缘,地处太平洋板块(菲律宾板块)向亚欧板块俯冲、碰撞带的内侧。因受到太平洋板块(菲律宾板块)、亚欧板块运动的联合影响,在长期的构造演化环境下,福建地区的构造活动带不断变迁,地质构造活动极为复杂。特别是福建东南沿海地区受到来自几大板块相互碰撞产生的作用,如印度板块、太平洋板块、欧亚板块和菲律宾板块,这几大板块中,相互之间会因为不同的运动形式产生挤压作用、侧压作用和扩张等产生不同的板块作用。
     具体来说,印度板块、欧亚板块、太平洋板块和菲律宾板块之间的相互作用,其中有来自菲律宾板块和太平洋板块向欧亚板块的挤压,以及在印度板块的挤压下青藏高原强烈隆起所派生的向东侧压以及冲绳海沟的扩张等联合作用。
     大地测量学的快速发展,使得高精度和高稳定性的观测、大信息量的获取、快速准实时的信息处理成为可能,从而为地球动力学的定量研究,提供了极其重要的新手段,具有极其重要的意义。在地壳运动的三维形变监测方面,利用高精度的全球定位系统技术(GPS)、合成孔径雷达干涉测量技术(InSAR)、甚长基线干涉测量技术(VIBL)、人卫测距技术(SLR)等现代大地测量手段,给出的对于地壳大范围长期变化、地壳运动时空密集的运动观测数据,这些形变数据都支持对于地球科学研究具有定量的作用。
     利用大地测量手段获取大范围和时空密集的三维地壳形变场,对于地壳形变运动趋势的研究、深部动力学机制的推断是极为重要的。由于随着地学研究的进一步深入,地壳板块构造运动的特征、断层活动特性、构造应力场特征、断裂发震危险性评价等深部机制的研究成为重点。因此,结合大范围和时空密集的三维地壳形变场,利用地球物理反演、三维数值模拟等方法,多角度、多学科、多领域的深入研究引发地壳运动的地球内部动力学机制是当前地学研究的重要形式及热点。
     近年来,地质学家对福建东南沿海及其邻近地区的运动进行了比较广泛的研究,尤其对相邻板块碰撞机制、地球动力学过程、地质构造深化规律和环境迁变这些运动进行了更为深入、全面的研究。通过对福建东南沿海地区运动性的研究,提出了研究对象在形变和相对运动、活动断裂地壳活动三者之间存在的动力关系。为该地区的地质学研究和地震研究提供了重要的数据凭证,为福建东南沿海地区大陆动力学的研究提供了很重要的理论指导,除此之外,还可以影响这个地区在数据模拟过程、运动动力学研究的进行。这些问题的探讨对于发展福建东南沿海地区地球科学理论、认识福建东南沿海地区构造运动、论述该地区在东南沿海地区内部构造变形机制、讨论推测环境变迁、防灾减灾这些方面都有着很现实的理论指导意义和现实应用价值。
     本文以福建东南沿海地区三维形变场监测、特征分析以及其动力学机制为主要研究目标,在总结福建东南沿海地区地质构造特征、断层活动特性、地质钻孔勘察、地球物理勘探等资料的基础上,综合利用GPS、水准、InSAR等大地测量技术手段,对福建东南沿海地区块体活动趋势、内部形变特征、应力应变关系等进行细致研究比较;综合利用大地测量反演、三维数值模拟等处理技术,对其细部、深部特征进行进一步分析研究,综合区域外围的华南板块、台湾地区的地壳运动特征,提出合理的福建东南沿海地区深部构造机理,针对上述的研究目的,本文研究的主要内容及取得结论如下:
     一、系统收集整理福建东南沿海地区的地质构造、物理探测、地壳形变资料,详细掌握该地质单元的演化规律及构造背景,并对福建东南沿海地区区域构造应力场与动力背景进行初步研究。地质资料表明:大型断裂系统对于区内运动的影响是不可忽视的,区内断裂构造是造成区内不均匀运动的重要原因。福建东南沿海的构造格局主要由北东向断裂带(长乐一诏安断裂带和滨海断裂带)和北西向断裂带(九龙江断裂带,晋江一永安断裂带,兴化湾断裂带和闽江断裂带)两组第四纪断裂带控制;在重心基准下(扣除块体内的整体运动),区内地壳形变运动比较小,结果表明福建地区形变是南强北弱,东强西弱。
     二、优化改造研究区域的现有地壳形变监测网络,设计GPS及水准监测方案,对城市群、国家重点项目所在区域进行重点布设,为研究区域的地壳三维形变场及城市规划提供依据。本章主要介绍了福建东南沿海地区现有水准、GPS监测网的成果,并对现今监测网络进行优化改造,并研究设计完善监测方案。大地测量数据表明:福建东南沿海地区现今表面运动的总体格局取决于周边大型构造块体的相对运动状态,从GPS资料分析处理结果来看,区内运动基本沿SE方向运动,且具有较强的整体一致性,同时又具分区变化特征,存在着差异运动。
     三、在传统大地测量手段基础上,进一步研究了InSAR和D-InSAR技术获取大尺度、高精度垂直形变的技术可行性,论文重点探讨了SBAS-InSAR技术应用于福建东南沿海地区城市群地面沉降形变监测,采用最小二乘和小基线集的多基线距D-InSAR方法,采用多平台对获取的影像进行处理,将InSAR干涉数据与水准测量数据相结合,描述了福州盆地、泉州盆地及漳州盆地的沉降速率及其特征。InSAR技术获取福州盆地处于沉降状态,厦漳地区处于抬升状态,泉州地区升降不明显,这一结果与精密水准测量结果基本吻合。
     四、根据地球表面监测到的形迹资料对地球内部的空间变化以及地球内部介质物理状态进行反推,这就是大地测量反演问题,在地球科学的研究体系中,占据着很重要的地位,大地测量学和地震学、地球物理学紧密结合、相互联系,并不是一个独立的学科,其中联合反演是地球物理数据分析的理想工具。论文结合多类数据联合反演断层参数,选用OKADA位错模型,利用该区域的GPS、水准、及部分InSAR成果,通过粒子群算法对断层的三维滑动速率进行反演,重点对长乐-诏安断裂带断层特性进行了分析。利用GPS、水准、InSAR等资料联合反演断层参数得出:断层运动速率较低,每年变化量仅1mm/a左右,从形成性质及特点来看,长安-诏安断裂带体现出以压性逆断为主要的运动方式,在形成受力方面成因相同,从运动速率来目的地,从南到北,速率依次变弱,南段层运动比北段大。
     五、通常在地球物理和大地测量反演领域进行运用的方法有很多,其中较为重要的有有限元法,这种方法最根本的数值计算方法是变分原理和部分插值计算法,它可以将偏微分方程的求解问题由难变易,变成一个线性方程的求解过程。论文结合采用有限元方法,基于粘弹性本构关系,采用三维数值模拟得到应力应变场,进行了应力应变场数值模拟。利用三维粘弹性模型模拟:1)主压应力为主张应力的3~4倍,区域应力场主压应力方位为NW(NWW)-SE(SEE).在此应力场作用下, NE向断层呈压性运动, NW向断层呈张性运动。地壳运动速度和应力变化的规律,表明福建地区在地震发生时具有一定的特征:地震发生前后应力都会突然增加。积蓄弹性应变能。在地震发生时包括震后,应变能都会得到释放,最终基本恢复到原来的状态。2)长乐一诏安断裂带和滨海断裂带和北西向断裂带(九龙江断裂带,晋江一永安断裂带,兴化湾断裂带和闽江断裂带)附近应力较为集中,现今构造运动活跃,影响着周围区域的形变特征。
     六、在获取了大地测量地壳运动监测的前提下,结合已经取得基础成果的基础上,论文在前面研究的基础上,分析研究了地壳形变的变形特征,推断地壳变形的原因,找出产生地壳变形的力源,研究了福建东南沿海地区地壳形变的动力学机制。区域构造动力学机制研究:控制东南部现代地壳应力场和地壳运动的主要力源是来自菲律宾板块和太平洋板块向欧亚板块的挤压,以及在印度板块的挤压下青藏高原强烈隆起所派生的向东侧压以及冲绳海沟的扩张等联合作用,这说明对于福建东南沿海及邻区而言,其现今地壳运动及区内形变状态是多种驱动力共同作用的结果。
The Fujian region belongs to Wuyi-Dai Yunlong fold in South China fold system which is closelyrelated with circum-pacific seismic belt. It is one of the regions with active seismic activities in China.From the aspect of Plate Tectonics, Fujian province is located in the south-east of Eurasian plate margin,lies in the subduction from Pacific plate (Philippine plate) to the Eurasian plate and the inside of thecollision zone. Due to the joint impact of the movement of the Pacific plate (Philippine plate) and Eurasianplate, under the environment of long-term tectonic evolution, tectonic activities in Fujian Province ischanging constantly with extremely complex tectonic activities. Especially southeast coastal areas ofFujian which comes from the interaction between the Indian Plate and the Eurasian Plate, the PacificPlate as well as the Philippine Plate. There are extrusions from the Philippine Plate and the Pacific Platetowards the Eurasian plate, and pressure to the east deprived by Tibetan Plateau intensive uplift under thepressure of Indian plate as well as the expansion of Okinawa trench and other joint effects.
     The rapid development of geodesy allows the observations of high precision and high stability, accessto a large amount of information, and fast quasi-real-time information processing become possible, so as toprovide extremely important means for the quantitative study of geodynamics. It has an importantsignificance. In the three-dimensional deformation monitoring of crustal movement, Global PositioningSystem (GPS) of high-precision, Interferometry SAR (InSAR), Very Long Baseline Interferometry (VIBL),Artificial Satellite measurement technology (SLR) and other modern geodetic means are applied. Theobservation data of crustal Movement with intensive scope and time will become the basis of quantitativeresearch in the Earth Sciences.
     Using the geodetic means to obtain intensive three-dimensional crustal deformation field in to a widerange of time and space is extremely important for the study of the movement trends of crustal deformationand deep dynamic mechanism inferred. However, with further in-depth studies, the characteristics of thecrustal plate tectonics, fault activity characteristics, tectonic stress field, risk evaluation of seismogenicfault and other in-depth research of intensive mechanism become the focus. Therefore, combined withlarge-scale and intensive space-time three-dimensional crustal deformation field, use the geophysicalinversion, three-dimensional numerical simulation methods as well as other methods to research on theinternal dynamics mechanism triggering the crustal movements in multi-angle, multi-disciplinary andmulti-field is the main form of the current Geo-studies.
     In recent years, the law of motion on the southeast coast in Fujian and its neighboring regions,adjacent plate collision mechanism, rules of tectonic evolution, geodynamic processes, and influence ofenvironmental transitions has been a hot research topic in the field of Earth Sciences. Through the study ofthe motion characteristics of the southeast coastal areas in Fujian, it reveals the dynamic relationshipbetween the relative motion and deformation of the region with the active fault zone activities and provide important information for the earthquake prediction of southeast coastal areas in Fujian and study ofcontinental dynamics basis, which has a far-reaching significance for the establishment of numericalsimulation in this area and motion dynamics model, as well as providing an important basis for thecontinental dynamics research in this region. Discussion on these issues has important scientific andpractical significance for the development of the theory of Earth Sciences in the southeast coastal areas ofFujian, understanding the tectonic movement in southeast coastal areas of Fujian, demonstrating theinternal structure and mechanism of deformation of the southeast coastal areas in Fujian, analyzing andpredicting environmental change and disaster prevention as well as reduction.
     This paper focuses on the analysis of three-dimensional deformation field characteristics and itsdynamic mechanism of the southeast coastal areas in Fujian, based on the summary of the geologicalstructure of the southeast coastal areas in Fujian, fault activity characteristics, geological drilling survey,geophysical exploration data and other information, comprehensively use GPS, standards, InSAR and othergeodetic technical means to conduct careful research and comparison on activity trends, internaldeformation characteristics, stress-strain relations in the southeast coastal areas of Fujian block;comprehensively utilize geodetic inversion processing, three-dimensional numerical simulation and otherprocessing techniques for further analysis of its detail, deep features; and propose a reasonable mechanismof the deep structure of the southeast coastal areas in Fujian combined with the crustal movementcharacteristics of integrated regional peripheral South China plate and Taiwan region. In accordance withthe above purposes, main content and conclusions of this study include:
     1. A systematic collection of geological structure, physical exploration and crustal deformation data ofthe southeast coastal areas of Fujian, to master the geological unit evolution and tectonic settings, andconduct a preliminary study on the southeast coastal areas in Fujian regional tectonic and dynamicbackground. Geological data show that impact of large fracture system movement on which cannot beignored, the faults developed in the region is the important reasons for the uneven movement. Fujiansoutheast coastal structure pattern is mainly composed of north east towards fault zone (Changle-Zhaoanfault zone and coastal fault zone) and north west fault zone (Jiulong River fault zone, Jinjiang-Yongan faultzone, Xinghua Bay fault zone and Minjiang Fault zone), controlled by two groups and the quaternary faultzone; in the center of gravity datum (apart from the whole movement in the block), the crustal deformationmotion is small, and the results show that Fujian weak in the North and strong in the south, as well as weakin the west and strong in the south.
     2. Optimization and transformation of the existing crustal deformation monitoring network, designGPS and leveling scheme for layout of the urban agglomeration and national key project areas, so as toprovide evidence for the earth's crust three dimensional deformation field and urban planning. This chaptermainly introduces the current level and GPS monitoring network results of Fujian southeast coastal areaand optimize as well as transform the current monitoring network, study and design the perfect monitoringscheme. Geodetic survey data show that the overall layout of existing surface movement depends on the surrounding large tectonic block relative motion state. From GPS data processing result, basic movementmoves along the SE direction, and has strong overall consistency while partition variation characteristics atthe same time. Differences movements are existed here.
     3. On the basis of traditional geodetic survey means, further study the InSAR and D-InSARtechnology for large scale, high precision vertical deformation of technical feasibility. The paper discussesthe application of SBAS-InSAR technology on the urban agglomeration land subsidence deformationmonitoring of Fujian southeast coastal area. D-InSAR methods of least east squares and multi-baselinewith small base set is applied, and use multiple platform to obtain image processing, combined withmultiple platform to obtain image processing, to describe the deposition velocity and characteristics ofFuzhou Basin, Quanzhou Basin and Zhangzhou Basin. Fuzhou basin acquired by InSAR technology is insedimentation condition, the Xiazhang region is in lifting state, while the Quanzhou area lifting is notobvious.
     4. Geodetic inversion problem is one of the core problems in in-depth survey of geodesy discipline,using the earth's surface observed deformation material to speculate space change of the earth's interiormedium physical state and evolution, it combines with seismology, earth physics and other subjects instudying earth dynamics and geophysical deep structure details the earth internal dynamic process andphysical property characteristics, its joint inversion is the most ideal tool for the geophysical data analysis.The thesis combines many kinds of data joint inversion fault parameters, applies dislocation model and theregional GPS and leveling as well as part of the InSAR results for fault of three dimensional slidingvelocity inversions through the particle swarm algorithm, and focused on analyzing fault characteristics ofChangle-Zhaoan fault zone. Joint inversion fault parameters obtained by using GPS, level, InSAR andother information are: fault movement rate is low, which changes only about1mm/a every year. Activitiesof Changle-Zhaoan fault zone are mainly compressional reverse rupture; forces of various parts of the faultzone are basically the same. The movement rate on the south of Changle-Zhaoan fault zone is high withstrong reverse fault activity; the middle part is weaker, and weakest in the north. The fault movement ofsouth section is larger than the north movement.
     5. The finite element method is widely used in earth science especially in geophysical and geodeticinversion field. The finite element method is a numerical calculation method based on variation calculusand split interpolation. It turns a problem of solving complex partial differential equation into thecalculating problem of Linear Equations. This paper used finite element method, and applies threedimensional numerical simulations to get stress strain field based on the viscoelastic constitutiverelationship for the numerical simulation of the stress strain field. Use three dimensional viscoelastic modelsimulation:1) the principal compressive stress is3-4times as principal tension, location of regional is NW(NWW)-SE (SEE). Under the action of this stress field, NE shows compressive movements towards faultzone, NW presents tension movement towards fault zone.2) Stress near (Changle-Zhaoan fault zone andcoastal fault zone) and North West fault zone (Jiu-long River fault zone, Jinjiang-Yongan fault zone, Xinghua Bay fault zone and Minjiang fault zone) are relatively concentrated and now active tectonicmovement affects the deformation characteristics of surrounding area.
     6. With the support of the acquisition of monitoring the earth measurement crustal movement, and onthe basis of understanding research regional geological tectonic characteristics, the paper analyzes thedeformation characteristics of combined with the above research results with inference of the cause of thecrustal deformation, and find out the force source of earth's crust deformation, and studies the dynamicsmechanism of crustal deformation in Fujian southeast coastal area. Research on regional tectonic dynamicsmechanism: for Fujian southeast coastal and its adjacent area, the present crustal movement and thedeformation state is the result of many kinds of driving force: main force source of controlling southeastmodern crustal stress field and tectonic movement originate from the extrusion from Philippine plate andthe Pacific plate to the Eurasian plate, and the Pressure towards east derived from the Tibetan Plateauintensive uplift under Indian plate extrusion and Okinawa trench expansion as well as other joint action.
引文
[1]马杏垣.中国岩石圈动力学地图集[M].北京:中国地图出版社,1989.
    [2]朱金芳,谢志招,曲国胜,等.闽南地区城市活动构造与地震[M].北京:科学出版社,2008.
    [3]丁国瑜.中国内陆活动断裂基本特征的探讨[M].北京:地震出版社,1982.
    [4]丁祥焕.福建东南沿海活动断裂与地震[M].福州:福建科学技术出版社,1999.
    [5]丁祥焕,黄卿团,庄进跃.福建长乐-诏安断裂带晚第四纪活动性的分析[M].北京:地震出版社,1992.
    [6]福建省地质矿产局.福建省区域地质志及1:50万地质图[M].北京:地质出版社,1985.
    [7]李爽.大地测量联合反演的模式及算法研究[D].武汉:武汉大学,2005,:44-56.
    [8]马杏垣.中国及邻近海域岩石圈动力学图[M].北京:地质出版社,1987.
    [9]马杏垣.中国岩石圈动力学图集[M].北京:中国地图出版社,1992.
    [10]福建省地质矿产局1福建省区域地质志1北京:地质出版社,1985
    [11]福建地质矿产勘查开发局1福建省地质图(1∶50万)说明书1福州:福建省地图出版社,1998.
    [12]丁祥焕.福建东南沿海活动断裂与地震[M].福州:福建科学技术出版社,1999.171.
    [13]福建省地方志编纂委员会.福建省志地震志[M].北京:中国社会科学出版社,2001.
    [14]丁祥焕.福建东南沿海活动断裂与地震[M].福州:福建科学技术出版社,1999.171.
    [15]顾功叙.中国地震目录[M].北京:科学出版社,1983.63-65.
    [16]丁祥焕.福建东南沿海活动断裂与地震[M].福州:福建科学技术出版社,1999.82.
    [17]福建省地方志编纂委员会.福建省志地震志[M].北京:中国社会科学出版社,2001.11.
    [18]丁祥焕.福建东南沿海活动断裂与地震[M].福州:福建科学技术出版社,1999.113.
    [19]许振栋.1604年泉州海外8级地震研究[J].大地测量与地球动力学,2006,26(3):78-83.
    [20]郭逢英,史粦华,丁学仁,等.GPS测量揭示的福建沿海地区的现今地形变[J].大地测量与地球动力学,2003,23(3):87-92.
    [21]吴绍祖,傅再扬.GPS定位技术在福建地壳形变监测中的应用[J].海峡地震,2005,3(1):30-34.
    [22]林淑冰,王志鹏,占惠.长乐-诏安断裂带垂直形变与断层活动特征分析[J].大地测量与地球动力学,2009,29(5):43-50.
    [23]林锦华.长乐-诏安断裂带活动特征与继承性活动[J].华南地震,1999,19(2):57-61.
    [24]黄松风.长诏断裂带垂直运动与地震关系初探[J].大地测量与地球动力学,2003,23(4):99-104.
    [25]刘序俨,季颖锋,黄声明,等.地形变应变张量矩阵的不变量分析[J].大地测量与地球动力学,2011,31(4):66-70.
    [26]马金清,徐维光.福安—南靖断裂带特征及其地质意义讨论[J].福建地质,2009,29(1):67-72.
    [27]陈光,李祖宁,王紫燕,等.福建地壳运动与地震关系初探[J].华北地震科学,2010,28(1):21-25.
    [28]陈光,李祖宁,王紫燕,.福建地区地壳形变特征研究[J].大地测量与地球动力学,2009,29(增):49-52.
    [29]丁学仁,胡新康,刘序俨.福建地区地块运动时空变化特征研究[J].大地测量与地球动力学,2006,26(2):58-61.
    [30]陈晨.福建地区地震活动空间分布及活动断裂特点研究[J].地震,2005,25(3):102-108.
    [31]袁丽文,郑斯华,周峥嵘.福建地区地震活动特征及区域应力场研究[J].东北地震研究,2009,25(3):37-44.
    [32]林松建,陈为伟,郑师春.福建地区地震震源深度特征的统计分析[J].地震,2010,30(1):82-88.
    [33]郭逢英,李华,庄绍金,等.福建地区流动定点形变异常与该地区中强地震(1992-1999,MS≥5.0)活动关系的初探[J].福建地震,2000,16(3):49-54.
    [34]吴绍祖,丁学仁,李祖宁,等.福建地区现今地壳运动变化特征研究[J].华南地震,2005,25(3):87-94.
    [35]占惠,梁全强,林淑冰,等.福建地区现今地壳运动与形变研究[J].大地测量与地球动力学,2009,29(增):45-48.
    [36]林松建,丁学仁,陈为伟,等.福建地区震源机制解与现代构造应力场研究[J].大地测量与地球动力学,2009,29(5):27-32.
    [37]丁学仁,史粦华,曾建民,等.福建地震前兆台网集成设计与应用[J].华南地震,2008,28(3):95-103.
    [38]钟继茂,李祖宁吴绍祖,等.福建定点和流动跨断层对台湾强震的反映及特征研究[J].华南地震,2008,28(3):63-70.
    [39]黄卿团,付萍,郑韶鹏.福建东南沿海50m以下的地貌面与断裂活动性[J].地震地质,2007,29(3):578-596.
    [40]陈觉民.福建东南沿海断裂格局分析[J].福建地质,1999,19(2):90-96.
    [41]黄卿团,付萍,尤惠川.福建福清龙高半岛断裂活动性研究[J].地震地质,2008,30(2):431-442.
    [42]史粦华.福建及邻区现今地壳运动与形变[J].大地测量与地球动力学,2005,25(3):69-74.
    [43]史粦华,周峥嵘,鲍挺,倪晓寅.福建及沿海地区地震活动力源探讨[J].地震,2006,26(2):104-112.
    [44]黄卿团庄进耀谢志招张清香.福建晋江下游北西向断裂带活动性研究[J].震灾防御技术,2008,3(3):302-310.
    [45]黄卿团庄进耀谢志招张清香.福建龙海—漳浦沿海活动断裂与火山活动[J].地震地质,2005,27(1):89-97.
    [46]黄卿团,付萍,胡哲明.福建闽江断裂带第四纪活动特征[J].震灾防御技术,2007,2(4):346-353.
    [47]陈光,王紫燕,关玉梅.福建省GPS资料与地壳运动研究[J].高原地震,2009,21(3):52-69.
    [48]史粦华,丁学仁,刘序俨,等.福建省地壳形变观测台网建设简介[J].大地测量与地球动力学,2003,23(1):125-126.
    [49]丁学仁,史粦华,林继华,等.福建省地壳形变观测网络建设[J].大地测量与地球动力学,2003,23(3):120-124.
    [50]刘与锟,郭逢英,陈兆煌,等.福建省现代地壳垂直运动与断裂活动[J].地壳形变与地震,1998,18(4):68-73.
    [51]钟继茂.福建水口库区次级断裂的应力分析和活动特征研究[J].大地测量与地球动力学,2010,30(增).
    [52]李华,黄声明,陈新泽.福建天马定点形变台形变异常特征研究[J].大地测量与地球动力学,2005,25(4):59-62.
    [53]刘序俨,林继华,王志鹏.福建沿海地壳运动与GPS测量结果初步分析[J].地壳形变与地震,1999,19(3):40-47.
    [54]黄卿团,汪一鹏,宋方敏,等.福建漳州地区岱山岩一琦坑北西向断裂带第四纪活动特征[J].华南地震,2001,21(2):28-35.
    [55]陈秋英,陈传昌.福建政和一海丰断裂带地震活动特征分析[J].地震地磁观测与研究,2007,28(3):34-37.
    [56]邵占英,刘经南,姜卫平,等.高精度GPS观测及其在福建东南沿海地壳形变研究中的应用[J].地壳形变与地震,1999,19(4):39-44.
    [57]张静华,李延兴,郭良迁,等.华南块体的现今构造运动与内部形变[J].大地测量与地球动力学,2005,25(3):57-62.
    [58]周硕愚,吴云,秦小军,等.基于多种GPS数据研究福建及其邻近海域1994一1997年地壳水平运动[J].地球物理学报,2000,43(4):471-479.
    [59]王紫燕,李祖宁,刘序俨,等.基于多种形变观测资料分析福建地区形变特征[J].大地测量与地球动力学,2011,31(4):32-36.
    [60]黄卿团,庄进耀,谢志招,等.龙海流会—漳浦将军澳断裂活动与地震[J].福建地震,2004,2004(12):1-6.
    [61]黄松风.闽赣地区跨断层垂直形变与地震关系初探[J].防灾减灾工程学报,2004,24(2):187-194.
    [62]李斌,王舒畋,杨文达,等.平潭岛外~乌丘屿段滨海断裂活动性分析[J].上海地质,2008,108(4):30-33.
    [63]陈文明,史粦华.十五期间福建区域数字强震观测系统建设[J].福建地震,2003,19(1):1-5.
    [64]李延兴,郭逢英,胡新康,等.台海地区的地壳运动与变形[J].地震学报,2002,24(5):487-495.
    [65]黄昭,王善雄.台湾海峡滨海断裂带的构造特征与活动性[J].大地测量与地球动力学,2006,26(3):16-22.
    [66]沈金瑞,许世远,傅文杰.台湾海峡地区横向构造及其对东南沿海地震的作用[J].大地构造与成矿学,2009,32(4):535-541.
    [67]李祖宁,刘序俨,吴绍祖,等.台湾海峡两岸地壳相对运动分析[J].大地测量与地球动力学,2007,27(5):18-21.
    [68]梁全强,刘序俨,黄声明,等.台湾海峡西岸重力场变化梯度场图像分析[J].大地测量与地球动力学,2006,26(4):82-85.
    [69]李延兴,史粦华,陈聚忠,等.台湾集集7.6级地震前后福建沿海地区的地壳运动[J].大地测量与地球动力学,2006,26(2):5-9.
    [70]史粦华,丁学仁,李延兴,等.台湾两次7级地震前后福建沿海地区地壳运动的变化[J].大地测量与地球动力学,2007,27(5):5-12.
    [71]沈金瑞.台中—晋江横向构造带对福建现代地壳变形和地震的影响[J].莆田学院学报,2009,16(5):90-94.
    [72]黄松风,陈新泽.天马台跨断层垂直形变和地震前兆特征分析[J].大地测量与地球动力学,2004,24(4):85-89.
    [73]吴绍祖,陈光,李祖宁,等.汶川8.0级地震前后福建地区形变及应力场演化[J].华北地震科学,2009,27(4):31-35.
    [74]张远城,熊先保,黄晓华.厦门GPS基准站建设与试运行[J].大地测量与地球动力学,2003,23(3):125-127.
    [75]刘序俨,林继华,郭逢英,等.用GPS技术探讨福建沿海与台湾海峡地壳形变特征[J].全球定位系统,2000,25(1):17-24.
    [76]周硕愚,吴云,施顺英,等.中国大陆东南边缘海现时地壳运动与地震动力学综合研究[J].地壳形变与地震,2001,21(1):1-14.
    [77]周硕愚,帅平,张跃刚,等.中国大陆及其东南沿海现时地壳运动补[J].自然科学进展,1999,10(3):273-277.
    [78]周硕愚,帅平,郭逢英,等.中国福建及其边缘海域现时地壳运动定量研究[J].地震学报,2000,22(1):66-72.
    [79]江素云,陈培善.中国及邻区现代构造应力场的数值模拟[J].地球物理学报,1980,23(1):35-45.
    [80]姜岩,高均海.合成孔径雷达干涉测量技术在矿山开采地表沉陷监测中的应用[J].矿山测量,2003,(l):5-7.
    [81]舒宁.雷达影像干涉测量原理[M].武汉:武汉大学出版社,2003,3-10.
    [82]廖明生,林珲.雷达干涉测量——原理与信号处理基础[M].北京:测绘出版社,2003.
    [83]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.
    [84]R. F. Hanssen. Radar Interferometry-Data Interpretation and Error Analysis [M]. London:Kluwer Academic Publisher,2001.
    [85]Richard Bamler and Philipp Hartl. Synthetic aperture radar interferometry [J]. InverseProbles,1998,(14):46-54.
    [86]Paul A. Rosen, et.al. Synthetic aperture radar interferometry [J]. Proceedings of the IEEE,2000,88(3):333-338.
    [87] A. E. Rogers, R. P. Ingalls. Venus: Mapping the surface reflectivity by radarinterferometry [J]. Science,1969,(65):797-799.
    [88] T. G. Farr, M. Kobrick. Shuttle radar topography mission produces a wealth of data [J].Amer. Geophys. Union Eos,2000,(81):583-585.
    [89] C. Delacourt, P. Briole, and J. Achache. Tropospheric correction of SAR interferogramswith strong topography: application to Enta [J]. Geophysical Research Letters,1998,25(15):2849-2852.
    [90] A. K. Grabriel, R. M. Goldstein, H. A. Zebker. Mapping small elevation changes overlarge areas: Differential radar interferometry [J]. Journal of Geophysical Research,1989,(94):9183.
    [91] D. Massonnet, M. Rossi, Cannona Cete. The displacement field of the Landersearthquake mapped by radar interfereometry [J]. Nature,1993,(364):138-142.
    [92] C. Camee, D. Massonnet, C. King. Two examples of the use of SAR inierferometry ondisplacement fields of small spatial extent [J]. Geophysical Research Letters,1996,23(4):3579-358.
    [93] J. Fielding, R. G. Blom, R. M. Goldstein. Rapid subsidence over oil fields measured bySAR interferometry [J]. Geophysical Research Letters,1998,25(17):3215-3218.
    [94] H. Nakagawa, M. Murakami, S, Fujiwara, M. Tobita. Land subsidence of the northernKanto plains caused by ground water extraction detected by JERS2InSAR interferometry.International Geoscience and RemoteSensing Symposium,2000,(5):2233-2235.
    [95]王超,刘智,张红,单新建.张北——尚义地震同震形变场雷达差分干涉测量[J].科学通报,2004,23(5):2550-2554.
    [96]刘国祥,丁晓利,陈永奇等.使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场[J].科学通报,2001,46(14):1224-1225.
    [97]单新建,马瑾,王长林等.利用差分干涉雷达测量技术(D-InsAR)提取同震形变场[J].地震学报,2002,24(4):413-420.
    [98]路旭,匡绍君,贾有良等.用InSAR作地面沉降监测的试验研究[J].大地测量与地球动力学,2002,22(4):66-70.
    [99]U. Wegmuller, T. Strozzi, A. Wiesmaxm, C. Wemer. Land subsidence mapping with ERSinterferometry: evaluation of maturity and operational readiness [J]. FRINGE99, Belgium,1999,10-12.
    [100]龚云;姚顽强;汤伏全.西部矿区开采损害动态监测的新途径[J].西安科技大学学报,2010,32(1):45-49.
    [101]涂怀奎.中国地质灾害类型及其分布特征[J].矿产与地质,2000,14(2):98-102.
    [102]高清武,牛景才.煤田采空沉陷及其影响因素分析[J].中国地质灾害与防治学报,1997,8(3):57-61.
    [103]段永候.我国地面沉降研究现状与21世纪可持续发展[J].中国地质灾害与防治学报,1998,9(2): l-5.
    [104]刘国林,张连蓬,成枢,江涛.合成孔径雷达干涉测量与全球定位系统数据融合监测矿区地表沉降的可行性分析[J].测绘通报,2005,(11):10-13.
    [105]张洁,胡光道.基于合成孔径雷达干涉测量技术的地面沉降研究综述[J].地质科技情报,2005,24(3):104-108.
    [106] H. A. Zebker, R. M. Goldstein. Topographic mapping from interferometric syntheticaperture radar observations [J]. J. Geophys. Res.,1986,91(B5):4993-4999.
    [107] R. N. Treuhaft, S. N. Madsen, M. Moghaddam, et al. Vegetation characteristics andunderlying topography from interferometric radar [J]. Radio Sci.,1997,(31):1449-1485.
    [108]罗小军.永久散射体雷达差分干涉理论及在上海地面沉降监测中的应用[D].成都:西南交通大学博士学位论文,2007.
    [109]陈强.基于永久散射体雷达差分干涉探测区域地表形变研究[D].成都:西南交通大学博士学位论文,2006.
    [110]李陶.重复轨道星载SAR差分干涉监测地表形变研究[D].武汉:武汉大学博士学位论文,2004.
    [111] R. F. Hanssen, T. M. Weckwerth, H. A. Zebker, et al. High-Resolution Water VaporMapping from Interferometric Radar Measurements [J]. Science,1999,(283):1297-1299.
    [112] M. Crosetto, C. C. Tscherning, B. Crippa, and M. Castillo. Subsidence monitoring usingSAR Interferometry: Reduction of the atmospheric effects using stochastic filtering [J].Geophysical Research Letters,2002,29(9):1029-1036.
    [113] D. Massonnet and K. L. Feigl. Radar interferometry and its application to changes in theearth’s surface [J]. Rev. Geophys.,1998,36(4):441-500.
    [114] C. Delacourt, P. Briole and J. Achache. Tropospheric correction of SAR interferogramswith strong topography: application to Enta [J]. Geophysical Research Letters,1998,25(15):2849-2852.
    [115] A. Ferretti, C. Prati and F. Rocca. Permanent scatters in SAR interferometry [J]. IEEETransactions on Geoscience and Remote Sensing,2001,39(1):8-20.
    [116] Y. Xia, H. Kaufmann, X. F. Guo. Differential SAR InteHerometry Using CornerReflectors [J]. IGARSS,2002,28(4):1243-1246.
    [117] Y. Xia, H. Kaufmann, X. F. Guo. Landslide monitoring in the Three Georges Area usingD-InSAR and corner reflectors [J]. Photogrammetric Engineering and Remote Sensingm,2004,70(10):1167-1172.
    [118] F. Beauducel, P. Briole, J. Froger. Volcano-wide fringes in ERS synthetic aperture radarinterferograms of Enta (1992-1998): Deformation or tropospheric effect [J]. Journal ofGeophysical Research,2000,105(B7):16391-16402.
    [119] L. C. Graham. Synthetic interferometry radar for topographic mapping [J]. Pro.IEEE,1974,(62):763-768.
    [120] L. G. Graham. Synthetic interferometer radar for topographic mapping [J]. Proc. of theIEEE,1974,62(2):763-768.
    [121]刘志铭,汤晓涛.基于轨道参数的ERS—1/2数据基线估计与平地效应消除[J].测绘科技,2004,24(1):26-28.
    [122]刘国祥,丁晓利,李志林等.星载SAR复数图像的配准[J].测绘学报,2001,30(1):60-66.
    [123]云日升,彭海良,王彦平.干涉合成孔径雷达复图像配准精度分析和方法[J].测试技术学报,2003,17(l):10-12.
    [124] D. Just, R. Bamler. Phase statistics of interferograms with applications to syntheticaperture radar [J]. Applied Optics,1994,33(20):4361-4368.
    [125] A. K. Gabriel, R. M. Goldstein. Crossed orbit interferometry: theory and experimentalresults from SIB-B [J]. Remote Sensing,1988,9(5):857-872.
    [126] A. Ferretti, C. Prati and F. Rocca. Permanent scatters in SAR interferometry [J]. IEEETransactions on Geoscience and Remote Sensing,2001,39(1):8-20.
    [127] Alberto Moreira and Rolf Scheiber. A NewMethod for Accurate Co-Registration ofInterferometric SAR Images[C]. IEEE,1998.
    [128] G. Fornaro, G. Franceschetti. Image registration in Interfero-metric SAR processing [J].IEEE Proc-Radar, Sonar Navig,1995,142(6):313-320.
    [129]郑芳,马德宝,裴怀宁.干涉合成孔径雷达基线估计要素分析[J].遥感学报,2005,3(2):7-8.
    [130]张晓玲,王建国,黄顺吉.干涉SAR成像中地形高度估计及基线估计方法的研究[J].信号处理,1999,15(4):319-320.
    [131] David Small, Charles Werner, Daniel Nuesch. Baseline Modeling for ERS-1SARInterferometry [Z]. Provided by ESA help desk.
    [132]郭华东.雷达对地观测理论与应用[M].北京:科学出版社,2000.
    [133]徐华平,周荫清,李春升.星载干涉SAR的基线问题[J].电子学报,2003,31(3):46-50.
    [134]胡庆东,毛士艺,洪文.干涉合成孔径雷达系统的最优基线[J].电子学报,1999,27(3):93-95.
    [135]G. Fornaro, G. Franceschetti, et al. Robust phase-unwrapping techniques: A Comparison[J]. J. Opt.Soc. Am. A,1996,13(12):2355-2366.
    [136]R. Bamler, N. Adam, et al. Noise-induced slope disotrion in2-D Phase Unwrapping bylinear estimators with application to SAR interferometry. IEEE Trans. on GRS,1998,36(3):913-921.
    [137] D.C. Ghiglia and L.A. Romero. Robust two-Dimensional Weighted and UnweightedPhase Unwrapping that uses fast transforms and iterative methods [J]. J.Opt.Soc.Am.A,1994,11(11): pp.107-117.
    [138] M. D. Pritt, J. S. Shipman. Least-Squares Two-Dimensional Phase Unwrapping usingFFT [J]. IEEE Trans. on GRS,1994,32(3):706-708.
    [139]许才军,王华,黄劲松. GPS与InSAR数据融合研究展望[J].武汉大学学报,2003,25(特):58-61.
    [140] John Trinder, Shaowei Han, Chris Rizos.Terrain modeling by differential SAR and GPS
    [A].5th Int. Symp. on Satellite Navigation Technology&Applications[C]. Canberra, Australia,24-27July, paper19.
    [141]金双根,朱文耀. GPS观测数据提高InSAR干涉测量精度的分析[J].遥感信息,2001,70(4):8-11.
    [142]晁定波,许才军,刘大杰.四维整体大地测量有限单元法[J].测绘学报,1997,26(1):7-13.
    [143]崔笃信,王庆良,王文萍.青藏块体东北缘地壳水平运动状态[J].大地测量与地球动力学,2004,24(3):29-34.
    [144]段虎荣,张永志,徐海军.改进的粒子群算法在断层滑动速率反演中的应用[J].大地测量与地球动力学,2010,30(6):31-36.
    [145]独知行,欧吉坤,靳奉祥,等.联合反演模型中现对权比的优化反演[J].测绘学报,2002,32(1):15-19.
    [146]黄建平,傅容珊,许萍.利用重力和地形观测反演中国及邻区地壳厚度[J].地震学报,2006,28(3):250-258.
    [147]李爽,许才军,王新洲.位错模式反演的算法研究[J].大地测量与地球动力学,2003,23(1):53-55.
    [148]李爽,许才军,王新洲.论多种数据联合反演的模式及算法[J].大地测量与地球动力学,2002,22(3):78-82.
    [149]王琪,张培震,马宗晋.中国大陆现今构造变形GPS观测数据与速度场[J].地学前缘,2002,9(2):415-429.
    [150]王文萍,王庆良.利用遗传算法和最小二乘联合反演共和地震位错参数[J].地震学报,1999,21(3):285-290.
    [151]武吉仓,陈永奇.估计先验信息的模型参数反演-澜沧-耿马地震位错模型参数的确定[J].地壳形变与地震,1997,17(2):27-32.
    [152]武吉仓,许才军.利用GPS资料反演华北块体的负位错模型参数[J].武汉大学学报(信息科学版),2002,27(7):352-357.
    [153]武吉仓,邓康伟、陈永奇.板块内部负位错模型及其反演[J].武汉大学学报(信息科学版),2003,28(6):671-674.
    [154]许才军.大地测量联合反演理论和方法研究进展[J].武汉大学学报(信息科学版),2001,26(6):555-561.
    [155]许才军、晁定波,刘经南,等.用大地测量资料反演青藏高原构造应力场初步尝试[J].武汉大学学报(信息科学版),1997,26(2):95-100.
    [156]张永志,王卫东、魏玉明,等.用GPS资料反演祁连山断层的三维滑动速率[J].大地测量与地球动力学,2004,26(1):31-35.
    [157]张永志,王卫东.青藏高原东北缘断层活动变形的模拟研究[J].大地测量与地球动力学,,24(1):63-67.
    [158]张永志,罗凌燕,王卫东.位错理论在西安地面沉降模拟中的应用[J].西北地震学报,2008,30(1):17-20.
    [159]李延栋.中国岩石圈的基本特征[J].地学前缘,2010,17(3):1-13.
    [160]王勇,许厚泽.青藏高原印度板块向欧亚大陆俯冲速率的研究-GPS观测资料反演的结果[J].地球物理学报,2003,46(2):185-190.
    [161]孙建中,杨少敏.用GPS资料揭示现今中国大陆构造[J].大地测量与地球动力学,2005,25(3):75-80.
    [162]马宗晋,陈鑫连,叶叔华,等.中国大陆现今地壳运动的GPS研究[J].科学通报,2001,26(13):1118-1120.
    [163]牛之俊,马宗晋,陈鑫连,等.中国地壳运动观测网络[J].大地测量与地球动力学,2002,22(3):88-93.
    [164]王琪,张培震,牛之俊,等.中国大陆现今地壳运动和构造变形[J].中国科学(D辑),2001,31(7):529-536.
    [165]李爽、许才军、王新洲.一种求解约束条件下多变量非线性函数所有全局最优解的区间算法[J].武汉大学学报(理学版),2003,49(5):556-560.
    [166]刘杰,张永志,张秀霞,等.基于GPS数据的粒子群算法反演断层三维滑动速率[J].大地测量与地球动力学,2010,30(2):40-42.
    [167]张贵钢,杨志强,王庆良.龙门山断裂带三维滑动速率反演及其分段性研究[J].大地测量与地球动力学,2011,31(1):5-8.
    [168]丁国瑜.中国岩石圈动力学概论[M].北京:地震出版社,1991.
    [169]胡明成.现代大地测量学理论及应用[M].北京:测绘出版社,2003.
    [170]许才军、张朝玉.地壳形变测量与数据处理[M].武汉大学出版社,2009.
    [171]赖锡安,黄立人,徐菊生,等.中国大陆现今地壳运动[M].北京:地震出版社,2004.
    [172]许才军,申文斌,晁定波,等.地球物理大地测量原理与方法[M].武汉:武汉大学出版社,2001.
    [173]许才军.青藏高原地壳运动模型与构造应力场[M].北京:测绘出版社,2001.
    [174] Matti li., G. S., T. H. Dixon., F. Farina., E. S. Howell., P. E. Jansma., and A. L.Smith.GPS.
    [175] Measurement of Surface Deformation Around Soufriere Hills Volcano, Montserrat fromOctober1995to July1996[J]. Geophys. Res. Lett.,1998,25(18):3417–3420.
    [176] Heki K.,S Miyazaki and H Tsuji.Silent fault slip following an in—terplate earthquake atthe Japan Trench[J]. Nature,1997,38(6):595-597.
    [177] Larson K M., R Burgmann., R Bilham. Kinematics of the India—Eurasia collision zonefrom GPS measurements[J]. J. Geophys. Res.1999,10(4):1077-1093.
    [178] Snay R. A., Neugebauer H. C., Prescott W. H. Horizontal Deformation Associated withthe Loma Prieta earthquake [J]. Bull.S. S. A.,1991,81(5):1647-1659.
    [179] Ozawa,T.,T,Tabei.,andS.Miyazaki.,InterPlate coupling along the Nanhai troughoff southwest JaPan derived from GPS measurements[J].GeoPhys. Res. Lett1999,26(1):927-930.
    [180] Takao T. Crustal Deformation Associated with the1995Hyogoken NanbuEarthquake—Derived from GPS Measurements[J]. Special Issue on the1995Hyogo-kenNanbu Earthquake of jounal of the earth,1996,13(3):325-329.
    [181] Williams, C. R., T. Arnadottir., and P. Segall.Coseismic Deformation and DislocationModels of the1989Loma Prieta Earthquake Derived From Global Positioning SystemMeasurements[J].J. Geophys. Res.,1993,98(B3):4567–4578.
    [182] Arnadottir, T., P. Segall., and P. Delaney.A FAULT MODEL FOR THE1989KILAUEASOUTH FLANK EARTHQUAKE FROM LEVELING AND SEISMIC DATA[J],.Geophys.Res. Lett.,1991,18(12):2217–2220.
    [183] Okada Y.Surface deformation due to shear and tensile faults in a half-space[J]. Bull.Seismological Society of Aamerica,1985,75(1):1135-1154.
    [184] Feigl, K. L. and E. Dupre., RNGCHN: a program to calculate displacement componentsfrom crustal deformation,1988.
    [185] dislocations in an elastic half-space with applications for modeling geodeticmeasurements of crustal deformation revised for Computers and Geosciences, November,1998.
    [186] Feigl, K. L. and E. Dupre., RNGCHN: a program to calculate displacement componentsfromdislocations in an elastic half-space with applications for modeling geodeticmeasurements of crustal deformation revised for Computers and Geosciences, November,1998.
    [187]YOshida,5.,GkauSeta,Shhei Okubo etal.Absolute gravity ehnageas sociatedwiththeMareh1997e hqukae swam rinhteIzu Peninsula,JaPan.Earth PalnestPSace,1999,51:3-12.
    [188]ZhaoShaorong,ChaoDingboand XuJusheng.Detemrinationofeurrentaetive segmentsat theRed River afult zone by in version of GPS base line ehnages.JGeo namics,1993,17(3):145-154.
    [189]ZhaoSR, ChaoD.B., LaiX., etal.The19967.0LijiangEarthquake, Yunnna,China:AnnaticiPatedevent[J].JGeodynamics,1999(27):529-546.
    [190]ZhaoShaorong.DeteetionoftheactivesegmeniattheRedRiverafultoznebyinversionofobsevredgrvaiyt.JGeodynamics,1995a,20(l):41-62.
    [191]Zhao5R.JointinversionofobsevredgrvaiytnadGPSbaselineehnagesofrhtedetectionofactiveuafltsegmeniathteRedRiverafultzone[J].Gepo.JnIr.1995b,122:70-88.
    [192]ZhaoShaorongnadShuzoTakemoto.Aseismieuafltmovementbeofrethe1995KobeearthqukaedeteetedbyaGPSsuvrey:imPlieationofrPreseismiesterssloealiZation?(J].Gepohys.Jnlt.1998,135:595-606.
    [193] Matti li., G. S., T. H. Dixon., F. Farina., E. S. Howell., P. E. Jansma., and A. L.Smith.GPS Measurement of Surface Deformation Around Soufriere Hills Volcano, Montserratfrom October1995to July1996[J]. Geophys. Res. Lett.,1998,25(18):3417–3420.
    [194] Heki K.,S Miyazaki and H Tsuji.Silent fault slip following an in—terplate earthquake atthe Japan Trench[J]. Nature,1997,38(6):595-597.
    [195] Larson K M., R Burgmann., R Bilham. Kinematics of the India—Eurasia collision zonefrom GPS measurements[J]. J. Geophys. Res.1999,10(4):1077-1093.
    [196] Snay R. A., Neugebauer H. C., Prescott W. H. Horizontal Deformation Associated withthe Loma Prieta earthquake [J]. Bull.S. S. A.,1991,81(5):1647-1659.
    [197] Ozawa,T.,T,Tabei.,andS.Miyazaki.,InterPlate coupling along the Nanhai troughoff southwest JaPan derived from GPS measurements[J].GeoPhys. Res. Lett1999,26(1):927-930.
    [198] Takao T. Crustal Deformation Associated with the1995Hyogoken NanbuEarthquake—Derived from GPS Measurements[J]. Special Issue on the1995Hyogo-kenNanbu Earthquake of jounal of the earth,1996,13(3):325-329.
    [199] Williams, C. R., T. Arnadottir., and P. Segall.Coseismic Deformation and DislocationModels of the1989Loma Prieta Earthquake Derived From Global Positioning SystemMeasurements[J].J. Geophys.Res.,1993,98(B3):4567–4578.
    [200] Arnadottir, T., P. Segall., and P. Delaney.A FAULT MODEL FOR THE1989KILAUEASOUTH FLANK EARTHQUAKE FROM LEVELING AND SEISMIC DATA[J],.Geophys.Res. Lett.,1991,18(12):2217–2220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700