用户名: 密码: 验证码:
长白落叶松人工林生态系统碳密度测定与预估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林作为全球陆地生态系统的主体,是陆地碳循环最重要的碳库。人工林是森林生态系统的重要组成类型,是目前陆地碳汇增长最主要的媒介之一。对于人工林而言,掌握其生态系统碳累积现状及时空分布规律,据此评价并预测林分生长发育的动态过程,能为林分进行科学合理的经营管理提供依据。本研究以黑龙江小兴安岭地区朗乡林业局东折棱河林场的长白落叶松(Larix olgensis Henry.)人工林为研究对象,在多年积累的样地调查、标准木解析、生物量实测数据和含碳率测定数据的基础上,应用美国森林资源清查与监测体系(FIM)下圆形整群样地的抽样设计方法进行野外调查,测定了长白落叶松人工林生态系统碳密度。同时,在充分解析美国森林植被模拟系统(FVS)及其林火与可燃物扩展模型(FFE)基础上进行本土化,嵌入长白落叶松林分生长与收获模型,设定相关参数值,调校相关调整系数,模拟了人工经营措施下长白落叶松人工林的生长过程,并有效地预估了生物量和生态系统碳密度。本研究主要得到以下结论:
     (1)长白落叶松人工林生物量的估算和碳密度的计算。根据野外调查和实测数据,基于相对生长法建立高预估精度的生物量模型进行植被生物量的估算,基于残体蓄积通过体积密度和腐烂率转化计算残体生物量,得到长白落叶松人工林群落生物量为202.843t.hm-2,包括植被活生物量156.704t·hm-2和残体死生物量46.139t·hm-2,其中乔木生物量136.225t·hm-2,所占比例达67.16%,占据绝对优势。同时,测定生物量不同器官组分的含碳率值,得到长白落叶松群落的平均含碳率为45.8%,其中乔木(47.6%)、枯立木(44.6%)、林下植被(44.1%)、木质残体(41.2%)和凋落物(37.4%)。测定得到土壤平均有机碳含量为19.538g·kg-1。最终研究认为长白落叶松人工林生态系统碳密度随林龄增加而增大,空间分布序列是:土壤(91.847tC·hm-2)>植被(74.451tC·hm-2)>残体(19.029tC·hm-2),平均为185.327tC·hm-2。长白落叶松人工林生态系统年均净固碳量为5.021tC·hm-2·yr-1,乔木的年均净固碳量为3.479tC·hm-2·yr-1。
     (2) FFE-FVS系统基本参数、生长与收获模型和生物量估算方法的确定。本研究生成了研究地长白落叶松人工林的位置、林分数据和样木数据三个主要文件,编制了地位指数表和合理经营密度表,为FFE-FVS系统的运行提供地位指数、林分密度指数和树冠竞争因子等参数。构建了包括“胸径-树高”模型,树皮因子模型,胸径、树高和树冠生长模型,林分死亡率模型以及材积模型7个模型在内的长白落叶松生长与收获模型体系。在FFE-FVS系统中,确定可基于树干、干材、树枝、树冠和树根等器官组分生物量方程的乔木生物量估算方法,林下植被生物量以林龄来估算,由林分死亡率模型模拟产生的枯立木的生物量依据材积并通过腐烂率和体积密度转化得到,活立木树冠凋落、枯立木破损倒落和剩余物堆积物是粗细木质物等残体生物量来源,凋落物中L层生物量为每年所有植被凋落叶的总和,而凋落物D层生物量则为各种残体及凋落物L层经分解损失的部分。最终,将长白落叶松生长与收获模型体系与生物量估算方法嵌入FFE-FVS系统,经不断试运行和调试,实现了FFE-FVS系统的本土化。
     (3)应用本土化FFE-FVS系统模拟林分生长以及预估森林生物量和碳密度。基于汉化的SUPPOSE窗口操作界面,以现实长白落叶松人工林林分为例,检验FFE-FVS系统模拟林分生长的结果,通过生长量调整系数来调整胸径和树高与实测值存在的差异,保证较好的模拟精度。根据对长白落叶松人工林的实际经营管理,利用FFE-FVS系统模拟林分的生长发育过程,研究认为30%强度、间隔期为10年的下层疏伐是最适合当地长白落叶松人工林的措施。模拟得到的生物量预估值与实测值差异不大,增长趋势基本一致。最终,计算得到的长白落叶松人工林生态系统碳密度预估值与实测值接近,土壤(46.61%)>植被(42.62%)>残体(10.77%)的空间分布序列也与实测结果相近,模拟效果良好。本研究实现了FFE-FVS系统在人工经营措施干扰下的对长白落叶松人工林林分生长的模拟和对生态系统碳密度的连续性动态预估。
     本研究依据国内首次引进的美国FIM圆形整群样地技术,提出细致可行的野外调查方法和规范的基础数据处理过程,保证了碳密度预估的精确性和可信度。同时,构建的针对小兴安岭地区长白落叶松的FFE-FVS系统在模拟林分生长时运行顺畅,输出的报表内容丰富、直观,具有可行性、准确性和实用性的特点,能够满足并能指导人工林的生产经营,并预估生物量和碳密度。本研究扩充了小兴安岭地区长白落叶松人工林生态系统生物量和碳密度研究的基础资料,对其它人工林生态系统碳密度的现状和动态预估的研究具有重要的借鉴作用,以期为逐步为完善我国生物量和碳储量监测体系提供参考。
As main part of global terrestrial ecosystem, forest is a momentous carbon (C) stock of C cycle. While forest plantation is an important part of forest ecosystem, and is one of the most vital mediums for global increaseing C sink so far. For plantation ecosystem, knowing its C accumulation condition and spatial-temporal distribution law well can help assessing and forecasting the dynamic process of forest stand growth and development, which can provide sufficient theory and practice basis for scientific and rational stand management in future. Base on field inventory, stem analysis and biomass measurement data, we estimated the whole ecosystem C density of Larix olgensis Henry.plantation in Langxiang bureau (in Lesser Khingan Mountains, Heilongjiang, northeast of China), with cluster-plots sampleing method from Forest Inventory and Analyse (FIA) under American Forest Inventory Monitoring system (FIM) and C concentration determinated by a Multi CN Analyzer (ELEMENTAR Vario EL III, Germany). Meanwhile, Larix olgensis growth and yield model was embedded in to FFE-FVS after deeply analysis about its construction, also we set and adjusted some related parameters or coefficients, then triggered the FFE-FVS to simulated the growth process of plantation and putout estimations of community biomass and ecosystem C density, which experimented forest management and other disturbs as windstorm. The following three conclusions were obtained:
     (1) The counting of biomass and C density of Larix olgensis plantation were estimated. On the account of relative growth theory, we built high predicting accuracy biomass model to estimate vegetation biomass, and volume accumulation of down dead materials (DDM) was converted to biomass via bulk density and decay rate. We figured out the biomass of Larix olgensis plantation community was202.843t·hm-2, including vegetation live biomass156.704t·hm-2and DDM biomass46.139t·hm-2, in which arbor biomass was in the absolute dominance position with accounting of136.225t·hm-2and corresponding proportion of67.16%. Meanwhile. we determinated C concentrations of different organs and/or components of biomass. and the average C concentrations of Larix olgensis plantation community was45.8%, which was calculated from weighted averages of arbor47.6%, snag44.6%, understory vegetation44.1%, down woody material41.2%and forest floor37.4%. Soil organic C was19.538g·kg-1. Sum of all these pools, the total C density of Larix olgensis ecosystem was185.327t C·hm-2on average, which increased with stand age and the spacial distribution was arrayed as:soil (91.847t·C·hm-2)> vegetation (74.450t·C·hm-2)> down dead materials (19.029t·C·hm-2). The annual net C increment of Larix olgensis ecosystem was5.021t C·hm-2·yr-1, and that of trees was3.479tC·hm-2·yr-1.
     (2) The procedure of the determining basic parameters, building of growth and yield model and estimation method of biomass in FFE-FVS system were finished. This research provided the three main data documents, including location file, stand data and sampling tree data. We also established site index table and reasonable density table to provide site index, stand density index and crown competition factor and other parameters for the operation of FFE-FVS system. The growth and yield model system construction of Larix olgensis completed, which consist of seven models followed by:DBH-height model, bark factor model, DBH growth model, height growth model, canopy growth model, stand mortality model and volume equation. Of FEE-FVS system, the arbor biomass was estimated by biomass equations of organ and components as trunk, stem, branch, canopy, root, etc. Understory vegetation biomass was estimated directly by stand age. Snag was created by stand mortality model, and its biomass was converted from volume as described above. Canopy falling, snag loss and residual piles after harvest were all origins for coarse woody debris and other types of DWM. To the forest floor, the litter layer was the sum of falling foliages of vegetation, and duff layer was transformed from the decay part of all DWM. Done with all these preparing work, we embedded the growth and yield models and biomass algorithm in original FFE-FVS, and finished the design and localization work of FFE-FVS after testing run and debugging for several times.
     (3) The simulator of forest growth process and estimations of biomass and C density of Larix olgensis plantation were finished by localized FFE-FVS system. Based on the chinesization window operating interface of SUPPOSE, we took simulation result of one stand as an example to check the simulator system, then reconciled the differences between estimators and true values via growth parameters, to improve the simulation accuracy. According to practical forest managements, we simulated the growth of plantation under human disturbance, and confirmed that the below thinning practice with30%intension and 10-year-interval was suitable for Larix olgensis plantation here. Meanwhile, biomass estimation was close to measured values, both had similar increase tend. Correspondingly, ecosystem C density calculations were similar to true values, and the spacial array of occupied portion for the three main pools as soil (46.61%)> vegetation (42.62%)> DDM (10.77%) with minor differences compared to true values.
     Our study was the first introduction of FIA cluster-plots sampling method in China, and proposed meticulous feasible field investigation methods and standard data analysing process, enhanced the accuracy and reliability of C density estimation. Meanwhile, the localized FFE-FVS simulation system for simulating stand develepment operated smoothly, with plenty of output information. It had also been proved that this sinicized simulator system was feasibile, accurate and practical, which was useful for plantation management, and estimation of biomass and C density. This study extends based materials about biomass and C density of Larix olgensis plantation in Lesser Khingan Mountains, also is important in reference to other current studies, and would help to improve monitoring system of C storage in China.
引文
[1]鲍显诚.栓皮栎林的生物量[J].1984,植物生态学与地植物丛刊,8(4):313-320.
    [2]毕君,马增旺,许云龙等.人工侧柏群落结构及生物量[J].东北林业大学学报,2000,28(1):13-15.
    [3]曹伟,李冀云.小兴安岭植物区系与分布[M].中国,北京:科学出版社,2007.
    [4]陈传国,朱俊凤.东北主要林木生物量手册[M].北京:中国林业出版社.1989.
    [5]陈楚莹,廖利平,汪思龙等.杉木人工林生态系统碳素分配与贮量的研究[J].应用生态学报,2000,11(增刊):175-178.
    [6]陈存根,龚立群,彭鸿等.秦岭锐齿栎林的生物量和生产力[J].西北林学院学报,1996,11(增刊):103-114.
    [7]陈遐林.华北主要森林类型的碳汇功能研究[D].北京:北京林业大学,2003.
    [8]程堂仁,冯菁,马钦彦等.基于森林资源清查资料的林分生物量相容性线性模型[J].北京林业大学学报,2007,29(5):110-113.
    [9]戴民汉,翟惟东,鲁中明等.中国区域碳循环研究进展与展望[J].地球科学进展.2004,19(1):120-130.
    [10]丁贵杰,上鹏程.马尾松人工林生物量及生产力变化规律研究Ⅱ不同林龄生物量及生产力[J].林业科学研究,2001,15(1):54-60.
    [11]段爱国,张建国,何彩云等.杉木人工林生物量变化规律的研究[J].林业科学研究,2005,18(2):125-132.
    [12]段劫.基于FVS-BGC的森林生长收获模拟系统应用研究[D].北京:北京林业大学,2010.
    [13]段文霞,朱波,刘锐.退耕还林中柳杉林生态系统的碳储量动态研究[J].北京林业大学学报,2007,29(2):55-59.
    [14]方华军,杨学明,张晓平.农田土壤有机碳动态研究进展[J].土壤通报,2003,34(6):562-568.
    [15]杜少杰,胡喜山,刘海涛.落叶松人工林最适密度的探讨[J].防护林科技,2003,(2):59-60.
    [16]方精云.北半球中高纬度的森林碳库可能远小于目前的估计[J].植物生态学报,2000a,24(5):635-638.
    [17]方精云.中国森林生产力及其对全球气候变化的响应[J].植物生态学报,2000b,24(5):513-517.
    [18]方精云,陈安屏.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320-2322)的若干说明[J].植物生态学报,2002,26(2)243-249.
    [19]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    [20]方精云.中国森林生产力及其对全球气候变化的响应[J].植物生态学报,2000.24(5):513-517.
    [21]方精云,刘国华,徐嵩龄.中国陆地生态系统碳库,现代生态学的热点问题研究(上册),北京:中国科学技术出版社,1996,251-277.
    [22]方精云,刘国华,徐篙龄.我国森林植被的生物量和净生产量[J].生态学报,1996.16(5):497-508.
    [23]方精云.刘国华,朱彪等.北京东灵山三种温带森林生态系统的碳循环[J].中国科学D辑:地球科学,2006,36(6)533-543.
    [24]方晰,田大伦,项文化.速生阶段杉木人工林碳索密度、贮量和分布[J].林业科学.2002.38(3):14-19.
    [25]方晰,田大伦,项文化等.不同密度湿地松人工林中碳的积累与分配[J].浙江林学院学报,2003.(4):.24-26.
    [26]方晰,田大伦,项文化.杉木人工林凋落物量及其分解过程中碳的释放率[J].中南林学院学报,2005,25(6):12—16.
    [27]方运霆,莫江明,李德军等.鼎湖山马尾松群落能量分配及其生产的动态[J].广西植物,200525(1):26-32.
    [28]方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和贮量的研究[J].广西植物,2002,22(4):305-310.
    [29]冯瑞芳,杨万勤,张健.人工林经营与全球变化减缓[J].生态学报,2006,26(11):3870-3877.
    [30]冯宗炜,工效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    [31]公宁宁,马履一,贾黎明等.不同密度和立地条件对北京山区油松人工林树冠的影响[J].东北林业大学学报,2010,38(5):9-12.
    [32]国家林业局.关于部署2008年全国森林资源连续清查工作的通知http://www.forestry.gov.cn/distribution/2007/09/27/zwgk-2007-09-27-2753.html.
    [33]国家林业局.国家森林资源连续清查技术规定[R].2004.
    [34]郭家新.杉木火力楠混交林与杉木纯林土壤碳氮库研究[J].福建林业科技,2008,35(03):5-9.
    [35]国庆喜,张锋.基于遥感信息估测森林的生物量[J].东北林业大学学报,2003,31(2):40-43.
    [36]郭孝玉,孙玉军,马炜等.适于FVS的长白落叶松树皮因子[J].东北林业大学学报,2011,39(10):28-31.
    [37]韩爱惠.森林生物量及碳贮量遥感监测方法研究[D].北京:北京林业大学.2009.
    [38]韩汉鹏.试验统计引论[M].北京:中国林业出版社,2006.
    [39]韩铭哲.兴安落叶松人工林生物量和生产力的探讨[J].华北农学报,1987,2(4):134-138.
    [40]韩淑云.气候变化对人类现实生活的影响[J].城市与减灾,2005,1:25-27.
    [41]黄昌勇.土壤学[M].北京:中国农业出版社,2000:1-31.
    [42]黄东,谢晨,赵金成等.澳大利亚多功能林业经营及其对我国的启示[J].林业经济,2010,(2):117-121.
    [43]黄宇,冯宗炜,汪思龙等.杉木、火力楠纯林及其混交林生态系统C、N贮量[J].生态学报,2005,25(12):3146—3154.
    [44]胡会峰,刘国华.森林管理在全球CO2减排中的作用[J].应用生态学报,2006,17(4):709-714.
    [45]贾炜玮.樟子松人工林枝条生长及节子大小预测模型的研究[D].哈尔滨:东北林业大学,2006.
    [46]蒋延玲,周广胜.兴安落叶松林碳平衡及管理活动影响研究[J].植物生态学报,2002.26(3):317-322.
    [47]蒋有绪.世界森林生态系统结构与功能研究简述.北京:中国森林生态系统结构与功能规律研究[M].北京:中国林业出版社.1996.
    [48]焦秀梅,项文化,田大伦.湖南省森林植被的碳贮量及其地理分布规律[J].中南林学院学,2005,25(1):4-8.
    [49]康冰,刘世荣.张广军等.广西大青山南亚热带马尾松、杉木混交林生态系统碳素积累和分配特征[J].生态学报.2006.26(5):1320-1329.
    [50]康惠宁.马钦彦,袁嘉祖.中国森林C汇功能基本估计[J].应用生态学报,1996,7(3):230-234.
    [51]雷相东.刘洪玲.陆元昌等.国家级森林资源清查地面样地设计[J].世界林业研究,2008,21(4):62-67.
    [52]雷相东.张则路,陈晓光.长白落叶松等几个树种冠幅预测模型的研究[J].北京林业大学学报, 2006,28(6):75-79.
    [53]梁宏温,温远光,温琳华等.连栽对尾巨桉短周期人工林碳贮量的影响[J].生态学报,2009,29(8):4242-4250.
    [54]梁长秀,冯仲科,郎南军等.森林资源调查数据的稳健估计及分析[J].北京林业大学学报,2001,23(6):10-12.
    [55]李海涛,王姗娜,高鲁鹏等.赣中亚热带森林植被碳储量[J].生态学报,2007,27(2):693-704.
    [56]李梦,李长胜,李红光等.长白落叶松人工林最优密度及其控制技术的研究[J].东北林业大学学报,1996,24(1):17-26.
    [57]李梦,李元,满东斌等.长白落叶松人工林建筑材林分经营模型微机系统[J].东北林业大学学报,1997,25(3):26-29.
    [58]李铭红,于明坚,陈启常等.青冈常绿阔叶林的碳素动态[J].生态学报,1996,16(6):645-651.
    [59]李克让,王绍强,曹明奎.中国植被和上壤碳贮量[J].中国科学(D辑),2003,33(7):71-79.
    [60]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    [61]李红梅,马友鑫,郭宗峰等.西双版纳森林植被的碳贮量及影响因素分析[J].福建林学院学报,2005(4):26-32.
    [62]刘华,雷瑞德.我国森林生态系统碳储量和碳平衡的研究方法及进展[J]..西北植物学报,2005,25(4):835-843.
    [63]刘纪远,王绍强,陈镜明等.1990-2000年中国上壤碳氮蓄积量与上地利用变化[J]..2004,地理学报,59(4):483-496.
    [64]刘军万,李舟军,文定元.林火三维蔓延的数学模型和计算机仿真[J].林业科技,2006,31(3):30-34.
    [65]刘强,王金波.阔叶红松人工林群落的生物生产力[J].东北林业大学学报,2004,32(2):13-15.
    [66]刘增文,高文俊,潘开文等.枯落物分解研究方法和模型讨论[J].生态学报,2006,26(6):1993-2005.
    [67]林开敏,洪伟,俞新妥等.杉木人上林林下植物生物量的动态特征和预测模型[J].林业科学,2001,37(增刊):99-105.
    [68]林益明,林鹏,李振基等.武夷山甜槠群落的生物量和生产力[J].厦门大学学报,1996,35(2):269-275.
    [69]刘平.美国森林植被模拟系统(FVS)在北京地区人工林上的应用研究[D].北京:北京林业大学,2007.
    [70]李学明.日本落叶松的生物量测定[J].四川林业科技..984,5(1):27-29.
    [71]刘中,罗艳.黄钰辉等.鼎湖山五种植被类型群落生物量及其径级分配特征[J].生态科学,2007,26(5):387-393.
    [72]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-780.
    [73]刘强,王金波.阔叶红松人工林群落的生物生产力[J].东北林业大学学报,200432(2):556-558.
    [74]刘志刚.马钦彦.华北落叶松人工林生物量及其生产力的研究[J].北京林业大学学报,1992.14(增刊11:114-123.
    [75]李意德,吴仲民,曾庆波,周光益,陈步峰,方精云.尖峰岭热带山地雨林群落生产和二氧化碳同化率净增量的初步研究[J].植物生态学报.1998,22(2):127-134.
    [76]卢昌泰.李吉跃.马尾松胸径与根径和冠径的关系研究[J].北京林业大学学报,2008.30(1):58263.
    [77]骆土寿,陈步峰,陈永富等.海南岛霸王岭热带山地雨林采伐经营初期土壤碳氮储量[J].林业科学研究,2000,13(2):123-128.
    [78]罗天祥,李文华,赵士洞.中国油松林生产力分布格局与模拟[J].应用生态学报,1999,(10):257-261.
    [79]罗云建,张小全,侯振宏等.我国落叶松林生物量碳计量参数的初步研究[J].植物生态学报,2007,31(6):1111-1118.
    [80]罗云深.森林植被仿真Agent计算框架的研究与实现[D].北京:北京林业大学,2007.
    [81]李跃林,彭少麟,赵平等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报,2002,20(5):548-552.
    [82]马丰丰.基于FVS的北京地区侧柏单木模型优化及应用[D].北京:北京林业大学,2007.
    [83]马丰丰,贾黎明,段劫等.北京山区侧柏人工林地位指数表的编制[J].北京林业大学学报,2008,30(6):78-82.
    [84]马明东,江洪,刘跃建.楠木人工林生态系统生物量、碳含量、碳贮量及其分布[J].林业科学,2008,44(3):34-39.
    [85]马明东,江洪.四川西北部亚高山云杉天然林生态系统碳密度、净生产量和碳贮量的初步研究[J].植物生态学报,2007,31(2):305-312.
    [86]满秀玲,刘斌,李奕.小兴安岭草本泥炭沼泽土壤有机碳、氮和磷分布特征[J].北京林业大学学报,2010,32(6):48-53.
    [87]马钦彦,陈遐林,王娟等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5/6):96-100.
    [88]孟宪宇.测树学[M].北京:中国林业出版社,2006:295-296.
    [89]孟宪宇,陈东来.山杨次生林地位指数表编制方法的研究[J].北京林业大学学报,,2001,23(3):47-51.
    [90]宁波.樟子松人工林结构动态及生物量的研究[D].东北林业大学,2007.
    [91]潘家华,(中国社会科学院世界经济与政治研究).碳汇:林业长足发展的机遇与挑战[OL].http://www.gdf.gov.cn/index.php?controller=front&action=view&id=10013071.
    [92]潘建中,潘攀,牟长城等.长白落叶松人工林的适宜经营密度[J].东北林业大学学报,2007,35(9):4-6.
    [93]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应[J].生态学报,2002,22(9):1534-1544.
    [94]彭小勇.闽北杉木人工林地上部分生物量模型的研究[D].福建农林大学,2007.
    [95]秦武明,何斌,覃世赢.厚荚相思人上林生物量和生产力的研究[J].西北林学院学报,2008.23(2):17-20.
    [96]阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究:含量与分布规律[J].生态学杂志.1997,16(6):17-21.
    [97]桑卫国,苏宏新.陈灵芝.东灵山暖温带落叶阔叶林生物量和能量密度研究[J].植物生态学报,2002.26(增刊:88-92.
    [98]桑卫国,马克平,陈灵芝.暖温带落叶阔叶林碳循环的初步估算[J].植物生态学报,2002.26(5):543-548.
    [99]沈文清.马钦彦,刘允芬.森林生态系统碳收支状况研究进展[J].江西农业大学学报.2006.28(2):312-317.
    [100]史大林,郑小贤.马尾松林碳储量成熟问题初探[J].林业资源管理,2007,(4):26-29.
    [101]石广生,丁一汇.1996.中国森林CO2释放与吸收的评估//丁一汇.中国的气候变化与气候影响研究.北京:气象出版社,85-94.
    [102]舒清态,唐守正.国际森林资源监测的现状与发展趋势[J].世界林业研究,2005,18(3):33-37.
    [103]史军,刘纪远,高志强等.造林对陆地碳汇影响的研究进展[J].地理科学进展,2004,23(2):58-67.
    [104]孙鸿烈主编.《中国资源科学百科全书》[M].中国北京:大百科全书出版社.2003.
    [105]孙玉军主编.资源环境监测与评价[M].北京:高等教育出版社.2007.
    [106]孙维侠,史学正,于东升等.我国东北地区土壤有机碳密度和贮量的估算研究[J].土壤学报,2004,41(2):298-301.
    [107]唐守正,李勇.生物数学模型的统计学基础[M].北京:科学出版社.2002.
    [108]唐守症,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学,2000,36(专刊1):19-28.
    [109]唐守正,杜纪山.利用树冠竞争因子确定同龄间伐林分的断面积生长过程[J].林业科学,1999,35(6):36-41.
    [110]唐旭利,周国逸,周霞等.鼎湖山季风常绿阔叶林粗死木质残体的研究[J].植物生态学报,2003,27(4):484-489.
    [111]田大伦.杉木林生态系统定位研究方法[J].北京:科学出版社,2004,311-314.
    [112]玉宝,乌吉斯古楞,王百田等.兴安落叶松天然林树冠生长特性分析[J].林业科学,20 1 0.46(5):41-48.
    [113]王春梅,邵彬,王汝南.东北地区两种主要造林树种生态系统固碳潜力[J].生态学报,2010,30(7):1764-1772.
    [114]王金叶,车可均,蒋志荣.祁连山青海云杉林碳平衡研究[J].西北林学院学报2000,(1):9-14.
    [115]王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨[J].地理科学进展,1999,18(3):238-214.
    [116]王绍强,周成虎,刘纪远等.东北地区陆地碳循环平衡模拟分析[J].地理学报,2001,56(4):390-400.
    [117]上维枫,雷渊才,王雪峰等.森林生物量模型综述[J].西北林学院学报,2008,23(2):58-63.
    [118]王文斗,李风日,那冬晨等.辽东栋单木生长模型的研究[J].林业科技,2005,30(2):11-13.
    [119]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    [120]王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志,2000,19(4):72-74.
    [121]王效科.中国图森林生态系统的生物量、碳储量和生物质燃烧释放的含碳气体[D].北京:中国科学院生态环境研究中心.1997.
    [122]王秀云.不同年龄长白落叶松人工林碳储量分布特征[D].北京:北京林业大学.2011.
    [123]汪业勖,赵士洞.牛栎.陆地土壤碳循环的研究动态[J].生态学杂志.1999.8(5:)29-35.
    [124]王叶.延晓冬.全球气候变化对中国森林生态系统的影响[J].大气科学,2006.30(5):1009-1018.
    [125]王玉辉,周广胜,蒋廷玲等.基于森林资源清查资料的落叶松林生物量和净生长估算模式[J].植物生态学报,2001,28(4):420-425.
    [126]王仲锋,冯仲科.森林蓄积景与生物量转换的CVD模型研究[J].北华大学学报(自然科学 版),2006,7(3):265-268.
    [127]尉海东,马祥庆.不同发育阶段马尾松人工林生态系统碳贮量研究[J].西北农林科技大学学报(自然科学版),2007,35(1):171—174.
    [128]韦希勒.美国森林资源调查方法的改变对我们的启示[J].中南林业调查规划,2005,24(2):42-46.
    [129]魏文俊,王兵,李少宁等.江西省森林植被乔木层碳储量与碳密度研究[J].江西农业大学学报,2007,(5):681-687.
    [130]温远光,梁宏温,招礼军等.尾叶桉人工林生物量和生产力的研究[J].热带亚热带植物学报,2000,8(2):123-127.
    [131]吴刚,冯宗炜.中国寒温带、温带落叶松林群落生物量的研究概述[J].东北林业大学学报,1995,23(1):95-101
    [132]吴家兵,张玉书,关德新.森林生态系统CO2通量研究方法与进展[J].东北林业大学学报,2003,31(6):49-51.
    [133]吴建国,张小全,工彦辉等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002,38(4):19-29.
    [134]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599.
    [135]吴鹏飞,朱波,刘世荣等.不同林龄桤-柏混交林生态系统的碳储量及其分配[J].应用生态学报,2008,19(7):1419-1424.
    [136]吴仲民,李意德,曾庆波等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究[J].应用生态学报,1998,9(4)341-344.
    [137]肖兴威.中国森林资源清查[M].北京:中国林业出版社,2005.
    [138]肖兴威,姚昌恬,陈雪峰等.美国森林资源清查的基本做法和启示[J].林业资源管理,2005,(4):27-33,42.
    [139]肖兴威.中国森林资源和生态状况综合监测研究[M].北京:中国林业出版社,2007.
    [140]解宪丽,孙波,周慧珍等.中国上壤有机碳密度和贮量的估算与空问分布分析[J].上壤学报,2004,41(1):35-43.
    [141]邢艳秋,王立海.基于森林调查数据的长白山天然林森林生物量相容性模型[J].应用生态学报,2007,18(1):1-8.
    [142]邢艳秋,王立海.基于森林生物量相容性模型长白山天然林生物量估测[J].森林工程,2008,24(2):1-4.
    [143]熊奎山.人工同龄纯林树冠面积比例系数计算及林分标准密度(立木株数)确定的研究[J].林业科学,1998,35(6):116-122.
    [144]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    [145]肯辉.林木生物量模型研究评述[J].林业资源管理,1997(5):33-36.
    [146]肯辉.两种生物量模型的比较[J].西南林学院学报.2003.23(2).
    [147]胥辉,张会儒.林木生物量模型研究[M].昆明:云南科技出版社,2002.
    [148]许俊利.东折棱河落叶松生物量模型研究及生物量估算[D].北京:北京林业大学,2009.
    [149]徐小军,杜华强,周国模等.基于遥感植被生物量估算模型自变量相关性分析综述[J].遥感技术与应用,2008,23(2):239-237.
    [150]闫德仁,刘永军,安晓亮等.落叶松人工林枯落物特征研究[J].内蒙古林业科技,2003,(3):31-34.
    [151]杨海.论美国林业经济多功能可持续发展的先进经验[J].林业经济,2006,(8):77-80.
    [152]杨金艳.东北天然次生林生态系统地下碳动态研究[D].哈尔滨:东北林业大学,2005.
    [153]杨昆,管东生.林下植被的生物量分布特征及其作用[J].生态学杂志,200625(10):1252-1256.
    [154]杨昆,管东生.森林林下植被生物量收获的样方选择和模型[J].生态学报,2007.27(2):705-714.
    [155]杨继平.新西兰林业分类经营考察报告[J].中国林业,2005,(14):23-30.
    [156]杨艳霞.福建主要人工林生态系统碳贮量研究[D].2010.福建农林大学.
    [157]杨丽韫,李文华.长白山不同生态系统地下部分生物量及地下C贮量的调查[J].自然资源学报,2003,18(2):204-209.
    [158]杨永辉,毕绪岱.河北省森林固CO2的效益[J].生态学杂志,1996,15(4):51-54.
    [159]杨玉盛,郭剑芬,林鹏等.格氏栲天然林与人工林枯枝落叶层碳库及养分库[J].生态学报,2004,24(2):359-367.
    [160]杨玉盛,陈光水,王义祥等.格氏栲人工林和杉木人工林碳库及分配[J].2006,42(10):43-47.
    [161]严茂超,杨柳春,李海涛等.鸡公山自然保护区森林植被生物量及活碳蓄积量研究[J];河南林业科技;2004(4):3-7.
    [162]姚迎九,康文星,田大伦等.18年生樟树人工林生物量的结构与分布[J].2003,中南林学院学报,23(1):1-5.
    [163]叶荣华.美国国家森林资源清查体系的新设计[J].林业资源管理,2003(3):65-68.
    [164]袁怀文,崔赛华.森林立木蓄积资源的计算机仿真研究[J].河北林果研究,2003,18(2):97-102.
    [165]于贵瑞.全球变化与陆地生态系统碳循环与碳蓄积[M].北京:气象出版社,2003,119-123.
    [166]曾伟生.森林资源和生态状况综合监测指标与方法探讨[J].林业科学研究,2008,21(增刊):82-86.
    [167]张德强,余清发,孔国辉等.鼎湖山季风常绿阔叶林凋落物层化学性质的研究[J].生态学报,1998,18(1):96-100.
    [168]张更新,张明铁.兴安落叶松合理经营密度表的编制[J].林业科学研究,1992,5(2):243-248.
    [169]张国庆,黄从德,郭恒等.不同密度马尾松人工林生态系统碳储量空间分布格局[J].浙江林业科技,2007,27(6):10-14.
    [170]张慧芳,张晓丽,黄瑜.遥感技术支持下的森林生物量研究进展[J].世界林业研究,2007,20(4):30-34.
    [171]张会儒,唐守正,奉瑜.与材积兼容的生物量模型的建立及其估计方法研究[J].林业科学研究,1999,12(1):53-59.
    [172]张林,黄永,罗天祥等.林分各器官生物量随林龄的变化规律—以杉木、马尾松人上林为例[J].中国科学院研究生院学报.2005,22(2):170-178.
    [173]张永照.能源、环保方针和我国工业锅炉发展展望[D].西安:西安交通大学.2000.
    [174]张乔民,陈永福.海南三亚河红树凋落物产量与季节变化研究[J].生态学报,2003,23(10):1977-1983.
    [175]赵刚.姜以斌.长白落叶松人工林3种成熟龄的研究[J].辽宁林业科技.1995(2):30-34.
    [176]赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势[J].应用生态报,2004a,15(8):1468-1472.
    [177]赵敏.周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科 学,2004(1):50-54.
    [178]中华人民共和国标准局.GB7859-87.森林土壤pH值的测定[S].1987.
    [179]钟羡芳,陈光水,高人等.杉木多代连栽地营造杉阔混交林碳库与碳吸存[J].福建师范大学学报(自然科学版),2006,22(2):99-103.
    [180]周光辉,曾伟生,陈雪峰.我国森林资源和生态状况监测存在的问题与对策[J].中南林业调查规划,2006,25(4):1-5.
    [181]周广胜.2003.全球碳循环[M].北京,气象出版社.
    [182]周广胜,王玉辉,蒋延玲等.基于森林资源清查资料的落叶松林生物量和净生长量估算模式[J].植物生态学报,2001,25(4)420-427.
    [183]周广胜.生物地球化学循环模型[A].韩兴国等编.生物地球化学概论[C].北京:高等教育出版社,1999,293-313.
    [184]周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布[J].林业科学,2004,40(6):20-24.
    [185]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    [186]周振宝.大兴安岭主要可燃物类型生物量与碳储量的研究[D].2006.东北林业大学.
    [187]Adrien C.F., David J.P., Evan H.D., et al. Progressive Nitrogen Limitation of Ecosystem Processes Under Elevated CO2 in a Warm-Temperature Forest[J]. Ecology,2006.87(1):15-25.
    [188]Ager, A.A., McMahan, A.J., Barrett, J.J., et al. A simulation study of thinning and fuel treatments on a wildland-urban interface in eastern Oregon, USA[J]. Landscape and Urban Planning,2007a,80:292-300.
    [189]Ager A.A., McMahan A.J., Hayes J.L., et al. Modeling the effects of thinning on bark beetle impacts and wildfire potential in the Blue Mountains of eastern Oregon[J]. Landscape and Urban Planning,2007b 80:301-311.
    [190]Ajtay G.L. Ketner P., Duvigneaud P.. Terrestrial primary production and phytomass. The Global Carbon Cycle, SCOPE 13, John Wiley & Sons, Chichester,1979.129-181.
    [191]Atkins D., Lundberg R. Analyst Hazards When Assessing Fire, Insect and Disease Hazard in Montana Using FIA Data with FVS or Alligators We Didn't See Coming. Pp 83-90 in: Crookston, Nicholas L.; Havis, Robert N. comps. Second Forest Vegetation Simulator (FVS) Conference; February 12-14,2002, Fort Collins, CO. Proceedings RMRS-P-25. Ogden, UT:U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.2002.
    [192]Bechtold W.A, Patterson P.L. Forest Inventory and Analysis National Sample Desi gn and Estimation Procedures (draftversion4.0) [R].Washin gton.D.C.:USDAForestService,2002.
    [193]Bechtold W.A., Patterson P.L. The enhanced forest inventory and analysis program—ational sampling design and estimation procedures(Eds). Gen. Tech. Rep. SRS-80. US Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC.2005.
    [194]Bechtold W.A. Crown-diameter prediction models for 87 species of stand-grown trees in the eastern United States[J]. Southern Journal of Applied Forestry,2003.27(4):269-278.
    [195]Bechtold W.A. Largest-crown-diameter Prediction Models for 53 Species in the Western United States[J]. WJAF. Forest Service.2004.19(4):pp 241-245.
    [196]Birdsey R.A. Carbon storage and accumulation in United States forest ecosystems[R].United States Departmnet of Agrculutre Forest Service,General Technical Report,9 August 1992.
    [197]Birdsey R.A., Lewis G.M.,2003. Current and historical trends in use. management, and disturbance of U.S. forestlands. In:Kimble. J.M.,Heath. L.S., Birdsey. R.A., Lal. R. (Eds.),The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. CRC Press, New York, pp.15-34.
    [198]Blagodatsky S. A., Blagodatskaya E. V., Anderson T. H., et al.2006. Kinet ics of the res piratory of the soil and rh izosphere microbi2al communit ies in a field experiment with an elevat ed concen2t rat ion of atmosph eric CO2[J]. Eurasian Soil Science,39(3):325-333.
    [199]Brown S & Lugo A E. Biomass of tropical forests:a new estimate based on forest volumes[J].Science,1984,223:1290-1293.
    [200]Brown S & Lugo A E. Abevegroand biomass estimates for calmoist forests of Brazilian Anmzon[J].Interciencia,1992,17:8-18.
    [201]Borwn S. Present and potential roles of foersts in the global climate change debate[J].Unasylval 85,1996,47:3-10.
    [202]Brown S., Sathaye J., Canell M., et al.1996. Mitigation of carbon emission to the atmosphere by forest management [J]. Com For Rev,75:80-91.
    [203]Brown S. L., Schroeder P., Kern J.S. Spatial distribution of biomass in forests of the eastern USA [J]. For-Ecol Man,1999.123:81-90.
    [204]Brown S, Swingland I.R., Hanbury-Tenison R. et al. Changes in the use and management of forests for abating carbon emissions:issues and challenges under the Kyoto Protocol[J]. Philos Trans Math Phys Eng Sci,2002,360(1797):1593-1606.
    [205]Bunker D.E.,DeClerck F., Bradford J.C., et al. Species loss and aboveground carbon storage in atropical forest[J]. Science,2005,310:1029-1031.
    [206]Carolina M.R. & Belen F.S. Natural revegetation on topsoiled mining-spoils according to the exposure[J]. Acta Oecologica,2005.28,231-238.
    [207]Catharina J.E., Schulp G.N., Peter H.V., Rein W. d. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories[J]. Forest Ecology and Management,2008.256:482-490.
    [208]Chen, J., Chen,W.J., Liu, J., Cihlar,J., Gray, S.. Annual carbon balance of Canada's forests during 1895-1996[J]. Global Biogeochem Cycles,2000,14,839-849.
    [209]Ciais P., Tans P. P. A large northern hem isphere terrestrial CO2 sink indicated by the 13 C/12 C ratio of atmospheric CO2[J]. Science,1995,269:1098-1102.
    [210]Cole D.W., Rapp M. Elemental cycling in forest ecosystems.In:Heichle D E, Ed. Dynamic Properties of Forest Ecosystems. London:Cambridge University Press,1981.341-409.
    [211]Cole D. M., Stage A.R. Estimating future diameters of lodgepole pine. Res. Pap. INT-131. Ogden. UT:U. S. Department of Agriculture. Forest Service, Intermountain Forest and Range Experiment Station.1972.20p.
    [212]Cower S.T., Vogel J.G., Norman J.M.,et al.Carbon distribution and aboveground net primary production in aspen.jack pine.and black spruce stands in Saskatchewan and Manitoba.Canada[J]. Joumal of Geophysical Research,1997.102(D24):29-41.
    [213]Christensen G., Fight R. Barbour R.J. A method to simulate fire hazard reduction treatments using readily available tools. Pp 91-96 in:Crookston. Nicholas L.:Havis. Robert N. comps. Second Forest Vegetation Simulator (FVS) Conference:February 12-14.2002. Fort Collins. CO. Proceedings RMRS-P-25. Ogden, UT:U.S. Department of Agriculture. Forest Service, Rocky Mountain Research Station.2002.
    [214]Dan L., David E.C., Robin P.S. Estimating volumes and costs of forest biomass in Western Montana using forest inventory and geospatial data[J].Forest Products Journal.2006:56.6:31
    [215]David M. S. The Practice of Silviculture:Applied Forest Ecology[M]. John Wiley & Sons. Inc.. New York, NY,1997.
    [216]DeWit H., Kvindesland S.. Carbon Stocks in Norwegian Forest Soils and Effects of Forest Management on Carbon Storage. Rapport fra skogforskningen-Supplement[J].1999. Forest Research Institute, As, Norway.
    [217]DeGryze S., Six J., Paustian K., et al. Soil organic carbon pool changes following land-use conversions[J]. Global Change Biology,2004.10,1120-1132.
    [218]Didier B., Frederic D. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Forest Ecology and Management,2006,222:279-295.
    [219]Dixon, R.K., Brown L.S., Delcourt R.A. Carbon pools and flux of global forest ecosystems [J]. Science,1994,263:185-190.
    [220]Dixon G.E. Esential FVS:A User's Guide to the Forest Vegetation Simulator [M]. United States Department of Agriculture, Forest Service Forest Management Service Center, FortCoLlins,CO:Forest Management Service Cantot.2002, Revised:February 2010.
    [221]Drewry J.J., Cameron K.C., Buchan G.D. Pasture yield and soil physical property responses to soil compaction from treading and grazing-a review[J]. Aust J Soil Res 2008;46:237-56.
    [222]Edminster C.B., Mowrer T.H., Mathiasen R.L.1991. GENGYM:A variable density stand table projection system calibrated for mixed conifer and ponderosa pine stands in the Southwest. Res. Pap. RM-297. Fort Collins, CO:Forest Service, Rocky Mountain Forest and Range Experiment Station.32p.
    [223]Emily M., Riehadr R., Makr R. Pilotanalysis of global eocsystem forest ecosystem,World Resoucres Institute.2000:146-150.
    [224]FAO.2010. Global forest resources assessment 2010. FAO Forestry Paper 163. FAO, Rome.
    [225]Fang J.Y., Liu G.H., Xu S.L. Forest biomass of China:an estimation based on the biomass-volume relationship[J]. Ecological Applications,1998.8:1084-1091.
    [226]Fan S, Gloor M, Mahlman J., et al. A large terrestrial:carbon sink in North America imp lied by atmospheric and oceanic CO2 data and models[J]. Science,1998,282:442-446.
    [227]Finney M.A.1998. FARSITE:Fire area simulator-Model development and evaluation. Research Paper RMRS-RP-4. Ogden, UT:U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.47 p.
    [228]Forest Inventory and Analysis, Explore the Possibilities,USDA Forest Service North Central Research Station, http://www.ncrs.fs.fed.us/4801/morreonfial.html,2003-04-02.
    [229]Global Carbon Project. Science framework and implementation. Earth system science partnership (IGBP, IHDP, WCRP, DIVERSTTAS) report No.1. Global carbon project report No.1,Camberra,2003.68.
    [230]Garkoti S.S. Estimates of biomass and primary productivity in a high altitude maple forest of the west central Himalayas[J]. Ecological Research.2008.23(1):41-49.
    [231]Gill S.J, Biging G.S., Murphy E.C. Modeling conifer tree crown radius and estimating canopy cover[J]. For Ecol Manage.2000.126(3):405-416.
    [232]Gorte. R.W.2009. Carbon Sequestration in Forests. Congressional Research Service [online] [viewed on September 12,2011]. Available on the Internet:
    [233]Hagedorn F., Spinnler D., Bundt M., et al. The input and fate of new C in two forest soils under elevated CO2[J]. Global Change Biology.2003.9.862-872.
    [234]Heimann M. Closing the atmospheric CO2 budget. Global Change Newsletter, (28). IGBP. 1996.
    [235]Hese S., Lucht W., Schmullius C., et al. Global biomass mapping for an improved understanding of the CO2 balance-the Earth observation mission Carbon-3D[J].Remote Sensing of Environment.2005,94;94-104.
    [236]Hofle, H. H.Waldbau, naturschutz und betriebs-wirtschaft am beispiel des niedersachsischen fors-tamts bovenden. Forst und Holz.2000.55:218-220.
    [237]Hooker T.D., Compton J.E.. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment[J]. Ecological Applications,2003 13,299-313.
    [238]Hoover C.M., Birdsey R.A., Heath L.S., et al. How to estimate carbon sequestration on small forest tracts. J. For.2000.98,13-19. Nowak, D.J., Crane, D.E.,2002. Carbon storage and sequestration by urban trees in the USA. Environ. Poll.116,381-389.
    [239]Houghton R.A., Hackler J.L., Lawrence K.T. The U.S. carbon budget:Contributions from landuse change[J]. Science,1999,285:574-578.
    [240]Houghton R.A. Temporal patterns of land-use change and carbon storage in China and tropical Asia[J].Science in China(Series C),2002,45(Supp):10-17.
    [241]Houhgton R.A., Skole D.L., Nober C.A., et al. Annual fluexs of carbon from deforestation and regrowth in the Brazilian Amazon[J].Nature,2000,403:301-304.
    [242]Hudiburg T., Law B., Turner D.P., et al. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage[J].Ecological Applications,2009,19(1):163-180.
    [243]Idol T.W., Figler R.A., Pope P.E., Ponder Jr., G. Characterization of coarse woody debris across a 100 year chronosequence of upland oak-hickory forests[J]. For. Eco. and Mang.2001. 149:153-161.
    [244]IPCC. Climate change 2001-the third assessment report of the IPCC,2002.
    [245]IPCC. Special Report of Emission Scenarior of the Inter-governmental on Climate Change. In: NakicenovicN and Sw ardR eds. UK:Cam b ridge Un ivers ity Press,2001.570.
    [246]IPCC,2006, Guidelines for National Greenhouse Gas Inventory(www. ipcc-nggip. iges.or. jp/public/2006gl/index.html).IPCC/IGES,ISBN.Hayama, Japan,4-88788-032-4.
    [247]Iverson L.R., Brown S., Prasad A., et al. Use of GIS for estimating potential and actual forest biomass for continental south and southeast Asia. Effects of Land Use Change on Atmospheric CO2 Concentrations:South and Southeast Asia as a Case Study, Dal e, V. H. (ed). Springer-Verlag, New York,1994.67-116.
    [248]Jandl R., Lindner M., Vesterdal, L., et al. How strongly can forest management influence soil carbon sequestration?[J] Geoderma.2007.137,253-268.
    [249]Jenkins J.C., Chojnacky D.C., Heath L.S., Birdsey R.A.. National-scale biomass estimation for United States tree species[J], Forest Sci.2003.49(1):12-35.
    [250]Joanna I.H., Prentice I.C., Corinne L.Q. Maximum impacts of futu re refor est ation or deforest at ion on atmosph eric CO2[J]. Global Change Biology,2002.8:1047-1052.
    [251]Jobbagy E.G., Jackson R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications.2002,10(2):423-436.
    [252]Johnson M.C., Peterson D.L., Raymond C.L.2007. Guide to fuel treatments in dry forests of the Western United States:assessing forest structure and fire hazard. Gen. Tech. Rep. PNW-GTR-686. Portland, OR:USDA Forest Service. Pacific Northwest Research Station.322p.
    [253]Johnson M.G.. Kern J.S.,2003. Quantifying the organic carbon held in forested soils of the United States and Puerto Rico. In:Kimble. J.M., Heath, L.S.,Birdsey. R.A., Lal,R. (Eds.), The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. CRC Press, Boca Raton. FL. pp.47-72.
    [254]Kovel C.G.F. de, Mierlo A.J.E.M. Van, Wilms Y.J.O., Berendse F. Carbon and nitrogen in soil and vegetation at sites differing in successional age[J].Plant Ecology.2000,149:43-50.
    [255]King J.S., Giardina C.P.,. Pregitzer K.S, et al. Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan[J]. Canadian Journal of Forest Research.2007.37(1):93-106.
    [256]Kitterge J. Estimation of amount of foliage of trees and shrubs [J].J.Forest,1944,42:905-912.
    [257]Lal R. Forest soils and carbon sequestration [J]. Forest Ecology and Management,2005, (220):242.
    [258]Lavado R.S., Sierra J.O., Hashimoto P.N. Imapact of grazing on soil nutrients in a Pampean grassland[J]. Journal of Range Management,1996.49(5):452-457.
    [259]Lichter J., Billing S.S., ZieglerS., et al. Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment. Global Change Biology.2008.14,1-13.
    [260]Lieth & Whittaker R H. Primary Productivity of the Biosphere [M].New York:Spring2Verlag, 1975.
    [261]Ludovici K.H., Zarnoch S.J., Richter D.D.. Modeling in-situpine root decomposition using data from a 60-year chronosequence[J]. CJFR.2002.32:1675-1684.
    [262]Maihi Y., Baldocchi D.D., Jarvis P.G. The carbon balance of tropical temperate and boreal forests [J]. Plant Cell and E nv irom ent[J].1999.22:715-740.
    [263]Marko D. Coarse woody debris in virgin and managed forest[J]. Ecological Indicators,2006, 6(4):733-742.
    [264]Martin P.H., Nabuurs G.J., Aubinet M., et al. Carbon sinks in temperate forests[J]. Ann. Rev. Energy Environ.2001.26,435-465.
    [265]Marshall D.D., Johnson G.P., Hann D.W. Crown p. rofile equations for standgrown western hemlock trees in northwestern Oregon [J].Can J For Res,2003,33 (11):2059-2066.
    [266]Ni J.. Carbon storage in terrestrial ecosystems of China:Estimates at different spatial resolutions and their responses to climate change[J]. Climatic Change,2001,49 (3):339-358.
    [267]Oscar J.C., Russell M.W., Kenneth G.M. Carbon monitoring costs and their effect on incentives to sequester carbon thorugh forestry [J]. Mitigation and Adaptation Strategies for Global Change,2004(154):273-293.
    [268]Paul C. Van Deusen. Forest inventory estimation with mapped plots[J]. Canadian Journal of Forest Resesrch, Feb 2004,34,2:pg.493.
    [269]Pekka E.K., kari M., Kullervo K. Biomass and Carbon Budget of European Forests,1971 to 1990[J].Science; Apr3,1992:70,71.73,74.
    [270]Petit J.R., Jouzel J., Raynaud D.. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature.1999,399:429-436.
    [271]Pitt D.G, Bell F.W.Effects of stand tending on the estimation of aboveground biomass of planted juvenile white spruce[J].Canadian Journal of Forest Research,2004,34(3):649-658.
    [272]Potter C. Klooster S., Myneni R.. et al. Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-1998[J]. Global Planetary Change. 2003.39,201-213.
    [273]Reinhardt E.D., N.L. Crookston (Technical Editors).2003. The Fire and Fuels Extension to the Forest Vegetation Simulator. Gen. Tech. Rep. RMRS-GTR-116. Ogden, UT:U.S. Department of Agriculture. Forest Service. Rocky Mountain Research Station.209p.
    [274]Richardson J., Bjorheden R., Hakkila P.. et al. (Eds.).2002. Bioenergy from Sustainable Forestry: Guiding Principles and Practices. Kluwer Academic. Dordrecht. The Netherlands.
    [275]Robert A.M. Evaluation forest models in a sustainable forest management context [J].FBMI S,2003,1:35-47.
    [276]Robert A.M., Nicholas L.C.1982. A User's Guide to the Combined Stand Prognosis and Douglas-fir Tussock Moth Outbreak Model. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah. General Technical Report INT-127.
    [277]Robert L.M, William K.O, Carleton B E. Site index curves for white fir in the southwestern United States developed using a guide curve method[J]. Western Journal of Applied Forestry, 2006,21 (2):87-93.
    [278]Robert C.M., Douglas G.F.. A Review of the Role of Temperate Forests in the Global CO2 Balance[J]. Journal of the Air and Waste Management Association,1991,41(6):798-807.
    [279]Rothermel R.C.1972. A mathematical model for predicting fire spread in wildlands fuels. Res. Pap. INT-115. Ogden, UT:U.S. Department of Agriculture, Forest Service, Intermountain Research Station.40 p.
    [280]Ruark G.A., Martin G.J, Bockheim J.G. Comparison of constant and variable allometric ratios forestimating Populus tremuloides biomass[J]. For. Sci.,1987.33(2):294-300.
    [281]Siegenthaler U., Sarmiento J. L.. Atmospheric carbon dioxide and ocean[J]. Nature,1993,365: 119-125.
    [282]Stefen W., Tyson P. Global change and the earth system:a planet under pressure[J]. IGBP Science,2001, (4):33.
    [283]Schroeder P., Brown S., Mo J., Birdsey R., Cieszewski C.. Biomass estimation for temperate broadleaf forests of the United States using inventory data[J]. For. Sci.1997.43,424-434.
    [284]Schulze E.D., Lloyd J., Kelliher F.M., et al. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink-A synthesis[J]. Global Change Biology,1999. 5:703-722.
    [285]Scott J.H., Reinhardt E.D.2001. Assessing crown fire potential by linking models of surface and crown fire behavior. Res. Pap. RMRS-RP-29. Fort Collins, CO:U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.59 p.
    [286]Shaw J.D, Vacchiano G., DeRose R.J., et al. Location calibration of the forest Vegetation Simulator (FVS) using custom inventory data[A]. Pittsburgh Society of American Foresters, 2006 National Convention[c].Bethesda:Society of Am erican Foresters,2006.10-22.
    [287]Shvidekno A.Z.,Nilsson S., Rojikov V.A., et al. Carbon budget of the Russian boreal forests:a systems analysis approach to uncertainty. In:Apps MJ,Price D.T. eds.Forest Eocsystmes,Forest Management and the Global Carbon Cyele. Berlin Heidelberg:Springer-verlag.1996.145-162.
    [288]Silver W.L.,Kueppers L.M., Lugo A.E.,Ostertag R., Matzek V.Carbon sequestration and plant community dynamics following reforestation of tropical pasture. Ecological Applications. 2004.14(4):1115-1127.
    [289]Skog K.E.. Nicholson G.A.. Carbon cycling through wood products:the role of wood and paper products in carbon sequestration[J]. For. Prod. J,1998.48,75-83.
    [290]Skog K.E., Pingoud K., Smith J.E. A method countries can use to estimate changes in carbon stored in harvested wood products and the uncertainty of such estimates[J]. Environmental Management.2004.33(Suppl.1):S65-S73.
    [291]Smith J.E.,Heath L.S., Jenkins J.C.,2003. Forest Volume-to-Biomass Models and Estimates of Mass for Live and Standing Dead Trees of U.S. Forests.USDA Forest Service. Northeastern Research Station. NE-GTR-298. Newtown Square. PA.
    [292]Smith J.E.,Heath L.S.,2002. A Model of Forest Floor Carbon Mass for United States Forest Types. USDA Forest Service, Northeastern Research Station, NE-RP-722, Newtown Square, PA.
    [293]Smith J.E., Heath L.S., Skog K.E., et al.2006. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States. Gen. Tech. Rep. NE-343. Newtown Square, PA:U.S. Department of Agriculture, Forest Service, Northeastern Research Station.216 p.
    [294]Stage A.R.1973. Prognosis model for stand development[R]. Res. Pap. INT-137. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station.32 p.
    [295]Stephanie A. R., Elizabeth D.R., Nicholas L.C., et al. The Fire and Fuels Extension to the Forest Vegetation Simulator(Draft). United States, Department of, Agriculture, Forest Service, Forest Management, Service Center, Fort Collins, CO, Last Revised:, February 2010.
    [296]Streets D. G., Jiang K.J., Hu X.L., et al. Recent reductions in China's greenhouse gas emissions [J]. Science,2001,294:1835-1836.
    [297]Tans P.P, Fung I., Takahasi T. Observational constra ints on the global atm ospheric carbon budget[J]. Science,1990,247:1431-1438.
    [298]Teck R.M., Hilt D.E. Individual tree diameter growth model for the Northeastern United States [R]. Res. Pap. NE-649. US. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station,1991:11.
    [299]Tolunay Doganay. Carbon concentrations of tree components, forest floor and understorey in young Pinus sylvestris stands in north-western Turkey[J]. Scandinavian Journal of Forest Research,2009,24:5,394-402.
    [300]Trumbore S.. Age of soil organic matter and soil respiration:radiocarbon constraints on belowground C dynamics[J]. Ecological Applications,2000,10,399-410.
    [301]USDA Forest Service,2003. Forest inventory and analysis national core field guide; Phase 3 field guide, Down Woody Materials. Version 3.0. St. Paul, MN. Available at http://fia.fs.fed.us/library/field-guides-methods-proc/(16 Oct.2008).
    [302]USDA Forest Service, North Central Research Station, St. Paul, MN. US EPA,2005. Inventory of U.S. Greenhouse gas emissions and sinks:1990-2003. EPA 430-R-05-003. Available at http://yosemite.epa.gov/ oar/globalwarming.nsf/content/ResourceCenterPublications GHG EmissionsUSEmissionsInventory2005. html (01 Nov.2008.
    [303]U.S. Forest Service. Forest Inventory and Analysis National Core Field Guide-version4.0. [2008,05,12.]. http://www.fia.fs. fed. us/library/field-guides-methods-proc.October,2007.
    [304]U.S. Environmental Protection Agency, Office of Atmospheric Programs, Greenhouse Gas Mitigation Potential in U.S. forestry and Agriculture, EPA 430-R-05-006, Washington. DC, November 2005.http://www.epa.gov/sequestration/pdf/greenhousegas 2005.pdf.
    [305]Vanclay, J. K. Growth models for tropical forests:a synthesis of models and methods[J].Forest Science,1995,41 (1):7-42.
    [306]Vicente J.M., Azuma D., Gedney D. Equations for predicting uncompacted crown ration based on compacted crown ratio and tree attributes[J]. Western Journal of Applied Forestry,2004, 19(4):260-267.
    [307]Wang C.. Gower S.T, Wang Y.. Zhao H. The infiuence of fire on carbon distribution and net Primary Production of boreal Larix gmelinii froests in north-eastem China[J].Global Change Biolog,2001.7:719-730.
    [308]Wang G.C., Wen Y.P.,Kong Q.X.,Ren L.X., Wang M L. CO2 background concentration in the atmosphere over the Chinese mainland[J]. Chinese Science Bulletin.2002.47(14):1217-1220.
    [309]WBGU Special Report. The accounting of biological sinks and sources under the Kyoto Protocol[R].1998.
    [310]Willard H.C., Gerrit H., James S.T., et al. Site index curves and growth intercepts for young white spruce plantations in north central Ontario[J]. Northern Journal of Applied Forestry 2006,23(4):257-263.
    [311]Winjum J.K., Dixon R.K., Schroeder P. Forest Management and Carbon Storage:an A nalysis of 12 Key Forest Nations[J]. W ater, A ir, A nd S oil P ollu tion,1993,70:239-257.
    [312]Wofsy S.C. Where Has All the Carbon Gone ? [J]. Science,2001,292:226122263.
    [313]Woodall C.W., Heath L.S., Smith J.E..2008. National inventories of down and dead woody material forest carbon stocks in the United States:Challenges and opportunities[J]. Forest Ecology and Management 256:221-228.
    [314]Woodall C.W., Williams M.S.. Sampling, estimation, and analysis procedures for the down woody materials indicator[J], Gen. Tech. Rep.,2005. NC-256.
    [315]Woodbury P.B., Smith J.E., Heath L.S. Carbon sequestration in the U.S. forest sector from 1990 to 2010[J]. Forest Ecology and Management.2007.241:14-27.
    [316]Wykoff W.R., Crookston N.L., Stage A.R.1982. User's guide to the Stand Prognosis Model. Gen. Tech. Rep. INT-133. Ogden, UT:U.S. Department of Agriculture, Forest Service. Intermountain Forest and Range Experiment Station.112 p.
    [317]Wykoff W. R. A basal area increment model for individual conifers in the northern Rocky Mountains[J]. For. Science.1990,36(4):1077-1104.
    [318]Wang Y.G., Li Y., Ye X.H., Chu Y.. Wang X.P. Profile storage of organic/inorganic carbon in soil: From forest to desert[J]. Science of the Total Environment.2010.408:1925-1931.
    [319]Zarnoch S.J., Bechtold W.A., Stoke K.W. Using crown condition variables as indicators of forest health[J]. Canadian Journal of Forest Research,2004,34:1057-1070.
    [320]Zhang Q.Z., Wang C.K.. Carbon concentration variability of 10 Chinese temperate tree species[J]. Forest Ecology and Management,2009.258(5):722-727.
    [321]Zheng D., Rademacher J., Chen J., et al. Estimating aboveground biomass using Landsat 7 ETM+data across a managed landscape in northern Wisconsin.USA[J].Remote Sensing of Environment,2004,93:402-411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700