用户名: 密码: 验证码:
多属性决策分析及其在洪灾风险评价中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今人类社会,无论组织、社会或者个人所面临的决策问题都具有多目标、多属性的特点,多目标属性决策问题的目标之间具有关联性、不可公度性甚至是矛盾性。洪灾风险评价与决策问题同样具有多目标、多属性的特点,属于多目标属性决策的范畴。洪灾风险评价与决策是防洪减灾的重要环节之一,反映了洪灾发生的可能性及灾害发生之后可能造成的损失后果,本质上具有多属性,多目标的特点,涉及众多研究领域。将目前多属性决策分析的先进理论与方法引入洪灾风险因素建模、洪灾灾后损失评价和洪灾综合风险分析等决策过程中,无疑将为洪灾风险评价提供一个新的研究思路。
     本文针对洪灾风险分析的特殊性,进行了多属性决策数学模型分析、洪灾风险建模分析、洪灾灾后损失等级评价、洪灾综合风险决策四个方面的深入研究,取得了一些具有理论意义和实用价值的研究成果,相关研究成果已应用于973项目的工程应用示范中。论文的主要工作及创新性成果如下:
     (1)针对洪灾综合风险决策的研究需求,深入研究了多属性决策的基本理论与方法、多属性决策常用算法分析、洪灾风险评价的研究机理与动因分析,以及多属性风险决策模型的分析与描述,为洪灾风险评价各个环节的进一步研究打下了坚实基础。
     (2)针对洪灾风险评价中风险因素复杂众多、定量指标与定性指标同时存在、各指标的不相容性和不确定性、量化描述困难等问题,采用三角模糊数(TFN)合理解决了不确定定性指标的量化问题,提出一种基于TFN-AHP多属性决策方法的洪灾风险因素建模方法,对洪灾风险因素进行合理辨识,构建洪灾风险因素决策综合评价指标体系,对洪灾风险因素相对重要性作出合理评价排序,并对相对重要度较高的风险因素作出风险应对措施分析,结合典型洪灾多发地区——分蓄洪区的实际背景,以水文条件及地形环境都相当复杂的荆江分洪区为例,论证了洪灾风险因素决策建模的必要性和可行性,为洪灾综合风险整体评价提供了有效决策依据。
     (3)针对洪灾风险评价的另一个重要组成部分——洪灾灾后损失评价,利用信息论中对信息不确定性概率判断方法的研究,提出了基于熵值法的属性识别模型,从多属性决策的角度对洪灾灾后损失等级进行了评价分析,利用信息熵反映出的数据效用值来刻画指标的权重系数,合理客观地解决了洪灾灾后风险指标多属性的权重分配问题,分别给出了洪灾样本的洪灾灾损等级评价和灾损大小排序;同时,将人工智能技术引入多属性决策领域,提出了一种基于BP神经网络的洪灾灾损等级评价模型,并将两种评价模型的评价结果与物元分析评价法得出的结果进行对比分析,验证了本文提出模型的客观性与合理性。
     (4)针对洪灾风险因素间相互依存相互影响的特点,研究分析了多属性决策中经典的理论算法及多种算法的融合应用问题,包括模糊数学与网络分析法的融合、模糊数学与逼近理想解法(TOPSIS)的融合,以及离差最大化法在混合权重分析中应用等。以洪灾风险评价区域为单位,依据有限个风险评价对象与理想化目标的接近程度对评价对象的相对洪灾风险程度进行合理排序。在此研究基础上,本文提出了基于三角模糊数、ANP、熵值法、离差最大化法和TOPSIS的模糊多属性决策模型(FMADM),并将该模型应用于洪灾综合风险的完整评价,从风险因素识别到指标属性权重确定,再到洪灾风险值确定与风险大小排序,为洪灾综合风险评价提供一个新的途径。另外,将该模型应用于荆江分洪区内8个乡镇进行洪灾综合风险分析,并通过三种模型对比分析,验证了FMADM模型在洪灾综合风险评价中的应用符合洪灾实际情况,并且合理可行,能客观地反映荆江分洪区的洪灾综合风险分布情况,为防洪减灾灾前指挥提供了科学合理的决策支持。
In the human society, decision-making problems have multi-objective and multi-attributecharacteristics. Multi-objective/attribute decision-making (MADM) problems arerelevance, incommensurability and even contradiction among objects. Flood riskevaluation has common characteristics the same to decision-making problems and belongsto the category of MADM. Flood risk evaluation is one of the important link of the floodcontrol and disaster reduction, reflect the flood possibility and post-disaster loss.Accordingly, the study presents advanced theory and methods of MADM applied into thedecision-making process of flood risk factors modeling, flood disaster loss evaluation andflood comprehensive risk analysis. It undoubtedly provides a new research approach forflood risk evaluation.
     In view of the particularity of the flood risk analysis, this article presents four aspectsof thorough research: the MADM mathematical model analysis, flood risk factorsmodeling analysis, flood disaster losses evaluation and flood comprehensive risk decision,and obtains some theoretical and practical results. The main research work and innovationresults are described as follows:
     (1) Considering the needs of flood risk evaluation decision-making, the thesisestablishes the foundation for flood risk evaluation research, with MADM modeldescription, MADM common algorithms analysis, research mechanism and motiveanalysis of flood risk evaluation and multi-attribute risk decision-making model analysisand description.
     (2) Many deep-rooted issues exist to be solved in the research of flood risk evaluation,such as complex and numerous risk factors, quantitative qualitative indexes coexistence,quantitative description difficulty and so on. Using the triangular fuzzy number (TFN)reasonable to solve the problem of qualitative index quantization, the thesis put forward amethod of flood risk factors modeling based on MADM methods of TFN-AHP. The mainworks are reasonable identification of flood risk factors, constructing flood risk factorsdecision-making comprehensive assessment indexes system, flood risk factors relativeimportance ranking, and risk response analysis for the risk factors of high relativeimportance. Combined with the actual background of flood diversion area, this thesis takeJingjiang flood diversion area for example, demonstrates the necessity and feasibility of flood risk factors decision-making modeling, and provides effective decision-making basisfor flood comprehensive risk overall evaluation.
     (3) For another important component of flood risk evaluation-flood disaster lossevaluation,according to the study on the method of information uncertainty probabilisticjudgment, this thesis put forward attribute recognition model based on entropy theory. Theproposed model study on the flood disaster loss grade evaluation from MADM angel, anduse the data utility values reflected by information entropy to depict the indexes weightcoefficient and reasonable objective to solve the flood risk index weight assignmentproblem. The flood disaster grade evaluation of flood samples and the disaster damageranking are given respectively. Meanwhile, introducing the artificial intelligencetechnology into the MADM field, the thesis put forward flood damage grade evaluationmodel based on BP neural network. In addition, the two proposed models are comparedwith matter-element analysis evaluation method. The comparison result shows theobjective and reasonable of the proposed models.
     (4) According to the characteristics of interdependence and interaction of differentflood risk factors, the thesis study the problem of the MADM theory of classical algorithmand fusion, including the integration of fuzzy mathematics, ANP and TOPSIS (Techniquefor Order Preference by Similarity to Ideal Solution), and the application of deviationmaximization method in hybrid weights analysis, etc. In this research foundation, thisarticle put forward a fuzzy multiple attribute decision making (FMADM) based on TFN,ANP, entropy method, deviation maximization method and TOPSIS. The model is appliedto risk factors identification, the index weights determination, flood risk valuesdetermination and risk ranking of8towns in the Jingjiang flood diversion area. Theexperimental results show that the FMADM model in the application of floodcomprehensive risk evaluation is reasonable, feasible. It can objectively reflect floodcomprehensive risk distribution of the Jingjiang flood diversion area, and providescientific and reasonable decision-making support for flood control and disaster reduction.
引文
[1] Alderman K., Turner L.R., Tong S.L.(2012) Floods and human health: Asystematic review. Environment International,2012,47:37~47.
    [2]王开顺.《蓄滞洪区建筑工程技术规范》的特点和主要内容[J].建筑科学,1995,1:69~72.
    [3] Hipple J.D., Drazkowski B., Thorsell P.M.. Development in the Upper MississippiBasin:10years after the Great Flood of1993[J]. Landscape and Urban Planning,2005,72:313~323.
    [4] Dierauer J., Pinter N., Remo J. W.F.. Evaluation of levee setbacks for flood-lossreduction, Middle Mississippi River, USA. Journal of Hydrology,2012,450-451:1-8.
    [5]陈菊英,许晨海,刘海波.1998年长江特大洪水及其形成原因研究[J].中央民族大学学报(自然科学版),2000,9(2):134~142.
    [6]孙继昌,刘金平,梁家志.1998年洪水调查及评价[J].水文,2004,24(5):14~19.
    [7]周自江,宋连春,李小泉.1998年长江流域特大洪水的降水分析[J].应用气象学报,2000,11(3):287~296.
    [8]张文胜,赵学民.长江洪水特性及防洪对策探讨[J].水利水电技术,2004,5:80~82.
    [9]李娜.基于GIS的洪灾风险管理系统[D].北京:中国水利水电科学研究院,2002.
    [10]任剑.模糊环境下信息不完全的随机多准则决策方法研究[D]:[博士学位论文].湖南:中南大学图书馆,2010.
    [11] Von Neumann, Mongenstern J. heory of Games and Economic Behauior [M].PrincetonUniversity Press,1944.
    [12] Koopmans T.C.. Activity Analysis of Production and Allocation [M]. Wiley, NewYork,1951.
    [13] Kuhb H.W., Tucker A.W.. Nonlinear Programming, Proc and Berkeley Symp [M].on math. stat and Prop university of California Pess, Berkeley, California,1952.
    [14] Zadeh L.A..Optimaltiy and Nonscalar valued Performance Criteria (IEEE Trans [J].On Automatic Control)1963,8(1).
    [15] Roy B.,Vincke Ph.. Relational systems of preference with one or more pseudo-criteria: Some new concepts and results [J]. Management Science,1984,30:1323~1335.
    [16] Roy B., Bouyssou D.. Comparison of two decision-aid models applied to a nuclearplant siting example [J]. European Journal of Operational Research,1986,25:200~215.
    [17] Kasanen E., stermark R., Zeleny M. Gestalt system of holistic graphics: Newmanagement support view of MCDM [J]. Computers&Research,1991,18(2):233~239.
    [18] Pannirselvam G.P., Ferguson L.A., Ash R.C., et al.. Operations managementresearch: an update for the1990s [J].Journal of Operations Management,1999,18(1):95~112.
    [19]胡祥培,许志超,杨德礼.智能运筹学与动态实时优化控制[J].管理科学学报,2002,5(4):13~21.
    [20] Sun M.. Some issues in measuring and reporting solution quality of interactivemultiple objective programming procedures [J]. European Journal of OperationalResearch,2005,162(2):468~483.
    [21] Peng D.X., Lai F.J.. Using partial least squares in operations management research:A practical guideline and summary of past research [J]. Journal of OperationsManagement,2012,30(6):467~480.
    [22]冯尚友.水资源系统分析应用的目前动态与发展趋势[J].系统工程理论与实践,1990,5:43~48.
    [23]胡毓达.多目标规划的局部较多最优性和局部较多有效性[J].系统科学与数学,1994,14(1):81~90.
    [24]林锉云.多目标群体决策的最优性条件[J].南昌大学学报(理科版),1995,,19(1):43~50.
    [25]李荣钧.模糊多目标线性规划最优性分析[J].系统工程,2002,20(5):16~21.
    [26]江涛.对区域水资源优化配置多目标规划的模型[J].黑龙江水利科技,2004,2:95~96.
    [27]方道南,叶秉如.大系统多目标规划和风险决策的理论与方法[J].水利水电科技进展,1999,19(4):17~21.
    [28]梁业国,魏莉.水电站书库洪水调度的多目标模糊决策[J].三峡大学学报(自然科学版),2001,23(6):556~559.
    [29]尹正杰,陈鲁莉,胡铁松.基于多目标遗传算法的综合利用水库优化调度图求解[J].水资源研究,2005,26(2):21~23.
    [30]高仕春,滕燕,陈泽美.黄柏河流域水库水电站群多目标短期优化调度[J].武汉大学学报(工学版),2008,41(2):15~18.
    [31]常黎,黄开斌,李慧音等.一种水库洪水多目标调度的线性综合优化算法[J].水电能源科学,2010,28(9):30~33.
    [32]聂相田,樊怡.基于多目标智能加权灰靶决策的水库移民安置区优选[J].华北水利水电学院学报,2012,33(1):138~140.
    [33]齐寅峰.多准则决策(I)——引言和多目标规划[J].系统工程,1987,5(3):20~25.
    [34]宣家骥.决策科学化与多目标决策[J].管理工程学报,1989,3(1-2):40~46.
    [35]冯森林,陈晓剑.复杂性系统评价中层次划分的数学方法[J].教育与现代化,1991,4:87~95.
    [36]郭亚军.综合评价理论与方法[M].北京:科学出版社,2002.
    [37]李荣钧,赵杰.模糊环境下的多属性决策分析[J].模糊系统与数学,2002,16(2):65~68.
    [38]邱菀华.一类决策熵方法及其在工程管理中的应用[J].科技进步与对策,2010,27(19):75~79.
    [39]胡永宏.对统计综合评价中几个问题的认识与探讨[J].统计研究,2012,29(1):26~30.
    [40]何炯文.风险管理[M].大连:东北财经大学出版社,1999.
    [41]蔡美彪.中国地震历史资料汇编[M].北京:科学出版社,1987.
    [42]胡凯衡,游勇,庄建琦等.北川地震重灾区泥石流特征与减灾对策[J].地理科学,2010,30(4):566~570.
    [43]潘华,李金臣,吴迪忠.2007年7月16日日本新潟地震对柏崎刈羽核电站的影响[J].国际地震动态,2007,11:21~32.
    [44]郑烨.旱灾的危害及防治措施[J].河南水利与南水北调,2011,23:38~39.
    [45]苏桂武,高庆华.自然灾害风险的分析要素[J].地学前缘,2003,10:272~279.
    [46] Wilson R.. Measuring and comparing risks to establish a de minimis risk level [J].Regulatory Toxicology and Phamacology,1988,8(3):267~282.
    [47]刘丽.自然灾害保险风险分析[J].自然灾害学报,2006,15(1):86~90.
    [48]王绍玉,唐桂娟.综合自然灾害风险管理理论依据探析[J].自然灾害学报,2009,18(2):33~38.
    [49]邓安.自然灾害科学与技术新对策[J].国际学术动态,2009,1:39~41.
    [50]周寅康.自然灾害风险评价初步研究[J].自然灾害学报,1995,4(1):6~11.
    [51]余承君,刘希林.自然灾害风险管理中社会因素的探讨[J].灾害学,2010,25(4):120~126.
    [52]罗菊.虚拟经济及其风险管理[J].宁夏社会科学,2002,1:40~42.
    [53]罗国芬.城市社会帮困工作中道德风险的社会学分析[J].理论学刊,2002,4:100~101.
    [54]李如忠,汪明武,金菊良.地下水环境风险的模糊多指标分析方法[J].地理科学,2010,30(2):229~235.
    [55]赵力敏,李华.模糊层次分析法在工程管理风险评估中的应用[J].贵州水力发电,2012,26(2):90~93.
    [56]卢静,孙宁,夏建新等.中国环境风险现状及发展趋势分析[J].环境科学与管理,2012,37(1):10~16.
    [57]李长安,陈国金,皮建高.长江中游洪灾形成的地学分析[J].第四纪研究,2003,23(6):675~682.
    [58] J.A. Hubbart, J.R. Jones. Floods [J]. Encyclopedia of Inland Waters,2009:88~91.
    [59]陈国金.长江中游洪灾形成与防治的环境地质研究[J].资源环境与工程,2009,23(4):401~405.
    [60] Haruyama, Shigeko, Ohokura, et al.. Geomorphological zoning for floodinundation using satellite data [J]. Geo Journa1,1996,38(3):273~278.
    [61]梅亚东,冯尚友.蓄滞洪区洪水演进模拟[J].水利学报,1996,2:63~67.
    [62]程晓陶,杨磊,陈喜军,等.分蓄洪区洪水演进数值模型[J].自然灾害学报,1996,5(1):34~40.
    [63]范子武,姜树海.蓄、滞洪区的洪水演进数值模拟与风险分析[J].水利水运科学研究,2000,2:1~6.
    [64] Song L.X., Zhou J.Z., Zou Q., et al.. Two-dimensional dam-break flood simulationon unstructured meshes. The11th International Conference on Parallel andDistributed Computing, Applications and Technologies, Wuhan China.2010,465~469.
    [65]宋利祥,周建中,王光谦等.溃坝水流数值计算的非结构有限体积模型.水科学进展.2011,22(3):373-381.
    [66]宋利祥,周建中,郭俊等.复杂地形上坝堤溃决洪水演进的非结构有限体积模型.应用基础与工程科学学报,2012,20(1):149~158.
    [67] Benito G., Sopena A., Sanchez M.Y., et al.. Palaeo flood record of the Tagus River(Central Spain) during theLate Pleistocene and Holocene [J]. Quaternary ScienceReviews,2003,22:1737~1756.
    [68]白景昌.基于遥感与地理信息系统的洪灾风险区划研究[D]:[博士学位论文].北京:中国科学院图书馆,2004.
    [69]丁志雄,李纪人,李琳.基于GIS格网模型的洪水淹没分析方法[J].水利学报,2004(6):56~60.
    [70]何报寅,张穗,杜耘等.湖北省洪灾风险评价[J].长江科学院院报,2004,21(3):21~25.
    [71]杨佩国,戴尔享,吴绍洪等.黄河下游大堤保护区内洪灾风险的空间格局[J].科学通报,2006,51(增刊):148~154.
    [72]马定国,刘影,陈洁等.鄱阳湖区洪灾风险与农户脆弱性分析[J].地理学报,2007,62(3):321~332.
    [73] Sanyal J., Lu X.X.. Remote sensing and GIS based flood vulnerability assessmentof human settlements: A case study of Gangetic West Bengal, India [J].Hydrological Process,2005,19:3699~3716.
    [74] Li Q., Zhou J.Z., Liu D.H. et al.. Research on Flood Risk Analysis and EvaluationMethod Based on Variable Fuzzy Sets and Information Diffusion [J]. SafetyScience,2012,50(5):1275~1283.
    [75] Zou Q., Zhou J.Z., Zhou C., et al.. The practical research on flood risk analysisbased on IIOSM and fuzzy α-cut technique [J]. Applied Mathematical Modelling,2012,36(7):3271~3282.
    [76] Zou Q., Zhou J.Z., Zhou C., et al.. Fuzzy risk analysis of flood disasters based ondiffused-interior-outer-set model [J]. Expert Systems with Applications,2012,39:6213~6220.
    [77]邹强,周建中,周超,陈生水,宋利祥,等.基于最大熵原理和属性区间识别理论的洪水灾害风险分析.水科学进展,2012,23(3):323~334.
    [78]邹强,周建中,周超,宋利祥,等.基于可变模糊集理论的洪水灾害风险分析.农业工程学报,2012,28(5):126~132.
    [79]周成虎,万庆,黄诗峰等.基于GIS的洪水灾害风险区划研究[J].地理学报,2000,55(1):15~24.
    [80]詹小国,祝国瑞,文余源.平原地区洪灾风险评价的GIS方法研究——以荆州6县市为例[J].长江流域资源与环境,2003,12(4):388~392.
    [81] Sinnakaudan S.K., Ghani A.A., Ahmad M.S.S., et al.. Flood risk mapping for PariRiver incorporating sediment transport [J]. Environmental Modelling&Software,2003,18(2):119~130.
    [82]李喆,秦其明,阿布都瓦斯提·吾拉木等.基于RS/GIS的城市财产保险洪灾损失评估研究[J].水科学进展,2004,15(5):670~674.
    [83]秦年秀,姜彤.基于GIS的长江中下游地区洪灾风险分区及评价[J].自然灾害学报,2005,14(5):1~7.
    [84] Fedeski M., Gwilliam J.. Urban sustainability in the presence of flood andgeological hazards: The development of a GIS-based vulnerability and riskassessment methodology [J]. Landscape and Urban Planning,2007,83(1):50~61.
    [85] Ramlal B., Baban S.M.J.. Developing a GIS based integrated approach to floodmanagement in Trinidad, West Indies [J]. Journal of Environmental Management,2008,88(4):1131~1140.
    [86] Jiang W.G., Deng L., Chen L.Y.. Risk assessment and validation of flood disasterbased on fuzzy mathematics [J]. Progress in Natural Science,2009,19(10):1419~1425.
    [87] Fernández D.S., Lutz M.A.. Urban flood hazard zoning in Tucumán Province,Argentina, using GIS and multicriteria decision analysis [J]. Engineering Geology,2010,111(1-4):90~98.
    [88] Wang B.Z., Cheng H.G.. Environmental Risk zoning Research in BaiyangdianBasin. Procedia Environmental Sciences,2011,10(C):2280~2286.
    [89]李林涛,徐宗学,庞博等.中国洪灾风险区划研究[J].水利学报,2012,43(1):22~30.
    [90] Sarhadi A., Soltani S., Modarres R.. Probabilistic flood inundation mapping ofungauged rivers: Linking GIS techniques and frequency analysis. Journal ofHydrology,2012,458:68~86.
    [91]阿瓦克扬A.B.,李艺军(译).关于洪灾损失评估的问题[J].水工建设,1991,10:5~9.
    [92]傅湘,王丽萍,纪昌明.洪灾风险评价通用模型系统的研究[J].长江流域资源与环境,2000,9(4):518~524.
    [93]傅湘,纪昌明.洪灾损失评估指标的研究[J].水科学进展,2000,11(4):432~435.
    [94]冯民权,周孝德,张根广.洪灾损失评估的研究进展[J].西北水资源与水工程,2002,13(1):32~36.
    [95] Dutta D., Herath S., Musiake K.. A mathematical model for flood loss estimation[J]. Journal of Hydrology,2003,277(1-2):24~49.
    [96] Huang Z.W., Zhou J.Z., Song L.X., et al.. Flood disaster loss comprehensiveevaluation model based on optimization support vector machine. Expert Systemswith Applications.2010,37(5):3810~3814.
    [97] Tapia-Silva F.-O., Itzerott S., Foerster S., et al.. Estimation of flood losses toagricultural crops using remote sensing. Physics and Chemistry of the Earth,2011,36(7-8):253~265.
    [98]李琼,周建中.加权主成分分析法在洪灾损失评估中的应用[J].人民黄河,2010,32(6):22~23.
    [99]李琼,周建中.改进主成分分析法在洪灾损失评估中的应用[J].水电能源科学,2010,28(3):39~42.
    [100]邹强,周建中,杨小玲等.属性区间识别模型在溃坝后果综合评价中的应用[J].四川大学学报(工程科学版),2011,43(2):45~50.
    [101] Thompson M.E., Stoevener H.H.. Estimating Residential Flood Control BenefitsUsing Implicit Price Equations. Water Resources Bulletin [J],1983,19(6):889~895.
    [102] Ford D.T., Oto A.. Floodplain-Management Plan Enumeration. Journal of WaterResources Planning and Management [J],1988,115(4):472~485.
    [103]黄志中.库群最优防洪设计标准的研究[J].水利经济,1994,3:44~47,64.
    [104] Ralph A.W.. Optimal Sizing of Flood Damage Reduction Measures Based onEconomic Efficiency. Water Resources Development [J],1996,12(1):5~16.
    [105] Ford D.T., Oto A.. Flood-Warning Decision-Support System for Sacramento,California [J]. Journal of Water Resources Planning and Management,2001(7):254~260.
    [106] Ito K.. Decision-Support System for Surface Water Planning in River Basins [J].Journal of Water Resources Planning and Management,2001(7):272~276.
    [107] Qi H.H., Altinakar M.S.. A GIS-based decision support system for integrated floodmanagement under uncertainty with two dimensional numerical simulations [J].Environmental Modelling&Software,2011,26(6):817~821.
    [108]胡四一,宋德敦,吴永祥等.长江防洪决策支持系统总体设计[J].水科学进展,1996,7(4):283~294.
    [109]朱元甡,沈福新,黄振平等.长江防洪决策支持系统[J].水科学进展,1996,7(4):295~304.
    [110]傅湘,王丽萍,纪昌明.防洪减灾中的多目标风险决策优化模型[J].水电能源科学,2001,19(1):36~39.
    [111]傅湘,陶涛,王丽萍.防洪风险决策模型的应用研究[J].水电能源科学,2001,19(2):15~18.
    [112]黄振平,沈福新,朱元甡.基于雨洪预报信息的防洪决策风险分析方法研究[J].水科学进展,2001,12(4):499~503.
    [113]黄振平,朱元甡.降水预测在防洪决策风险分析中的应用[J].河海大学学报,2002,30(3):7~10.
    [114] Korhonen P., Moskowitz H., Wallenius J.. Multiple criteria decision support-Areview [J]. European Journal of Operational Research,1992,63(3):361~375.
    [115]徐玖平,李军.多目标决策的理论与方法[M].北京:清华大学出版社,2006.
    [116]罗党,王淑英.决策理论与方法[M].北京:机械工业出版社,2011.
    [117] Chen Y., Kilgour D.M., Hipel K.W.. Screening in multiple criteria decisionanalysis [J]. Decision Support Systems,2008,45(2),278~290.
    [118] Kou G., Shi Y., Wang S.Y. Multiple criteria decision making and decision supportsystems—Guest editor's introduction [J]. Decision Support Systems,2011,51(2):247~249.
    [119] Chen Y., Kilgour D.M., Hipel K.W.. Multiple criteria classification with anapplication in water resources planning [J]. Computers&Operations Research,2006,33(11)
    [120]宋占岭,王永良,王亚莉.基于三角模糊数TOPSIS的火炮发射阵地优选[J].兵工自动化,2010,29(8):35~38.
    [121]廖锐全,肖新平.多属性规范化方法的新研究[J].武汉理工大学学报(交通科学与工程版),2003,27(5):722~724.
    [122]曾玲.模糊多属性决策中模糊属性值的规范化方法[J].模糊系统与数学,2006,20(2):97~102.
    [123]张卫红,刘永亮.MADM中不同属性的规范化研究[J].海军工程大学学报,2009,21(1):101~106.
    [124]彭安华,肖兴明.区间数多属性决策中属性值规范化方法[J].机械设计与研究,2011,27(6):5~8.
    [125]张英俊,马培军,苏小红.属性权重不确定条件下的区间直觉模糊多属性决策[J].自动化学报,2012,38(2):220~228.
    [126] Zhang H.M., Yu L.Y.. MADM method based on cross-entropy and extendedTOPSIS with interval-valued intuitionistic fuzzy sets [J]. Knowledge-BasedSystems,2012,30:115~120.
    [127]许华,王明刚.基于组合权重灰色关联分析的城市循环经济发展评价[J].科学技术与工程,2012,12(10):2499~2504.
    [128] Miller G.A.. The magical number seven plus or minus two: some limits on ourcapacity for processing information [J]. Psychological Review,1956,63:81-87.
    [129]张静.基于三角模糊数权重信息不完全的多属性决策方法[J].甘肃联合大学学报(自然科学版),2010,24(4):29~32.
    [130]徐小湛.多属性决策中的代理权重[J].四川大学学报(自然科学版),2002,39(4):617~620.
    [131]李伯连.多目标决策中客观性权重的一种确定法[J].运筹与管理,2002,11(5):36~39.
    [132]杨保安.多目标优化决策方法的研究方向探讨—走向智能化[J].西北工业大学学报,1990,8(4):472~477.
    [133] Li Y., Liao X.W.. Decision support for risk analysis on dynamic alliance [J].Decision Support Systems,2007,42(4):2043~2059.
    [134] Zadeh L.A. Fuzzy sets [J]. Information and Control,1965,8:338~353.
    [135]林健.权重信息不完全的梯形模糊数多属性决策方法[J].重庆工学院学报(自然科学版),2008,22(7):145~152.
    [136] Saaty T.L. Decision making with dependence and feedback: The analytic networkprocess [M]. RWS Publication. Pittsburgh, PA, USA:1996.
    [137] Saaty T.L.. Modeling unstructured decision problems—the theory of analyticalhierarchies [J]. Math Comput Simulation,1978,(20):147~158.
    [138] Saaty T.L. Decision making-the analytic hierarchy and network processes (AHP/ANP). Journal Science and System Engineer,200413(3):1~35.
    [139]赵阿兴,马宗晋.自然灾害损失评估指标体系的研究[J].自然灾害学报,1993,2(3):1~7.
    [140]蒋艳,岳超源.方案排序对权重比例变化的敏感性分析[J].华中科技大学学报(自然科学版),2002,30(8):24~26.
    [141]邱菀华.管理决策熵学及其应用[M].北京:中国电力出版社,2011.
    [142]李凡,吕泽华,蔡立晶等.基于Fuzzy集的Vague集的模糊熵.华中科技大学学报(自然科学版),2003,31(1):1~3.
    [143]安鑫,周维博,马艳等.基于熵权的模糊综合评价法在水安全中的应用[J].水资源研究,32(1):18~19,46.
    [144] Ye J.. Fuzzy cross entropy of interval-valued intuitionistic fuzzy sets and itsoptimal decision-making method based on the weights of alternatives [J]. ExpertSystems with Applications,2011,38(5):6179~6183.
    [145]程乾生.属性识别理论模型及其应用[J].北京大学学报(自然科学版),1997,33(1):12~20.
    [146]程乾生.属性集和属性综合评价系统[J].系统工程理论与实践,1997,9:1~8.
    [147]李群,宁利.属性区间识别理论模型研究及其应用[J].数学的实践与认识,2002,32(1):50~54.
    [148]杨小玲,周建中,丁杰华等.基于熵值法的洪灾等级评估属性识别模型[J].人民长江,2010,41(12):16-19.
    [149]杨宪江,魏现杰,肖波等.基于BP神经网络法的战术无线网效能评估[J].微计算机信息,2009,25(8):226~237.
    [150]周政. BP神经网络的发展现状综述[J].山西电子技术,2008,2:90~92.
    [151] Xiaoling Yang, Jianzhong Zhou, Jiehua Ding, Weiping Deng, Yongchuan Zhang.Study on evaluation methods of flood disaster grade, in: The6th InternationalConference on Fuzzy Systems and Knowledge Discovery,2009,386-390.
    [152]李超.基于物元分析的我国洪灾损失综合评估[J].统计教育,2006,3:44~46.
    [153]杨保安,张静科.多目标决策分析理论、方法与应用研究[M].上海:东华大学出版社,2008.
    [154]罗志猛,周建中,覃晖等.基于ANP的水电企业绩效评价模型[J].水力发电,2009,35(7):70~72.
    [155] Luo Z.M., Zhou J.Z., Zheng L.P., et al.. A TFN–ANP based approach to evaluateVirtual Research Center comprehensive performance [J]. Expert Systems withApplications,2010,37:8379~8386.
    [156]董福贵,刘慧美.基于ANP/TOPSIS的燃煤供应商选择[J].现代电力,2012,29(1):82~85.
    [157]马永红,周荣喜,李振光.基于离差最大化的决策者权重的确定方法[J].北京化工大学学报,2007,34(2):177~180.
    [158]陈华友.多属性决策中基于离差最大化的组合赋权方法[J].系统工程与电子技术,2004,26(2):194~197.
    [159]王晓,陈华友,刘兮.基于离差的区间二元语义多属性群决策方法[J].管理学报,2011,8(2):301~305.
    [160]王应明.运用离差最大化方法进行多指标决策与排序[J].系统工程与电子技术,1998,7:24~26.
    [161] Büyük zkan G., if i G.. A novel hybrid MCDM approach based on fuzzyDEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers [J]. ExpertSystems with Applications,2012,39:3000~3011.
    [162]熊云峰,陈章兰,袁红莉.基于复合权重TOPSIS的船舶性能综合评价法[J].船舶工程,2012,34(3):28~31.
    [163]刘源,王丙祥,李琳.基于TOPSIS的模糊群体多属性决策方法[J].数学的实践与认识,2012,42(11):108~113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700