用户名: 密码: 验证码:
统计流形框架下视觉特征的嵌入与目标识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颜色、纹理和形状是最基本的视觉特征,人们常用其来描述图像的属性,并广泛应用于目标识别任务。多尺度高斯导数滤波器和Gabor滤波器是构造图像局部形状和多谱纹理描述子的常用工具。在分析和应用时,通常将输入图像与一组高斯导数滤波器或Gabor滤波器的卷积输出作为多通道或多谱图像。这种多通道滤波图像与常见的彩色图像类似,具有局部多维和全局高维特性。全局方法习惯将所有通道逐像素点的滤波响应串联成一个高维向量。然而,在识别或学习等应用中,特征向量高维属性容易导致“维数灾难”,使得算法失效或输出次优结果。尽管下采样或其它压缩技术可以在一定程度上克服这些问题,但都是以丧失大量信息为代价。共生矩阵本质上是一种离散的概率分布,它利用像素特征空间上的共生信息描述图像纹理。传统方法常采用从共生矩阵中进一步提取Haralick特征,这时出现的问题是无法使用共生矩阵的全部统计信息。直方图是一种广泛使用的图像描述子,不过,目标图像与高斯导数或Gabor滤波器卷积生成的逐像素响应集大多呈现复杂的分布。在识别任务中如何从这些特征集中抽取判别直方图并赋予恰当的信息度量就显得十分重要。另外,直方图的非欧几何结构使得经典学习算法对其学习时难以得到令人满意的结果。针对上面提及的图像/滤波图像视觉特征用于识别和学习过程中所出现的问题,在统计流形框架下,本文考虑逐像素特征/共生特征的概率生成模型。通过使用模型离散化(仅针对非参数的概率模型)和紧致化嵌入技术,在(积)多项流形上借助(因子流形的)费舍尔-黎曼(Fisher-Riemannian)几何导出了生成模型间相似性度量。在此基础上,提出了基于特征/共生特征概率生成模型匹配的目标识别方法和基于随机直方图嵌入的统计流形学习方法。本篇论文的工作、主要成果和创新包括:
     (1)提出了基于特征/共生特征概率生成模型的目标表示。即利用目标图像/滤波图像上逐像素点的特征集的联合(或边际)生成模型,将目标表示成为某个(积)非参数统计流形上的点。利用图像/滤波图像上共生特征的生成模型,将目标表示成一个(积)多项流形上的点。这些目标表示方法是本文算法设计的基础。
     (2)理论上,证明了用多项流形的费舍尔几何来研究无限维非参数统计流形的某个子流形的合理性。应用上,给出了由非监督学习的分位点确定的模型离散化方法。为了获得与模型几何相适应的信息度量,采用了离散化模型的极大似然嵌入和嵌入的紧化技术。并对嵌入的(积)子流形赋予了由(因子)多项流形上测地距离导出的信息度量。由此,提出了基于特征概率生成模型匹配的目标识别方法。实验结果表明:当应用多通道Gabor特征或高斯微分特征进行目标识别时,该方法能在不同类型的目标库上获得较好的识别性能。
     (3)通过引入紧化的(积)共生矩阵嵌入,提出了在嵌入(积)子流形上匹配灰度/颜色共生矩阵的目标识别方法。为了将这种方法加以推广,本文设计了一种新颖的图像描述子—Gabor幅值共生矩阵。通过对多项流形上的测地距离度量的延拓,提出了匹配Gabor幅值共生矩阵的目标识别方法。实验结果验证:本文提出的识别方法在性能上明显优于经典(核)子空间方法和Haralick特征匹配的方法。
     (4)提出了基于随机直方图嵌入的统计流形学习方法。该方法不刻意追求从数据或特征集中抽取最优直方图,而是强调通过抽取多个低分辨率的随机直方图和紧致化嵌入,在积多项流形上对其判别信息加以整合。在嵌入积子流形上将经典流形学习算法和本征维数估计算法调整成与导出度量相适应的形式,由此实现积子流形的低维欧氏嵌入。实验结果证实,该方法在特征提取以及目标或数据集的可视化方面均有很好的表现。
As the basic visual features, color, texture and shape are usually adopted to describe image properities and applied to object recognition tasks. Gabor filter and Gaussian derivative filter are two kinds of tools to construct multispectral texture and local shape descriptors of image. For any input image, the collection of filtered images outputted from a bank of Gabor filters or Gaussian derivative filters used to be viewed as a multichannel or multispectral image for alanysis and application. This sort of multichannel image owns the global high-dimensional and local multi-dimensional natures similar to common color image. Global approaches are accustomed to concatenating all channels of pixel-by-pixel filtered responses to form a high-dimensional vector. But, the high-dimensional nature of feature vectors tends to cause "the curse of dimensionality" in a learning or recognition task, which makes algorithm invalid or only output suboptimal result. Although sampling and other compression techniques can solve the problem to certain extent, it is often at the cost of multitudinous information loss. A co-occurrence matrix is essentially a discrete probability distribution that describes image texture with spatial co-occurrence information of pixel features. The classical methods use Haralick features, but then the complete information of the co-occurrence matrix can not be summarized into these features. Histograms are a kind of widely used image descriptors, but the response sets obtained by convoluting an image with a bank of Gabor or Gaussian derivative filters have complex distributions in most cases. Then it is necessary to extract discriminative histograms and endow them with appropriate information metric. In addition, the non-Euclidean structured histograms determine that it is hard to get satisfactory results as applying a Euclidean metric-based learning algorithm to histograms-representing frequency data. Aiming to the problems of above visual features appeared in the processes of recognition and learning, we consider the probabilistic generative models of pixel-by-pixel features or co-occurring features of images (or filtered images) in the framework of statistical manifolds. By using the techniques of the models'discretization (only to nonparametric probability models) and the compactified embedding, the similarity metrics of generative models are built by the Fisher-Riemannian geometries on multinomial manifolds. We present the recognition methods of matching generative models of features or co-occurring features, and the learning method based on stochastic histogram embedding in the framework of statistical manifold. The novelties and main results of the associated work in this thesis include:
     (1) Object representation in the form of probabilistic generative model of features or co-occurring features is presented. That is, objects are represented as (product) the points of a nonparameteric (product) statistical manifold with the joint (or marginal) generative models of pixel-by-pixel feature sets of object images or the filtered images. Using the generative models of co-occurring features on object images or filtered images, objects are represented as the points on a (product) multinomial manifold. The presented object representations are the foundations to formulate our recognition algorithms in this thesis.
     (2) Theoretically, we prove the rationality to study a submanifold of a nonparemeteric statistical manifold by the Fisher geometry on multinomial manifold. As to application, we present the partition scheme on feature space with the quantiles learned in unsupervised manner. For designing model geometry-adaptive information metric, the techniques of maximum likelihood embedding and compactified embedding are adopted for the discretized models. In addition, we equip the embedded (product) submanifold with the information metric built by the geodesic distance metrics of factor multinomial manifolds. In this way, we present the object recognition method by matching probabilistic generative models of images' features. Experiments showed that the method gained the better recognition performances on several different types of object databases by using multichannel Gabor features or Gaussian differential features.
     (3) Object recognition approach matching gray level co-occurrence matrix or color co-occurrence matrices on (product) multinomial manifold is presented, by introducing (product) co-occurrence matrix (matrices) embedding and the compactification. In order to generalize the approach, a novel image descriptor, i.e. Gabor magnitude co-occurrence matrix was designed in this thesis. Using the extension technique of geodesic distance metrics on multinomial manifolds, we also generalized the method for object recognition by matching Gabor magnitude co-occurrence matrices on product multinomial manifold with boundary. Experimental results showed that these methods significantly outperformed classic (kernel) subspace methods and Haralick features based method with the higher recognition accuracy.
     (4) The statistical manifold learning method based on stochastic histogram embedding is presented. This method does not pursue the optimal histogram binning scheme, but stress the extraction of multiple low-resolution stochastic histograms and information integration on product multinomial manifold based on the compactified embedding. The classical manifold learning algorithms and the intrinsic dimension estimation algorithms can be adjusted to the derived metric-adaptive form, for learning on the embedded product submanifold for lower-dimensional Euclidean embedding. Experimental results show this learning algorithm can gain promising performances on feature extraction and data visualization.
引文
[1]K. M. Carter, Dimensionality reduction on statistical manifolds, Ph.D. thesis, University of Michigan,2009.
    [2]R. Fergus, Visual object recocogntion, Ph.D. thesis, University of Oxford, UK,2005.
    [3]S. Negahdaripour, A. K. Jain. Challenges in Computer Vision Research:Future Directions of Research, in:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Champaign, Illinois, Mar.1992, pp.189-199.
    [4]D. Gabor, Theory of communication, Jounral of the Institute of Electrical Engineers,93 (26) (1946) 429-457.
    [5]J. G. Daugman, Two-dimensional spectral analysis of cortical receptive field profile, Vision Research,20 (10) (1980) 847-856.
    [6]S. Ravela, R. Manmatha, Gaussian Filtered Representations of Images, Encyclopedia of Electrical and Electronic Engineering, John Webster (Editor), John Wiley,1999.
    [7]D. Donoho, High-dimensional data analysis:The curses and blessings of dimensionality, Aide-Memoire of a Lecture at AMS conference on Math Challenges of 21st Century. Available at:http://www-stat.stanford.edu/-donoho/Lectures/AMS2000/AMS2000.html.
    [8]W. Mio, D. Badlyans, X. W Liu. A computational approach to Fisher information geometry with applications to image analysis, in:Proc. of EMMCVPR 2005, St. Augustine, FL, USA, Lecture Notes in Computer Science 3757 (2) (2005).18-33.
    [9]G. Lebanon. Riemannian geometry and statistical machine learning. Ph.D. thesis, Carnegie Mellon University,2005.
    [10]杨振亚,彩色图像处理中几个基本问题的研究,博士论文,华东师范大学,2006.
    [11]许存禄,图像纹理分析的新方法及其应用,博士论文,复旦大学,2005.
    [12]I. Borg, P.Groenen, Modern Multidimensional Scaling:theory and applications (2nd ed.), Springer-Verlag New York,2005, pp.207-212.
    [13]M. Balasubramanian, E. L. Schwartz, The Isomap algorithm and topological stability, Science,295 (5552) (2002) 7-7.
    [14]Y. Ioannidis, The History of Histograms (abridged), in:Proceedings of the 29th VLDB conference, Berlin, Germany,29 (2003) 19-30.
    [15]W. K. Leow, R. Li, The analysis and applications of adaptive-binning color histograms. Computer Vision and Image Understanding,94 (1-3) (2004) 67-91.
    [16]R. Brunelli, O. Mich, Histograms analysis for image retrieval. Pattern Recognition,34 (8) (2001) 1625-1637.
    [17]S. Amari, H. Nagaoka, Methods of Information Geometry, AMS and Oxford U. Press, 2000.
    [18]B. Efron, Defining the curvature of a statistical problem (with applications to second. order efficiency), The Annals of Statistics,3 (6) (1975) 1189-1142.
    [19]I. Csiszar,I-divergence geometry of probability distributions and minimization problems. The Annals of Probability,3 (1) (1975) 146-158.
    [20]S. Amari, H. Nagaoka, Differential-geometrical methods in statistics, Springer-Verlag Berlin and Heidelberg,1990.
    [21]H. Zhu, R. Rohwer, Measurements of generalization based on information geometry, in: international conference on Mathematic of Neural Networks and Applications, Oxford, UK,1995.
    [22]H. Zhu, R. Rohwer, Bayesian invariant measurements of generalization for continuous distribntions, Technical Report, Neural Computing Research Group, Birmingham B4 7ET,UK,1995.
    [23]S. Amari, Information geometry of the EM and em algorithms for neural networks, Neural Networks,8 (9) (1995) 1379-1408.
    [24]S. Eguchi, Information geometry and statistical pattern recognition, http://www.ism.ac.jp/-eguchi/pdf/sugaku.pdf.
    [25]G. Lebanon, J. Lafferty, Hyperplane margin classifiers on the multinomial manifold, in: Proc. of the 21st International Conference on Machine Learning, ACM press,2004. http://www.cs.cmu.edu/-lafferty/publications.html
    [26]J. Lafferty, G. Lebanon, Diffusion kernels on statistical manifolds, Journal of Machine Learning Research, (6) (2005) 129-163.
    [27]J. Dillon, Y. Miao, G. Lebanon, J. Zhang. Statistical translation, heat kernels and expected distances, Uncertainty in Artificial Intelligence, AUAI Press,2007, pp.93-100.
    [28]S-M. Lee, A. L. Abbott, P. A. Araman, Dimensionality reduction and clustering on statistical manifolds, in:Proceedings of IEEE International Conference on CVPR,2007, pp.1-7.
    [29]S. J. Wang, Computational information geometry and its applications, in:internation conference on ICNN&B'05,2005, pp. PL63-PL69.
    [30]Z. Z. Shi, Y. P. Huang, S. L. Zhang, Fisher score based naive Bayesian classifier, in: internation conference on ICNN&B'05,2005, pp.1616-1621.
    [31]王德吉,关柯,熊范纶.基于信息几何的混沌支持向量机.小型微型计算机系统,2008, 29(1):100-103.
    [32]冈萨雷斯著,阮秋琦,阮宇智等译,数字图像处理(第二版),北京:电子工业出版社,2003.
    [33]R. M. Haralick, K. Shangmugam, I. Dinstein, Textural feature for image classification, IEEE Trans on Systems, Man, Cybernetics,3 (6) (1973) 610-621.
    [34]J. Jost, Riemannian Geometry and Geometric Analysis, Springer-Verlag, Berlin,2002.
    [35]C. R. Rao, Information and accuracy attainable in the estimation of statistical parameters, Bulletin of the Calcutta Mathematical Society, Vol.37,1945.
    [36]A. P. Dawid, Further comments on some comments on a paper by bradley efron, The Annals of Statistics, Vol.5,1977.
    [37]N. N. Cencov, Statistical decision rules and optimal inference, American Mathematical Society,1982.
    [38]R. Kondor. The information geometry of the multinomial distribution. http://www.its. caltech.edu/-risi/notes/multinomial.pdf.
    [39]P. Cheng, J. Krumm. Object recognition with color cooccurrence histograms. In:IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, June 1999, pp.23-25.
    [40]P. Pistone, C. Sempi, An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one, Ann. Statist.,23(1995) 1543-1561.
    [41]M.Grasselli, Classical and quantum information geometry, Ph.D. thesis, King's College, London 2001.
    [42]A. Cena, Geometric structures on the non-parametric statistical manifold, Ph.D. thesis, Universit'a Degli Studi Di Milano,2002.
    [43]A. P. Witkin, Scale-space filtering, in:Proceedings of the 8th International Joint Conference on Artificial Intelligence,1983, pp.1019-1023.
    [44]J. J. Koenderink, The structure of images, Biological Cybernetics,50 (1984) 363-396.
    [45]A. L.Yuille, T. A. Poggio, Scaling Theorems for Zero-Crossings, IEEE Trans. Pattern Analysis and Machine Intell,18 (3) (1986) 15-25.
    [46]L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, M. A. Viergever, Scale and the deferential structure of images, Image and Vision Computing, (10) (1992) 376-388.
    [47]T. Lindeberg, Direct estimation of affine image deformation using visual front-end operations with automatic scale selection, in:Proceedings of the 5th International Conference on Computer Vision,1995, pp.134-141.
    [48]B. M. ter Haar Romeny, L. M. J. Florack, A. H. Salden, M. A.Viergever. Higher order differential structure of images. Image and Vision Computing,1994,12(6):317-325.
    [49]A. Rosenfeld, M. Thurston, Edge and curve detection for digital scene analysis, IEEE Trans. Comput., C-20 (1971) 562-569.
    [50]A. Klinger, C. R. Dyer, Experiments on picture representation using regular decomposition, Computer Graphics Image Processing,5(1976) 68-105.
    [51]P. Burt, Fast filter transforms for image processing, Computer Vision, Graphics and Image Processing, (16) (1981) 20-51.
    [52]P. Burt, T. Adelson, The Laplacian pyramid as a compact image code, IEEE Trans. Communications,9 (4) (1983) 532-540.
    [53]J. Crowley, A representation for visual information, PhD thesis, Carnegie-Mellon University,1981.
    [54]T. Lindeberg, Scale-space theory:A basic tool for analyzing structures at different scales, Journal of Applied Statistics,21(2) (1994) 224-270.
    [55]D. Marr, E. Hildreth, Theory of edge detection, in:Proc Royal Society of London (B) B207,1980.
    [56]S. Ravela, R. Manmatha, Gaussian Filtered Representations of Images, Encyclopedia of Electrical and Electronic Engineering, John Webster (Editor), John Wiley,1999
    [57]B. Schiele, J. L. Crowley. Object recognition using multidimensional receptive field histograms. In:Proc.4th European Conj Computer vision, Cambridge, U.K.,1996.
    [58]S. Marcelja, Mathematical description of the responses of simple cortical cells, Journal of Optical Society of Americal,70 (11) (1980) 1297-1300.
    [59]J. K. Hawkins, Textural Properties for Pattern Recognition, in:Picture Processing and Psychopictorics, B Lipkin and A Rosenfeld (Editors), Academic Press, New York,1969.
    [60]J. Huang, S. R. Kumar, M. Mitra, et.al, Image indexing using color correlograms, in: Proeeedings IEEE Conferener on Computer Vision and Pattern Recognition,1997, pp:762-768.
    [61]C. Palm, Color texture classification by integrative co-occurrence matrices, Pattern Recognition,5 (37) (2004) 965-976.
    [62]V. Arvis, C. Debain, M. Berducat, A.Benassi, Generalization of the cooccurrence matrix for colour images:application to colour texture classification, Image Analysis and Stereology, (23) (2004) 63-72.
    [63]D. Muselet, L. Macaire, Combining color and spatial information for object recognition across illumination changes, Pattern Recognition Letters,28 (10) (2007) 1176-1185.
    [64]C. C. Gotlieb, H. E. Kreyszig, Texture descriptors based on co-occurrence matrices, Computer Vision, Graphics, and Image Processing,51 (1) (1990) 70-86.
    [65]A.Rosenfeld, C.-Y. Wang and A.Y. Wu, Multispectral texture, IEEE Trans. Syst. Man and Cybernet, SMC-12 (1) (1982) 79-84.
    [66]G. Lebanon, Information geometry, the embedding principle, and document classification, in:2nd International Symposium on Information Geometry and its Applications,2005, pp.1-8.
    [67]R. Durrett. Probability:Theory and Examples (2nd Edition). Duxbury Press,1995.
    [68]L.C.Evans, R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992.
    [69]COIL-20目标库,http://wwwl.cs.columbia.edu/CAVE/research/softlib/coil-20. html.
    [70]I. T. Jolliffe, Principal Component Analysis, Springer, New York,1989.
    [71]G. J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, Wiley Interscience,2004.
    [72]S. Mika, G. Ratsch, J. Weston, B. Scholkopf, K. R. Muller, Fisher discriminant analysis with kernels, IEEE International Workshop on Neural Networks for Signal Processing, Bol.IX, Madison,1999, pp.41-48.
    [73]Zurich buildings database, http://www.vision.ee.ethz.ch/showroom/zubud/.
    [74]FERET人脸库,http://www.itl.nist.gov/iad/humanid/feret/feret_master.html.
    [75]L. Shen, L. Bai, M. Fairhurst. Gabor wavelets and generalized discriminant analysis for face identification and verification. Image Vision Comput.,2007, Vol.25, pp.553-563.
    [76]A. Jain, G. Healey, A multiscale representation including opponent color features for texture recognition, IEEE Transactions on Image Processing,7(1) (1998) 124-128.
    [77]VisTex彩色纹理库,http://vismod.media.mit.edu/pub/VisTex/VisTex.tar.gz.
    [78]Georgia Tech (GT)彩色人脸库,http://www.anefian.com/research/face_reco.htm.
    [79]ETH-80彩色目标库,http://tahiti.mis.informatik.tu-darmstadt.de/oldmis/Research/ Projects/categorization/eth80-db.html
    [80]B. Caputo, L. Jie, A performance evaluation of exact and approximate match kernels for object recognition, Electronic Letters on Computer Vision and Image Analysis,8 (3) (2009) 15-26.
    [81]Yale人脸库,http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
    [82]D.W. Scott, J. R.Thompson, Probability density estimation in higher dimensions, in: Proceedings of the Fifteenth Symposium on the Interface,1983, pp.173-179.
    [83]K. S. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is "nearest neighbor" eaningful? In:Seventh International Conference on Database Theory, volume 1540 of Lecture Notes in Computer Science,1999, pp.217-235.
    [84]A. Smola, S. Mika, et al, Regularized prineipal manifolds, Journal of Machine Learning Researeh,1(3) (2001) 179-209.
    [85]C. Bregler, S. M. Omohundro, Nonlinear Image Interpolation using Manifold Learning, in:Advances in Neural Information Processing Systems, (7) (1995) 973-980.
    [86]M. Balasubramanian and E. L. Schwartz, The Isomap algorithm and topological stability, Science,295 (5552) (2002) 7.
    [87]S. Lafon, A. B. Lee, Diffusion maps and coarse-graining:A unified framework for dimensionality reduction, graph partitioning, and data set parameterization, IEEE Transactions on Pattern Analysis and Machine Intelligence,28 (9) (2006) 1393-1403.
    [88]S. T. Roweis, L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science,290 (5500) (2000) 2323-2326.
    [89]M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in:Neural Information Processing Systems, (14) (2002) 585-591.
    [90]L. J. P van der Maaten, E. O. Postma, H. J. van den Herik, Dimensionality reduction:A comparative review [R], Technical report 2009-005, Tilburg centre for Creative Computing, Tilburg University, Tilburg, The Netherlands,2009.
    [91]M. Bernstein, V.de Silva, J. Langford, et al, Graph approximations to geodesies on embedded manifolds, Technical report, Department of Psychology, Stanford University, 2000.
    [92]V. de Silva, J. B.Tenenbaum, Global versus local methods in nonlinear dimensionality reduction, in:Advances in Neural Information Processing Systems,2002.
    [93]J. B. Kruskal, Multidimensional scaling by optimizing goodness of fit to nonmetric hypothesis, Psyehometrika,29 (1) (1964) 1-27.
    [94]D. J. C. MacKay, Z. Ghahramani, Comments on "Maximum likelihood estimation of intrinsic dimension" by E. Levina and P. Bickel, available from: http://www.inference.phy.cam.ac.uk/mackay/dimension/,2005.
    [95]R. S. Bennett, The intrinsic dimensionality of signal collections, IEEE Trans. Inform. Theory, Vol.IT-IS,1969, pp.517-525.
    [96]K. M. Carter, A. O. Hero, R. Raich, De-biasing for intrinsic dimension estimation, in: Proceedings of IEEE Statistical Signal Processing Workshop,2007, pp.601-605.
    [97]E. Levina, P. J. Bickel, Maximum likelihood estimation of intrinsic dimension, in: Neural Information Processing Systems, MIT Press, Cambridge, MA,17,2005.
    [98]Amsterdam Library of Object Images (ALOI), http://staff.science.uva.nl/-aloi/.
    [99]A. Morrison, G. Ross, M. Chalmers, Fast multidimensional scaling through sampling, springs and interpolation, Information Visualization,2(1) (2003) 68-77.
    [100]C. Ruckebusch, M. Sliwa, P. Pernot, A. de Juan, R. Tauler, Comprehensive data analysis of femtosecond transient absorption spectra:A review, Journal of Photochemistry and Photobiology C:Photochemistry Reviews,13 (1) (2012) 1-27.
    [101]C. A. Perez, L. A. Cament, L. E. Castillo, Methodological improvement on local Gabor face recognition based on feature selection and enhanced Borda count, Pattern Recognition,44(4) (2011) 951-963.
    [102]A. Dash, P. Kanungo, B. P. Mohanty, A modified gray level co-occurrence matrix based thresholding for object background classification, Procedia Engineering, (30) (2012) 85-91.
    [103]K. M. Carter, R. Reich, W. G. Finn, A. O. Hero, FINE:Fisher Information Non-parametric Embedding, IEEE PAMI 31(11) (2009) 2093-2098.
    [104]L.Yu, Z. S. He, Q. Cao, Gabor texture representation method for face recognition using the Gamma and generalized Gaussian models, Image and Vision Computing 28 (1) (2010) 177-187.
    [105]L. Wang, Y. P. Li, C. B. Wang, H. Z. Zhang,2D Gaborface representation method for face recognition with ensemble and multichannel model, Image and Vision Computing, 26(6)(2008) 820-828.
    [106]S. Ravela and A. R. Hanson, On Multi-scale differential features for face recognition, in: Proceedings of SPIE, the International Society for Optical Engineering,4232 (2001) 19-28.
    [107]F. Buccafurri, F. Furfaro, D. Sacca, A probabilistic framework for estimating the accuracy of aggregate range queries evaluated over histograms. Information Sciences, 188(1) (2012) 121-150
    [108]Y. J. Roh, J. H. Kim, J. H. Son, M. H. Kim, Efficient construction of histograms for multidimensional data using quad-trees. Decision Support Systems,52 (1) (2011) 82-94.
    [109]Ming-yu Fan, Hong Qiao, Bo Zhang, Intrinsic dimension estimation of manifolds by incising balls. Pattern Recognition,42 (5) (2009) 780-787.
    [110]Xiaofei He, Partha Niyogi, Locality preserving projections, Advances in:Neural Information Processing Systems,16 (NIPS 2003), Vancouver, Canada,2003.
    [111]Xiaofei He, Shuicheng Yan, Yuxiao Hu, Partha Niyogi, Hong-Jiang Zhang, Face recognition using Laplacianfaces, IEEE PAMI,27(3)(2005) 328-340.
    [112]B. Scholkopf, A. Smola, K. R. Muller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput.,10 (5) (1999) 568-574.
    [113]L. Soh, C. Tsatsoulis, Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices, IEEE Transactions on Geoscience and Remote Sensing,37 (2) (1999)780-795.
    [114]D. A. Clausi, An analysis of co-occurrence texture statistics as a function of grey level quantization, Remote Sensing,28 (1) (2002) 45-62.
    [115]M. Werman, S. Peleg, A. Rosenfeld, A distance metric for multidimensional histograms, Computer Vision, Graphics, and Image Processing,32 (1985) 328-336.
    [116]C. T. J. Dodson and J. Scharcanski, Information geometric similarity measurement for near-random stochastic processes, IEEE Transaction on Systems, Man and Cybernetics-part A:Systems and Humans,33(2003) 435-440.
    [117]A. Elgammal, R. Duraiswami, L. S. Davis, Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence,25 (11) (2003) 1499-1504.
    [118]M. Barbehenn, M. G. Munchen, A note on the complexity of Dijkstra's algorithm for graphs with weighted vertices, IEEE Transactions on Computers,47 (2) (1998) 263.
    [119]S. Benferhat, C. Sossai, Reasoning with multiple-source information in a possibilistic logic framework, Information Fusion 7 (1) (2006) 80-96.
    [120]D. N. Joanes, C. A. Gill, Comparing measures of sample skewness and kurtosis, Journal of the Royal Statistical Society (Series D):The Statistician,47 (1) (1998)183-189.
    [121]曹健,基于局部特征的图像目标识别技术研究,博士论文,北京理工大学,2010.
    [122]王亮申,图像特征提取及基于内容图像数据库检索理论和方法研究,博士论文,大连理工大学,2002.
    [123][121] M. Kaminski, J. Zygierewicz, R. Kus, N. Crone, Analysis of multichannel biomedical data, Acta Neurobiol Exp (Wars) 65 (4) (2005) 443-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700