用户名: 密码: 验证码:
不同砧木嫁接‘矢富罗莎’葡萄生长特性及对Cd胁迫响应的差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄是世界上栽培最广泛的果树之一。葡萄砧木最初应用的目的是为了抵御根瘤蚜的危害,在生产中,人们还经常利用砧木来调节栽培品种的生长势、提高产量、调剂成熟期和改善品质。目前,由于工业污染、污水灌溉、污泥以及农药化肥的施用,我国农田土壤镉污染问题日趋严重,对食物安全和生态安全构成了严峻的挑战。随着果品在人们膳食结构中比例的升高,果品安全问题也日益得到重视,因此,如何最大限度地降低果品中镉的吸收和积累已成为当前农业生产的重要课题。据报道,植物对镉的耐性及镉在植株不同部位器官中的积累和分布存在着显著的种间及品种间差异,筛选镉积累量低的品种为保证果品的生产安全提供了重要途径。目前有关重金属方面的研究是一个热点,但多数研究都集中在农作物方面,在果树上的研究不多,有关不同砧木嫁接葡萄植株对土壤镉胁迫响应差异的研究还未见报道。因此本试验以7种常用的砧木嫁接‘矢富罗莎’(Yatomi Rosa [Y]),在盆栽条件下观察不同砧木对其生长和果实品质的影响,并以7种砧木嫁接‘矢富罗莎’葡萄为材料,研究了葡萄植株对土壤镉胁迫响应的差异,并在此基础上利用筛选出的生长状况良好、果实镉含量存在差异的两个砧木品种在组培条件下进行镉处理试验,更进一步地明确了不同砧木品种对镉胁迫响应的差异,主要研究内容如下:
     一、不同砧木对‘矢富罗莎’葡萄生长状况和果实品质的影响
     通过7个砧木对‘矢富罗莎’葡萄生长状况和果实品质影响的研究表明,不同砧木嫁接‘矢富罗莎’葡萄的根系生长状况存在显著差异。根系总长度以Y/110R最长;根系平均直径以Y/巨峰较大。根系表面积和根尖数均以Y/110R最大。光合作用的测定结果表明:矢富罗莎嫁接苗叶片净光合速率(Pn)的日变化基本呈双峰型曲线。不同葡萄植株叶片净光合速率日变化存在差异,Y/99R和Y/华佳8号明显高于其它植株和对照(‘矢富罗莎’自根苗);叶片气孔导度(Gs)值Y/110R、Y/99R和Y/华佳8号较高;Y/99R、Y/华佳8号和Y/110R表现出较高的的蒸腾速率(Tr)。结果母枝率的统计结果表明:Y/110R的结果母枝率最高,Y/5BB、Y/巨峰和Y/8B居中,Y/99R、Y/SO4和Y/华佳8号较低。果实粒重和纵横径均以Y/5BB、Y/8B和Y/99R较大,除Y/S04外其它葡萄植株果实可溶性固形物(TSS)含量均显著高于对照,Y/110R果实可滴定酸(TA)含量最低,花青苷含量以Y/5BB、Y/110R和Y/8B最高。总的来说,嫁接改善了‘矢富罗莎’的根系生长状况,提高了净光合速率、结果母枝率和果实品质。从整体来看,110R较适宜为‘矢富罗莎’的砧木,5BB、8B和99R次之,华佳8号、巨峰和S04较差。
     二、不同砧木嫁接‘矢富罗莎’葡萄对土壤Cd胁迫响应的差异研究
     以3年生的7种不同砧木嫁接‘矢富罗莎’葡萄为材料,在盆栽试验条件下,外源加入Cd(15mgkg-1)进行处理,研究不同砧木嫁接‘矢富罗莎’葡萄土壤中Cd形态分布及葡萄植株Cd含量和分配的差异。结果表明:不同砧木影响种植‘矢富罗莎’葡萄土壤可交换态Cd的含量,除种植Y/巨峰葡萄植株的土壤外,种植其它葡萄植株的土壤可交换态Cd的含量均低于对照(种植‘矢富罗莎’自根苗的土壤),以种植Y/5BB和Y/8B葡萄的土壤含量较低,分别为对照的43.1%和66.0%。铁锰氧化态以种植Y/5BB、 Y/110R和Y/S04葡萄植株的土壤含量最低。残渣态含量以对照最低,种植Y/5BB.Y/110R和Y/99R葡萄植株的土壤含量较高,分别为4.52、4.51和4.45mgkg-1在所有的土壤Cd形态中,以有机结合态Cd的含量最低,占土壤Cd总量的7.66-11.34%。Cd在不同砧木嫁接‘矢富罗莎’葡萄各器官的含量由高到低顺序均为:根系>茎>叶片>果实,嫁接降低了葡萄植株各器官对土壤Cd的吸收,不同砧木嫁接‘矢富罗莎’葡萄植株Cd的积累存在显著的差异。在所有的葡萄植株中,以Y/5BB葡萄植株器官的Cd含量最低,Y/巨峰最高。
     对不同砧木嫁接‘矢富罗莎’葡萄果实的Cd含量和果品品质的研究结果表明:不同砧木嫁接‘矢富罗莎’葡萄植株Cd含量和果实品质存在显著的差异。所有葡萄果实Cd积累浓度均低于我国绿色食品Cd限量标准(0.03mgkg-1FW),嫁接葡萄果实的Cd积累浓度均显著低于自根葡萄果实的Cd积累浓度(0.028mgkg-1FW), Y/华佳8号、Y/SO4和Y/5BB葡萄果实的Cd积累浓度较低,分别为0.005、0.006和0.009mgkg-1FW。嫁接降低了葡萄果实中Cd的积累浓度,从一定程度上减轻了人类的Cd暴露风险。
     不同砧木嫁接‘矢富罗莎’葡萄果实的品质存在差异。Y/华佳8号组合葡萄果实的平均单果重最大(6.14g),果实纵横径以Y/华佳8号和Y/SO4最大;嫁接提高了葡萄果实的TSS (Y/SO4除外)和花青苷含量,降低了TA含量。以Y/5BB和Y/110R葡萄果实的TSS最高,分别为13.32°Brix和12.84°Brix, Y/5BB和Y/巨峰葡萄果实的TA含量较低,Y/110R和Y/华佳8号葡萄果实花青苷含量最高。
     光合作用的研究结果表明,在所有的嫁接组合中,Y/99R和Y/8B表现出较高的Pn;嫁接提高了叶片叶绿素含量,除Y/99R外,所有葡萄植株叶片的叶绿素含量均显著高于对照。抗氧化系统和膜脂肪过氧化程度的研究表明:Y/99R和Y/5BB的SOD和CAT活性(分别为9.35Ug-1FW和13.27Ug-1min-1FW,8.42Ug-1FW和9.92U g-1min-1FW)显著高于对照和其它葡萄植株,Y/110R、Y/99R和Y/8B表现出较高的POD活性,Y/华佳8号和Y/5BB居中,Y/巨峰和Y/S04最低。Y/110R葡萄植株叶片的MDA含量最低,仅为对照植株的35%。在Cd胁迫条件下,不同砧木嫁接‘矢富罗莎’葡萄的光合作用和抗氧化系统清除能力方面均存在显著的差异,Y/8B和Y/5BB表现出较强的耐Cd特性,Y/99R和Y/110R居中,Y/巨峰、Y/华佳8号和Y/SO4较差,与自根苗相比,嫁接提高了葡萄植株的耐Cd特性。
     在组培条件下,设置0、1、3和5mg L-14个Cd处理水平,研究了不同处理浓度对两个不同葡萄砧木品种(5BB和99R)的生长特性及Cd含量和分配的差异。结果表明,随着Cd处理浓度的增加,两个葡萄砧木品种的生物量、株高、根系长度和表面积均表现出下降的趋势,且99R的下降幅度显著高于5BB。随着Cd处理浓度的增加,两个葡萄砧木品种Cd含量明显增加,在试验设置的所有Cd水平下,5BB地上部和根系Cd含量低于99R。两个葡萄砧木品种对Cd胁迫的反应虽然总体趋势一致,但5BB的生物量、株高和根系形态指标的下降幅度显著低于99R,表现出较强的耐Cd特性,进一步验证了不同葡萄砧木品种对Cd胁迫响应的差异。
The grapevine is undoubtedly the most ubiquitous of all fruits. The grapevine rootstocks were originally used to resist the damage by root louse phylloxera, Phylloxera vitifoliae (Fitch). And the subsequent researches found that rootstocks influence scion cultivar's horticultural attributes, including tree vigor, precocity, yield, and fruit quality. Cadmium (Cd) pollution of croplands of China has been shown seriously due to the increasing Cd released from industrial contamination, sewage water irrigation, application of sewage sludge and Cd-containing pesticides and fertilizers, which caused critical challenge to food security and ecological safety. With the proportion of fruit in diet becomes higher and higher, more and more human pay attention to its security, therefore, how to maximumly decrease Cd absorbed and accumulation in fruit become an important task of current agricultural production. It was reported that Cd tolerance and its accumulation and distribution in plants showed dramaticly difference among different species and different genotypes within same species, selection cultivar with low Cd accumulation provide approach to ensure fruit security. Presently, study on heavy metals is a hot spot. However, most of the previous investigations have focused on crops and vegetables. Very little information is available on Cd accumulation in orchard soils and fruits. Research on genotype difference in responses to soil Cd stress of different scion-rootstock combinations grapevine seedlings have not been reported in literature. Therefore, the pot experiment was conducted to investigation the growth and fruit quality of 'Yatomi Rosa' grapevine grafted on seven different rootstocks. At the same time, a pot experiment was carried to study the Cd genotype responses by using seven different scion-rootstcok combinations under Cd addition. In the basis of that, a tissue cultured experiment was conducted under Cd addition with two rootstock varities,5BB (low fruit Cd concentration) and99R (high fruit Cd concentration). The aim of the tissue cultured experiment was to further specify the genotype difference in responses to Cd stress. The main results were as follows:
     1. Effects of different grapevine rootstocks on the growth and fruit quality of'Yatomi Rosa'
     The pot experiment was conducted to study the effects of different rootstocks (Kyoho, Huajia No.8,5BB,8B, SO4,99R, and110R) on the growth and fruit qualities of grapevine ('Yatomi Rosa'['Y']), and the results showed that root length, average diameter, root surface area and root tip numbers varied significantly among the rootstock with a same cultivar as the scion. Y/110R had the longest total root length (6842.8cm); Y/Kyoho had the greatest average root diameter. The largest root surface area and root tips numbers were observed from Y/110R. The results of photosynthesis showed the diurnal variation patterns of net photosynthetic rate appeared as a typical bimodal curve. Diurnal course of net photosynthetic rate (Pn) was affected by the rootstocks, Y/99R and Y/HuajiaNO.8gave high net photosynthetic rate (Pn). Y/110R, Y/99R and Y/HuajiaNo.8gave high stomatal conductance (Gs); the peak value appearing at9:00was7.0,6.5and5.5doubles respectively more than own-rooted seedlings. The values of transpiration rate (Tr) from plants on Y/99R, Y/HuajiaNO.8and Y/110R were significantly higher than those on other combinations, and Y/Kyoho and Y/8B gave intermediate values. All blossom clusters on each vine were counted and the results show that Y/110R has higer percentage of bearing base shoot, followed by Y/5BB, Y/Kyoho and Y/8B, finally in Y/99R, Y/SO4and Y/Huajia No.8. Y/5BB, Y/8B and Y/99R showed higher berry weight, length and diameter. Total soluble solids (TSS) in grape berry in all scion-rootstock combinatons were significant higher than that of self-rooted grapevine, except for Y/SO4. Y/110R gave the lowesr Titratable acid (TA) contents in grape berry. Y/5BB, Y/110R and Y/8B yielded the highest anthocyanin contents. In summary, grafting had a significant promotion on root growth, photosynthesis and fruit quality in 'Yatomi Rosa' scion-rootstock combinations. Considering all parameters together,110R were considered as optimum rootstocks for 'Yatomi Rosa' grape, followed by5BB,8B and99R, finally in Huajia No.8, Kyoho and SO4.
     2. Study on difference in responses of'Yatomi Rosa' grapevine grafted onto different rootstocks to soil Cd stress
     A pot experiment was conducted to study the difference in fraction of soil Cd, Cd accumulation and distribution of 'Yatomi Rosa' grapevine grafted onto different rootstocks under Cd stress. Three-year grapevine plants were harvested and Cd concentrations of different organs were determined. The results showed that, fractions of soil Cd of'Yatomi Rosa' grapevine were affected by rootstock, the concentration of soil exchangeable Cd of grafted grapevine except for Y/Kyoho were significant higher than that of self-rooted ones, the lowest concentration were obtained friom Y/5BB and Y/8B, which were43.1%and66.0%of the control, respectively. Y/5BB, Y/110R and Y/SO4had the lowest concentration of soil Fe-Mn oxides Cd, self-rooted grapevine had the lowest concentration of soil residual Cd, while Y/5BB, Y/110R and Y/99R had the highest, which was4.52,4.51and4.45mg kg-1, respectively. The lowest concentration of fraction of soil Cd was OM-Cd, which was7.66-11.34%of the total soil Cd. the order of Cd concentration from high to low in different parts of grapevine is root>shoot>leaf>fruit. Grafting minimizes Cd accumulation of grapevine from soil, and significant difference in Cd uptake and accumulation was observed. In all scion-rootstock combinations, Y/5BB had the lowest Cd concentration, while Y/Kyoho had the highest.
     Difference was observed in fruit Cd concentration and quality among 'Yatomi Rosa' grapevine. The Cd concentrations in fruits of grafted grapevines were lower than0.03mg kg-1fresh weight which was the legal limit of Cd concentration in foods of China (0.03mg kg-1FW), and the Cd concentrations in fruits of grafted grapevines were significantly lower than those of self-rooted ones. Y/Huajia NO.8, Y/SO4, and Y/5BB had the lowest fruit Cd concentration, which were0.005,0.006and0.009mg kg-1FW. Fruit quality was significantly influenced by different scion-rootstock combinations under Cd stress. Y/Huajia NO.8yielded the largest berry weight, which was6.14g, Y/Huajia NO.8and Y/SO4had the greatest berry length and diameter; Except for Y/SO4, TSS in all the grafted grapevines was significant higher than that of self-rooted plants), and TA contents in fruits were significant lower in grafted grapevines than those of self-rooted ones. Y/5BB and Y/110R gave the highest TSS, which were13.32°Brix and12.84°Brix. Y/5BB and Y/Kyoho showed the lowest TA contents. The content of anthocyanin in berry skins were significantly increased by grafting, with the highest values were observed on Y/110R and Y/Huajia NO.8than those of self-rooted grapevine. These results indicate that grafting decreases the concentration of fruit Cd accumulation and minimizes the risk of Cd entering the food chain.
     The results of photosynthesis showed that the net photosynthetic rate was significant higher in grafted grapevines compared to that of self-rooted ones. The highest values were observed from Y/99R and Y/8B. Compared to the control, chlorophyll contents of grafted plants except for Y/99R were significantly enhanced. Antioxidant enzymes activities in grapevine leaves of different scion-rootstock combinations showed that the activities of SOD and CAT in leaves of'Y/99R'(9.35U g-1FW and13.27U g-1min-1FW, respectively) and'Y/5BB'(8.42U g-1FW and9.92U g-1min-1FW, respectively) were always higher than those of other scion-rootstock combinations. Grafted combinations had a significant effect on the promotion of POD activity, with the highest POD values were observed on Y/110R, Y/99R, and Y/8B, followed by Y/Huajia NO.8, Y/5BB, and finally in Y/Kyoho and Y/SO4in Cd stress. Compared with control (36.05nmol g-1), MDA contents in all grafted combinations (avg.22.12nmol g-1) were significantly decreased exposed to15mg Cd kg-1, and the lowest MDA content was founded in Y/110R, which was about35%of the self-rooted grapevine. Difference were observed in Cd accumulation photosynthesis and elimination ability of antioxidant enzymes among scion-rootstock combinations, Y/8B and Y/5BB showed stronger tolerance for Cd, followed by Y/99R and Y/110R, then Y/Kyoho, Y/Huajia NO.8and Y/SO4. Compared to the control, grafted grapevine seedlings showed stronger tolerance for Cd.
     The experiment was carried out to study the growth characteristics and the regular of Cd accumulation in roots and shoots by using tissue cultured grapevine rootstocks (5BB and99R) under Cd spiked at0,1,3and5mg L-1. The results showed that biomass, plant height, total length and surface area of two grapevine rootstocks decreases with increaseing the Cd concentration in culture medium, and the effect on99R was more significant than that of5BB. The Cd concentration in grapevine seedling increased significantly with the increase of Cd concentration in culture medium, and the concentration in roots and shoots of5BB was lower than that in99R among all Cd addition levels. The decreased ranges of biomass, plant height and root morphological parameters of5BB under Cd treatments are much smaller than those of99R. These results indicate that5BB has higher ability to tolerate Cd stress than99R, which further specified the genotype difference in responses to Cd stress of different grapevine rootstock.
引文
[1]安志装,王校常,严蔚东,等.植物螯合肽及其在重金属胁迫下的适应机制[J].植物生理学通讯,2001,37(5):463-467
    [2]蔡保松,雷梅,陈同斌,等.植物螯合肽及其在重金属胁迫中的作用[J].生态学报,2003,23(10):2125-2132
    [3]柴菊华,贺普超,程廉,等.中国葡萄野生种对葡萄根癌病的抗性[J].园艺学报,1997,24(2):129-132
    [4]陈宏,徐秋曼,王葳,等.Cd对小麦幼苗脂质过氧化和保护酶活性的影响[J].西北植物学报,2000,20(3):99-403
    [5]陈红跃,闫雪燕,陈明洁,等.不同火气污染区林木根区土壤重金属和酶活性研究[J].生态环境,2006,15(3):513-518
    [6]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996
    [7]陈立松,刘星辉.果树重金属毒害及抗性机理[J].福建农业大学学报,2001,30(4):462-469
    [8]陈同斌,宋波,郑袁明,等.北京市菜地土壤和蔬菜铅含量及其健康风险评估[J].中国农业科学,2006,.39(8):1589-1597
    [9]陈瑛,李延强,杨肖娥,等.不同品种小白菜对Cd的吸收累积差异[J].应用生态学报,2009, 20(3):736-740
    [10]崔德杰,张玉龙.十壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35(3):367
    [11]陈朝明,黄惠群,王凯荣.Cd对桑叶品质生理生化特性的影响及其机理研究[J].应用生态学报,1996,7:417-423
    [12]杜远鹏,翟衡,王忠跃,等.葡萄根瘤蚜抗性砧木研究进展[J].中外葡萄与葡萄酒,2007,3:25-29
    [13]冯建国,逃训,于毅,等.苹果园的污染和病虫无公害防治技术研究[J].中国果树,2002,1:24-26
    [14]冯明祥,王佩圣,王继青,等.青岛郊区果园土壤重金属和农药污染研究[J].中国果树,2000,2:9-13
    [15]高粱.土壤污染及其防治措施[J].农业环境保护,1992,11(6):272-273
    [16]高太忠,李景印.土壤重金属污染研究与治理现状[J].土壤与环境,1999,8(2):137-140
    [17]郭碧云,张广军,赵政阳.无公害苹果园土壤环境质量评价方注与管理信息系统研究[J].干旱地区农业研究,2006,24(3):182-184
    [18]郭修武.国内外葡萄砧木研究利用状况及我国新引进的葡萄砧木简介[J].中外葡萄与葡萄酒,2001,1:28-30
    [19]黄会一,蒋德明.木本植物对土壤中Cd的吸取、累积和耐性[J].中国环境科学,1989,9:323-330
    [20]黄会一,李书鼎.木本植物对Cd115+115m的吸收及其在体内的分配[J].生态学报,1982,2(2):139-145
    [21]黄永源,周秀达,柯世超,等.多种金属污染环境对健康的影响[J].环境与健康杂志,1987,4(2):14-16
    [22]黄运湘,廖柏寒,王志坤,等.不同大豆品种Cd毒害效应及耐Cd差异性[J].2008,34(5):519-524
    [23]蒋爱丽,李世诚,杨天仪,等.不同砧木对藤捻葡萄生长与果实品质的影响[J].上海农业学报,2005,21(3):73-75.
    [24]久宝田尚浩,李相根,安井公著.各种砧木对藤稳葡萄果实中糖、有机酸、氨基酸及花色苷含量的影响.余武安编译[J].湖北农业科学,1995,4:50-53
    [25]孔祥生,郭秀璞,张妙霞.Cd胁迫对玉米幼苗生长及生理生化的影响[J].华中农业火学学报,1999,18(2):111-113
    [26]李继强,陈锡永,唐意佳,等.环境Cd污染及其对人群健康影响的研究[J].中国公共卫生2001,17(3):196-198
    [27]李坤权,刘建国,陆小龙,等.水稻不同品种对Cd吸收及分配的差异[J].农业环境科学学报, 2003,22(5):529-532
    [28]李恋卿,潘根兴,张平究,等.太湖地区水稻土表层土壤10年尺度重金属元素累积速率的估计[J].环境科学,2002,23(3):119-123
    [29]李平远,娄运生,王琦,等.6个小麦品种对铜Cd吸收累积差异的比较[J].安徽农学通报,2007,13(12):102-104
    [30]李世诚,金佩芳,蒋爱丽,等.葡萄砧木新品种华佳8号的育成[J].中外葡萄与葡萄酒,2:29-32
    [31]李文学,陈同斌.超富集植物吸收重金属的生理和分子生物学机制[J].应用生态学报,2003,14(4):627-631
    [32]李正文.Cd处理下不同水稻品种对两种土壤中铅、Cd的吸收及其生育期动态[D].博士学位论文,南京农业大学,2003
    [33]刘威,束文圣,蓝崇钰.宝山荃菜(Viola baoshanensis)一种新的Cd超富集植物[J].科学通报,2003,48(19):2046-2049
    [34]刘春生,史衍玺,马丽,等.过量铜对苹果树生长及代谢的影响[J].植物营养与肥料学报,2000,6(4):451-456.
    [35]刘登义,谢建春,杨世勇,等.铜尾矿对小麦生长发育和生理功能的影响[J].应用生态学报,2001,12(1):126-128
    [36]刘文菊,张西科,张福锁.根分泌物对根际难溶性Cd的活化作用及对水稻吸收、运输Cd的影响[J].生态学报,2000,20(3):448-451
    [37]鲁如坤.土壤农业化学分析方法[M].北京:科学出版社
    [38]罗立新,孙铁衍,靳月华.Cd胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学,1998,18(1):72-75
    [39]罗立新,孙铁珩,靳月华.Cd胁迫下小麦叶中超氧阴离子自由基的累积[J].环境科学学报,1998,18(5):495-499
    [40]罗虹,刘鹏,宋小敏.重金属Cd、铜、镍复合污染对土壤酶活性的影响[J].水土保持学报,2006,20(2):94-96
    [41]聂继云,董雅凤.果园重金属污染的危害与防治[J].中国果树,2002,1:44-47
    [42]潘根兴,Chang A C, Page A L土壤-作物系统污染物迁移分配及其食物安全评价模型及其应用[J].应用生态学报,2002,13(7):854-858
    [43]庞金华.上海粮食中元素的含量及土壤的安全值[J].长江流域资源与环境,1997,6(2):149-154
    [44]秦普丰,铁柏青,周细红,等.铅与镉对棉花和水稻萌发及生长的影响[J].湖南农业大学学报,2000,26(3)2:05-207
    [45]秦天才,吴玉树,王焕校.镉、铅及其相互作用的小白菜生理生化特性影响的研究[J].生态学 报,1994,14(1):46-50.
    [46]秦天才,吴玉树,王焕校,等.镉、铅及其相互作用对小白菜根系生理生态效应的研究[J].生态学报,1998,18(3):320-325
    [47]任安芝,高玉葆,刘爽,等.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112-116
    [48]芮东明,赵亚夫,阎永齐,等.适用于丘陵地的巨峰葡萄砧木筛选[J].落叶果树,1999,4:17-18
    [49]邵国胜,MUHAMMAD Jaffar Hassan,章秀福,等.Cd胁迫对不同水稻基因型植株生长和氧化酶系统的影响[J].中国水稻科学,2004,18:239-244
    [50]宋正国,徐明岗,刘平,等.钙锌钾共存对赤红壤Cd吸附的影响[J].生态环境,2006,15(5):993-996.
    [51]孙琴,王晓蓉,袁信芳,等.有机酸存在下小麦体内Cd的生物毒性和植物络合素合成的关系[J].生态学报,2004,24(12):2804-2809
    [52]谭万能,李志安,邹碧.植物对重金属耐性的分子生态机理[J].植物生态学报,2006,25(5):1208-1211
    [53]汤春芳,刘云国,曾光明,等.Cd胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响[J].植物生理与分子生物学报,2004,30(4):469-474
    [54]田继清.关于葡萄砧木组合的初步观察[J].葡萄栽培与酿酒,1986,4:25-27
    [55]童琦珏,乔巧珍.巨峰葡萄砧木筛选报告[J].江苏农业科学,1991,4:49-51
    [56]汪洪,赵士诚,夏文建,等.不同浓度Cd胁迫对玉米幼苗光合作用、脂质过氧化和抗氧化酶活性的影响[J].植物营养与肥料学报,2008,14(1):36-42
    [57]汪洪,周卫,林葆.碳酸钙对土壤Cd吸附及解吸的影响[J].生态学报,2001,21(6):932-937
    [58]王春春,沈振国.Cd在植物体内的累积及其对绿豆幼苗生长的影响[J].南京农业大学学报,2001,24(4):9-13
    [59]姚会敏,杜婷婷,苏德纯.不同品种芸薹属蔬菜吸收累积Cd的著异[J].中国农学通报,2006,22(1):291-294
    [60]王宏镔,王焕校,文传浩,等.Cd处理下不同小麦品种几种解毒机制探讨[J].环境科学学报,2002,22(4):523-528
    [61]王焕校.污染生态学基础[M].云南:云南大学出版社,1990
    [62]王松良.芸薹属蔬菜重金属累积特性及抗Cd基因的差异表达与克隆[D].博士论文,福建农林大学,2004
    [63]邬飞波.大麦Cd累积和耐性筹异的机理研究[D].博士学位论文,浙江大学,2002
    [64]吴江,陈青英,陈俊伟,等.‘矢富罗莎’葡萄早期优质丰产栽培技术研究[J].中国南方果树, 2005,34(2):55-56
    [65]吴燕玉,余国营,王新,等Cd Pb Cu Zn As复合污染对水稻的影响[J].农业环境保护,1998,17(2):49-54
    [66]武季玲,曹孜义.葡萄品种间嫁接不亲和的淀粉累积现象和砧穗间势关系[J].甘肃农业大学学报,2001,36:66-67
    [67]夏运生,王凯荣,张格丽.土壤Cd生物毒性的影响因素研究进展[J].农业环境保护,2002,21(3):272-275.
    [68]夏增禄.土壤环境容量及其应用[M].北京:气象出版社.1988
    [69]肖慈木,王丹,范昭鸣,等.砧木影响梁平柚树体生长的生理生化特性[J].中国南方果树,1996,25(2):14-16
    [70]谢晓丽.荔枝、龙眼和香蕉质量与生产环境的关系[J].土壤与环境,2002,11(4):352-3550
    [71]徐海英.葡萄主要砧木品种的特性[J].中国果树,2001,4:45-46
    [72]许嘉林,鲍子平.农作物体内的铅、Cd、铜的化学形态研究[J].应用生态学报,1991,2(3):244-248.
    [73]许嘉林,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995
    [74]薛艳,沈振国,周东美.蔬菜对土壤重金属吸收的差异和机理[J].土壤,2005,37(1):32-36
    [75]严重玲,洪业汤,付舜珍,等Cd、Pb胁迫对烟草叶片活性氧消除系统的影响[J].生态学报,1997,17(5):488-492
    [76]杨丹慧.重金属离子对高等植物光合膜结构与功能的影响[J].植物学通报,1991,8(3):26-29
    [77]杨居荣,黄翌.植物对重金属的耐性机理[J].生态学杂志,1994,13(6):20-26
    [78]杨居荣,鲍子平,张素芹Cd、Pb在植物细胞内的分布及其可溶性结合形态[J].中国环境科学,1993,13(4):263-268
    [79]杨居荣,贺建群,黄翌,等.农作物Cd耐性的种内和种间差异[J].应用生态学报,1994,5(2):192-196
    [80]杨居荣,贺建群,黄翌,等.农作物隔耐性的种内和种间差异-种内差[J].应用生态学报,1995,6(增):132-136
    [81]杨居荣,贺建群.不同耐性作物中几种酶活性对Cd胁迫的反应.中国环境科学,1996,16:113
    [82]杨肖娥,龙新宪,倪吾钟.超累积植物吸收重金属的生理及分子机制[J].植物营养与肥料学报,2002,8(1):8-15
    [83]叶军,邓建中,唐国良.上海地区发现葡萄根瘤蚜[J].植物检疫,2006,20(2):98
    [84]殷捷,周竹渝.超累积植物的研究进展[J].重庆环境科学,2003,25(11):150-152
    [85]于锡宏.设施内黄瓜对重金属耐受机制的研究[D].博土学位论文,浙江大学,2000
    [86]余东,李永裕,邱栋梁,等Cd(Cd)胁迫对枇杷生长和光合速率的影响[J].农业环境科学学报,2007,26(增刊):33-38
    [87]翟莹雪,魏世强.土壤富里酸对Cd的吸附特征与影响因素的研究[J].农业环境科学学报,2006,25(5):1208-1211
    [88]张芬琴,孟红梅,沈振国,等.Cd胁迫下绿豆和箭舌豌豆幼苗的抗氧化反应[J].西北植物学报,2006,26(7):1384-1389
    [89]张会民,徐明岗,吕家珑,等.pH对土壤及其组分吸附和解吸Cd的影响研究进展[J].农业环境科学学报,2005,24(增刊):320-324.
    [90]张金彪,黄维南.Cd对植物的生理生态效应的研究进展[J].生态学报,2000,20:514-523
    [91]张金彪.Cd对草莓的毒害及机理和调控研究[D].博士论文,福建农业大学,2001
    [92]张军,束文圣.植物对重金属Cd的耐受机制[J].植物生理与分子生物学学报,2006,
    [93]张连忠,路克国,王宏伟,等.重金属Cd、铜在苹果幼树体内的分布特性及生物有机肥对减少重金属效应的研究[J].水土保持学报,2004,18(3):23-125.
    [94]张连忠,路克国,王宏伟,等.重金属和生物有机肥对苹果根区土壤微生物的影响][J].水土保持学报,2005,19(2):92-95.
    [95]张玲,王焕校.Cd胁迫下小麦根系分泌物的变化[J].生态学报,2002,22(4):496-502
    [96]赵菲佚,翟禄新,陈荃,等Cd, Pb复合处理下2种离子在植物体内的布及其对植物生理指标的影响[J].西北植物学报,2002,22(3):595-601
    [97]朱芳,方炜,杨中艺.番茄吸收累积福能力的品种间差异[J].生态学报2006,26(12):4071-4081
    [98]宗良纲,徐晓炎.土壤中Cd的吸附解吸研究进展[J].生态环境,2003,12(3):331-335.
    [99]祖容,于泽源.三种葡萄砧木解剖构造与嫁接植株新梢生长量关系[J].北方园艺,1989,10:12-14
    [100]Adams M L, Zhao F J, McGrath, S P, et al. Predicting cadmium concentrations in wheat and barley grain using soil properties [J]. Journal of Environmental Quality,2004,33:532-541
    [101]Adhikari T, Singh M V. Sorption characteristics of lead and cadmium in some soils of India [J]. Geoderma,2003,114:81-92
    [102]Aimone S, Bovio M. Cooparative trial on six barbera rootstock combinations in Basso Monferato districs. Result on the first years of observation [J]. Annali della Facolta di Scienze Agrarie della Universita degli Studi di Torino,1987,14:63-76
    [103]Arnesen A K M, Singh B R. Plant uptake and DTPA-extractability of Cd, Cu, Ni and Zn in a Norwegian alum shale soil as affected by previous addition of dairy and pig manures and peat [J]. Canadian Journal of Soil Science,1998,78:531-539
    [104]Lazzaro A, Hartmann M, Blaser P, et al. Bacterial community structure and activity in different Cd-treated forest soils [J]. FMES Microbilol Ecol,2006,58:278-292
    [105]Arthur E, Crews H, Mvorgan C. Optimizing plant genetic strategies for minimizing environmental contamination in the food chain [J]. Internal J Phytoremedi,2000,2(1):1-21
    [106]Baker A J M. Metal tolerance [J]. New Phytol,1987,106:93-111
    [107]Bica D G, Gay A, Morando E, et al. Bravdo. Effects of rootstock and Vitis vinifera genotype on photosynthetic parameters [J]. Acta Hort,2000,526:373-379
    [108]Boominathan R, Doran P M. Cadmium tolerance and antioxidative defences in hairy roots of the cadmium hyperaccumulator Thlaspi caerulescens [J]. Biotechnol Bioeng,2003,83(2):158-167
    [109]Broadley M R, Willey N J, Wilkins J C, et al. Phylogenetic variation in heavy metal accumulation in angiosperms[J]. New Phylist,2001,152:9-27
    [110]Chaney R L, Reeves P G, Ryan J A, et al. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks [J]. Biometals,2004,17:549-553
    [111]Chen T B, Wong J W C, Zhou, H Y, et al. Assessment of trace metal distribution and contamination in surface of Hong Kong. Environmental pollution,1997,96:61-68
    [112]Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis [J]. Planta,2001, 212:475-486
    [113]Cosio C, DeSantis L, Frey B, et al. Distribution of cadmium in leaves of Thlaspi caerulescens [J]. J. Exp. Bot,2005,56:765-775
    [114]Costa G, Morel J L. Cadmium uptake by Lupinus albus L:cadmium excretion, a possible mechanism of cadmium tolerance [J]. J. Plant Nutr.1993,16(10:1921-1929
    [115]Gleeso D, Mcdermott F, Clipson N. Structural diversity of bacterial communnities in a heavy metal mineralized granite outcrop [J]. Environmental Microbiology,2006,8(3):383-393
    [116]De Kencht J A, Koebiets P L M, Verkleij J A C, et al. Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgar is (Moenech) Garcke[J]. New Phytol.1992,122:681-688
    [117]di Toppi L S, Gabbrilli R. Response to cadmium in higher plants [J]. Environ Exp Bot,1999,41: 105-130
    [118]Dudka S, Miller W P. Accumulation of potentially toxic elements in plants and their transfer to human food chain [J]. J. Environ. Sci. Health B,1999,34(4):681-708
    [119]During, H. Photosynthesis of ungrafted and grafted grapevines:effects of rootstock genotype and plant age [J]. Amer. J. Enol. Viticult,1994,45:297-299.
    [120]Economidies C V, Gregoriou C. Growth, yield and fruit quality of nucellar frost'Marsh' grapefruit on fifteen rootstocks in Cyprus [J]. J. Am. Soc. Hort. Sci.,1993,118:326-329
    [121]Cieslinski G, Neilsen G H, Hogue E J. Effect of soil cadmium application and soil pH on growth and cadmium accumulation in roots, leaves andf ruit of strawberry plants (Fragaria× ananassaDuch.)[J]. Plant Soil,1996,180:267-276
    [122]Guttormensen G, Singh B R, Jeng A S. Cadmium concentration in vegetable crops grown m a sandy soil as affected by Cd levels in fertilizer and soil pH [J]. Fertilizer Research,1995,4:27-32
    [123]Hogue C. EPA is working to ensure that the unique properties of metals are part of risk assessments. Chemical and Engineering News,2004,82 (32):23-24.
    [124]Inouhe M, Mitsumune M, Tohoyama H, et al. Contributions of cell wall and metal-binding peptide to Cd and Cu-tolerances in suspension cultured cells of tomato [J]. Bot. Mag. Tokyo.1991, 104:217-229
    [125]Jackson P J, Roth E J, Mereclure P R, et al. Selection, isolation, and characterization of cadmium resistant Datura innoxia suspension cultures [J]. Plant Physiol,1995,109(1):914-918
    [126]Janssen R P T, L Posthuma R, Baerselman H, et al. Equilibrium, partitioning of heavy metals in Dutch field soils. I. Relationship between metal partition coefficients and soil characteristics [J]. Environ. Toxicol. Chem,1997,16(12):2479-2488
    [127]Karaca A. Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil [J]. Geoderma,2004,122:297-303
    [128]Kandeler E, Luftenegger G, Schwarz S. Influence of heavy metals on the functional diversity ofsoil microbial communities [J]. Biology and Fertility of Soils,1997,23:299-306
    [129]Kaserer H, Blahous D, Brandes W, et al. Optimizing wine grape quality by considering rootstock scion interaction [J]. Acta Hort,1997,427:267-276
    [130]Keller M, Kummer M, Vasconcelos M C. Soil nitrogen utilisation for growth and gas exchange by grapevines in response to nitrogen supply and rootstock [J]. Austral. J. Grape and Wine Res,2001, 7:2-11.
    [131]Koch M. Bishop J, Mitchell-olds T. Molecular systematics and evolution of Arabidopsis and Arabis [J]. Plant Biology,1999,1:529-537.
    [132]Kong X S, Zhang M X, Guo X P. Effects of Cd toxicity on cell membrane permeability and protective enzyme activity of maize seedling [J]. Agro-Environ Protection.1999,18(3):133-134
    [133]Korcak R F. Cadmium distribution in field-grown fruit trees [J]. Journal of Environmental Quality, 1989,18:519-522
    [134]Kramer U, Cotter-Howells J D, Chamock J M, et al. Freee histidine as a metal chelator in plants that accumulate nickel [J]. Nature,1996,379:635-638
    [135]Kubota N, Li X G, Yasui K. Effects of rootstocks on sugar, organic acid, amino acid, and anthocyanin contents in berries of potted'Fujiminori' grapes [J], J. Japan. Soc. Hort. Sci.,1993,62: 363-370
    [136]Kuo S, Huang B, Bembenek R. The availability to lettuce of zinc and cadmium in a zinc fertilizer [J]. Soil Science,2004,169:363-373
    [137]Lombardi L, Sebastiani L. Copper toxicity in Prunus cerasifera:growth and antioxidant enzymes responses of in vitro grown plants [J]. Plant Science.2005,168:797-802
    [138]Li J T, Qiu J W, Wang X W, et al. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China [J]. Environ. Pollut,2006,143:159-165
    [139]Liang P, David B, Lidia A, et al. Analysis of altered gene expression by differential display [J]. Methods Enzymol,1995,254:304-321.
    [140]Liu F W, Yan W, Wang W Z, et al. Pollution of heavy metals in the Pearl River estuary and its assessment of potential ecological risk[J]. Marine Environmental Science,2002,21:34-38
    [141]Magalhaes M J, Sequeira E M, Lucas M D. Copper and zincin vineyards of Central Portugal [J]. Water, Air and Soil Pollution,1985,26:1-17
    [142]MHPRC (Ministry of Health People's Republic of China).1994. Tolerance Limit of Cadmium in Foods (GB 15201-94). MHPRC, Beijing
    [143]Michalih B. International symposium on quality of fruit and vegetables influence of pre-and post-harvest factors and technology, China, Greece,20-24, Sept.1993 [J]. Acta Horticulturae,1995, 379:213-219
    [144]Mijovic S. Effect of vine rootstocks on the yield, mass and quality of grapes of Vranac and Cardinal varieties in the Cemovsko Field (Yugoslavia) [J]. Poljoprivreda-i-sumarstvo,1987,33(1): 97-113
    [145]Milone M T, Sgherri C, Clijsters H, et al. Antioxidative responses of wheat treated with realistic concentration of cadmium [J]. Environ. Exp. Bot.,2003,50:265-276
    [146]Miner G S, Gutierrez R, King L D. Soil factors affecting plant concentrations of cadmium, copper, and zinc on sludge-amended soils [J]. Journal of Environmental Quality,1997,26:989-994
    [147]Morano L, Kliewer W M. Root distribution of three grapevine rootstocks grafted to Cabernet Sauvignon grown on a very gravelly clay loam soil in Oakville [J]. California. Amer. J. Enol. Viticult.1994,45:345-348
    [148]Mozaffari M, Alva A K, Chen E Q. Relation of Copper extractable from soil and pH to Copper content and growth of two Citrus rootstocks [J]. Soil Sci.1995,161:786-792
    [149]Munzurogluo G N. The effects of heavy metals on the pollen germination and pollen tube Growth of apples (Malus sylvestris Miller cv. Gloden) [J].Turkish J Bio,2000,24:677-684
    [150]Nathalie A L M, Hassinen V H, Hakvoort H W J, et al. Enhanced copper tolerance in silene vulgaris (Moench) garcke populations from copper mimes in associated with increased transcript levels of a 2b-type metallothionein gene [J]. Plant Physiol,2001,126:1519-1526
    [151]Nishizono H, Kubota K, Suzuki S, et al. Accumulation of heavy metals in cell walls of polygonum cuspidatum roots from metalliferous babitats [J]. Plant Cell Physiol,1989,30:595-598
    [152]Persans M W, Yan X, Patnoe J M, et al. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense [J]. Plant physiology,1999,121:1117-1126
    [153]Peryea F J. Heavy metal contamination in deciduous tree fruit orchards:implications for mineral nutritient management [J]. Acta Hort,2001,564:31-39
    [154]Rauser W E. Structure and function of metal chelators produced by plants [J]. Cell biochemistry and biophysics,1999,31:19-48
    [155]Reisch B, Robinson W B, Kimball K, et al.'Horizon'grape [J]. HortScience,1983,18(1):108-109
    [156]Richards, D. The grape root system [J]. Hort. Rev.,1983,5:127-168
    [157]Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard [J]. Plant Physiol.1995,109:1427-1433
    [158]Sandalio L M, Dalurzo H C, Gomez M, et al. Cadmium-induced changes in the growth and oxidative metablism of pea plants [J]. J Exp Bot,2001,52(364):2115-2126
    [159]Sappin-Didier V, Vansuyts G, Mench M, et al. Cadmium availability at different soil pH to transgenic tobacco overexpresing ferritin [J]. Plant and Soil,2005,270:189-197
    [160]Sarooshi R A, Bevington K B, Code B G Performance and compatibility of 'Muscat Gordo Blanco' grape on eight rootstocks [J]. Sci Hortic,1982,16(4):367-374
    [161]Sauve S, Hendershot W, Allen H B. Solid-solution partitioning of metals in contaminated soils: dependent on pH, total metal burden, and organic matter [J]. Envir. Sci. Tech.2000a,34(7), 1125-1130
    [162]Schutzendubel A, Polle A. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization [J]. J. Exp Bot,2002,53(372):1351-1365
    [163]Schutzendubel A, Schwanz P, Teichmann T, et al. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol,2001, 127(3):887-898
    [164]Shah K, Kumar R G, Verma S, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedings [J]. Plant Sci,2001, 161(6):1135-1144
    [165]Silbiger R N, Christ S A, Leonard A C, et al. Preliminary studies on the population genetics of the central stoneroller(Campostoma anomalum)from the Great Miami River $asin, Ohio[J]. Environ. Monitor. Assess,1998,51:481-495
    [166]Stohs S J, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med, 1995,18:321-336
    [167]Suzuki N, Koizumi N, Sano H. Screening of cadmium responsive genes in Arabidopsis thaliana[J]. Plant Cell Environ,2001,24:1177-1188
    [168]Tang S. Heavy mental uptake by mental-tolerant Elsholtzia Commelina communis from China [J]. Commun Soil Sci Plant Anal,2001,32:895-905
    [169]Azevedo H, Pioto C G G, Santos C. Cadmium Effects in Sunflower:Membrane Permeability and Changes in Catalase and Peroxidase Activity in Leaves and Calluses [J]. J. plant Nutr.2005,28: 2233-2241
    [170]Tsadilas C D, Karaivazoglou N A, Tsotsolis N C, et al. Cadmium uptake by tobacco as affected by liming, N form, and year of cultivation [J]. Envir. Pollut,2005,134:239-24
    [171]Tudoreanu L, Phillips C J C. Modeling cadmium uptake and accumulation in plants. Advances in Agronomy,2004,84:121-157
    [172]Tworkski T, Miller S. Rootstocks effect on growth of apple scions with different grape habits [J]. Scientia Hort,2007,111:335-343
    [173]Verkleij J A C, Schat H. Mechanisms of metal tolerance in higher plants. In:Show J. (Eds). Evolutionary aspects of heavy metal tolerance in plants. CRC Press, Boca Raton, F L, pp.1990, 179-193
    [174]Angelova V R, Ivanov A S, Braikov D M. Heavy metals (Pb, Cu, Zn and Cd) in the system soil-grapevine-grape. Sci [J]. Food Agric.,1999,79:713-721
    [175]Waalkes M P, Misra R R. In:Cbang L W (Ed.). Toxicology of Metals, CRC Press, Boca Raton, FL, pp.1996,231-244
    [176]Waalkes M P. In:Berthan G (Ed.). Handbook on Metal-Ligand Interactions of Biological Fluids, vol.2, Marcel Dekker, New York, pp.1995,471-482
    [177Wagner G J. Accumulation of cadmium in crop plants and its consequences to human health [J]. Adv.Agron.1993,51:173-212
    [178]Wunderer W, Fardossi A, Schmuckenschlager J. Influence of three different rootstock varieties and two training systems on the efficiency of the grape cultivar Gruner Veltliner in Klosterneuburg [J]. Mitteilungen Klosterneuburg, Rebe und Wein, Obstbau und Fruchteverwertung,1999,49:57-64
    [179]Yeung A T, Hsu C.-n. Electrokinetic remediation of cadmium-contaminated clay [J]. Journal of Environmetal Engineering,2005,73:270-275
    [180]Zekri M. Evaluation of orange trees budded on several rootstocks and planted at high density on flatwoods soil [J]. Proc. Fla. State Hort. Soc.,2000,113:119-123
    [181]Zekri M, Al-Jaleel A. Evaluation of rootstocks for Valencia and Navel orange trees in Saudi Arabia [J]. Fruits,2004,59:91-100
    [1]晁无疾,厉秀茹,张春和.设施栽培条件下葡萄光合特性初探[J].葡萄栽培与酿酒,1997,4:4-7
    [2]陈继峰.葡萄砧木品种的研究现状与展望[J].果树科学,2000,17(2):138-146
    [3]杜远鹏,翟衡,王忠跃,等.葡萄根瘤蚜抗性砧木研究进展[J].中外葡萄与葡萄酒,2007,3:25-29
    [4]胡亚东,贾惠娟.桃果实中花青苷的提取、检测及应用[J].果树学报,2004,21:167-169
    [5]蒋爱丽,李世诚,陶建敏,等.“矢富罗莎”葡萄嫁接树生产性能的初步研究[J].中国南方果树,2006,35(6):62-63
    [6]李华,胡亚菲.世界葡萄与葡萄酒概况[J].中外葡萄与葡萄酒,2006,1:66-69
    [7]刘延松,李桂芬.设施栽培条件下葡萄盛花期的光合特性[J].园艺学报,2003,30(5):568-570
    [8]綦伟,翟衡,厉恩茂,等.部分根区干旱对不同砧木嫁接葡萄光合作用的影响[J].园艺学报,2007,34(5):1081-1086
    [9]钱东南.特早熟葡萄新品种久富罗莎[J].四川农业科技,2003,9:16
    [10]陶建敏,李小红,蒋爱丽,等.不同葡萄砧木对矢富罗莎嫁接苗根系形态变化的影响[J]. 江苏农业科学,2007,2:82-84
    [11]王晓芳,翟衡,杜远鹏,等.葡萄不同砧木嫁接“矢富罗莎”的营养特征分析[J].中外葡萄与葡萄酒,2007,1:15-18.
    [12]温商霖,刘英军.葡萄田间光合作用的研究[J].园艺学报,1999,8(3):168-171
    [13]肖慈木,王丹,范昭鸣,等.砧木影响梁平柚树体生长的生理生化特性[J].中国南方果树,1996,25(2):14-16
    [14]张建光,刘玉芳,施瑞德.不同砧木上苹果品种光合特性比较研究[J].河北农业大学学报,2004,27(5):31-33
    [15]赵红玲.葡萄嫁接愈合过程研究及嫁接对葡萄生长发育、产量和品质的影响[M].吉林农业大学,硕十学位论文,2004
    [16]朱林,温秀云,李文武.中国野生种毛葡萄光合特性的研究[J].园艺学报,1994,21(1):31-34
    [17]Al-Hinai Y K, Roper T R. Rootstock effects on growth and quality of'Gala' apples [J]. Hortscience,2004,39:1231-1233
    [18]Al-Jalleel A, Zekri M, Hammam Y. Yield, fruit quality, and tree health of 'Allen Eureka' lemon on seven rootstocks in Saudi Arabia [J]. Scientia Hort,2005,105:457-465
    [19]Autio W R. Rootstocks affect ripening and other qualities of'Delicious'apple [J]. J. Amer. Soc. Hort. Sci,1991,116:378-382
    [20]Ben-Asher J, Tsuyuki I, Braudo B A, et al. Irrigation of grapevines with saline water I.leaf photosynthesis [J]. Agricultural water management,2006,83:13-21
    [21]Bica D G, Morando G A, Soave E, et al. Effects of rootstock and Vitis vinifera genotype on photosynthetic parameters [J]. Acta Hort,2000,526:373-379.
    [22]During H. Photosynthesis of ungrafted and grafted grapevines:effects of rootstock genotype and plant age [J]. Amer. J. Enol. Viticult,1994,45:297-299.
    [23]Economidies C V, Gregoriou C. Growth, yield and fruit quality of nucellar frost'Marsh' grapefruit on fifteen rootstocks in Cyprus [J]. J. Am. Soc. Hort. Sci,1993,118:326-329
    [24]Grant R S, Matthews M A. The influence of phosphorus availability and rootstock on root system characteristics, phosphorus uptake, phosphorus partitioning, and growth efficiency [J]. Amer. J. Enol. Viticult,1996,47:403-409
    [25]Iacono F, Buccella A, Peterlunger E. Water stresses and rootstock influence on leaf gas exchange of grafted and ungrafted grapevines [J]. Scientia Horticulturae,1998,75:27-39
    [26]Iacono F, Buccella A. Water stresses and rootstock influence on leaf gas exchange of grafted and ungrafted grapevines [J]. Scientia Hort,1998,75:27-39
    [27]Jose L S, Boso S, Gago P, et al. A contribution to maintenance of grapevine diversity:The rescue of Tinta Castanal(Vitis vinifera L.), a variety on the edge of extinction [J]. Scientia Horticulturae 2008,116:199-204
    [28]Kaserer H D, Brandes B W. Optimizing wine grape quality by considering rootstock scion interaction [J]. Acta Hort,1997, 427:261-276
    [29]Keller M, Kummer M, Vasconcelos M C. Soil nitrogen utilisation for growth and gas exchange by grapevines in response to nitrogen supply and rootstock [J]. Austral. J. Grape and Wine Res, 2001,7:2-11.
    [30]Koundouras S, Tsialtas L T, Zioziou E, et al. Rootstock effects on the adaptive strategies of grapevine (vitis vinifera L. cv. Cabernet-Sauvignon) under contrasting water status:leaf physiological and structural responses [J]. Agriculture, Ecosystems and Environment,2008, 128:86-96
    [31]Kubota N, Li X G. Effects of rootstocks on sugar, organic acid, amino acid, and anthocyanin contents in berries of potted'Fujiminori'grapes [J]. J. Japan. Soc. Hort. Sci,1993,62:363-370
    [32]Liang Z C, Wu B H. Anthocyanin composition and content in grape berry skin in vitis germplasm [J]. Food chemistry,2008,111:837-844
    [33]Loomis N H. Effect of fourteen rootstocks on yield, vigor, and longevity of twelve varieties of grapes at Meridian, Mississippi [J]. Proc. Amer. Soc. Hort. Sci,1952,59:125-132.
    [34]Lord W J, Greece D W, Damon R A, et al. Effect of stem piece and rootstock combinations on growth, leaf mineral concentrations, yield, and fruit quality of'Empire'apple trees[J]. J. Amer. Soc. Hort. Sci,1985,110:422-425
    [35]Lovicu G, Pala M, Farci M. Effect of rootstock on the vegetative productive performance of Cannonau [J]. Informatore Agrario,1999,55(11):87-90
    [36]Marini R P, Barden J A. Effect of apple rootstocks on average 'Gala' fruit weight at four locations after adjusting for crop load [J]. J.Amer. Soc. Hort. Sci,2002,127:749-753
    [37]Meng X H, Liu B Q. Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage [J]. Food chemistry,2008, 106:501-508
    [38]Mijovic S. Effect of vine rootstocks on the yield, mass and quality of grapes of Vranac and Cardinal Varieties in the Cemovsko Field (Yugoslavia) [J]. Poljoprivreda-i-sumarstvo,1987, 33(1):97-113
    [39]Morano L, Kliewer W M. Root distribution of three grapevine rootstocks grafted to Cabernet Sauvignon grown on a very gravelly clay loam soil in Oakville, California [J]. Amer. J. Enol. Viticult,1994,45:345-348
    [40]Morlat R, Jacquet A. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward [J]. Am. J. Enol. Vitic,2003,54:1-7
    [41]NC-140. Early performance of'Starkspur Supreme Delicious'on 16 rootstocks in the NC-140 cooperative planting [J]. Fruit Var. J,1990,44:225-235
    [42]Novello V, Bica D, de Palma. Rootstock effects on vegetative productive indices in grapevine cv. Erbaluce trained to pergola system [J]. Acta Hort,1996,427:233-240
    [43]Omer A D, Granett J, Shebelut C W. Effect of attack intensity on host utilization in grape phylloxera [J]. Crop production,1999,18:341-347
    [44]Reynolds A G, Wardle D A. Rootstocks impact vine performance and fruit composition of grapes in British Columbia [J]. Hort Technol,2001,11:419-427
    [45]Richards D. The grape root system [J]. Hort. Rev,1983,5:127-168.
    [46]Russo N L, Fazio G, Herb S. Aldwinckle. Field evaluation of 64 apple rootstocks for orchard performance and fire blight resistance [J]. Hortscience,2007,42 (7):1517-1525
    [47]Santiago J L, Boso S, Gago P, et al. A contribution to maintenance of grapevine diversity:The rescue of Tinta Castanal (Vitis vinifera L.), a variety on the edge of extinction [J]. Scientia Horticulturae,2008,116:199-204
    [48]Skene K G M, Antcliff A J. Immparative study of cylokinin levels in bleeding of Vitis viniferar L.and the two grapevine rootstocks, SaltCreek and 1613 [J]. JEzp Bot,1972, 23:283-293.
    [49]Spinardi A M, Visai C, Bertazza G Effect of rootstock on fruit quality of two sweet cherry cultivars [J]. Acta Hort,2005,667:201-206
    [50]Tsipouridis C, Thomidis T. Effect of 14 peach rootstocks on the yield, fruit quality, mortality, girth expansion and resistance to frost damages of May Crest peach variety and their susceptibility on Phytophthora citrophthora [J]. Scientia Horticulturae,2005,103:421-428
    [51]Tsipouridis C, Thomidis T. Effect of 14 peach rootstocks on the yield, fruit quality, mortality, girth expansion and resistance to frost damages of May Crest peach variety and their susceptibility on Phytophthora citrophthora [J]. Scientia Hort,2005,103:421-428
    [52]Tworkski T, Miller S. Rootstocks effect on growth of apple scions with different grape habits [J]. Scientia Hort,2007,111:335-343
    [53]Van Zyl J L. Responses of grapevine roots to soil water regimes and irrigation systems. In:van Zy1, J.L. (Ed.). The grapevine root and its environment. Department of agriculture and water supply, Pretoria, South Africa,1998, pp:39-46
    [54]Williams L E, Smith R J. The effect of rootstock on the partitioning of dry weight, nitrogen and posassium, and root distribution of Cabernet Sauvignon grapevines [J]. Am. J. Enol. Vitic. 1991,42:118-121
    [55]Wunderer W, Fardossi A, Schmuckenschlager J. Influence of three different rootstock varieties and two training systems on the efficiency of the grape cultivar Gruner Veltliner in Klosterneuburg [J]. Mitteilungen Klosterneuburg, Rebe und Wein, Obstbau und Fruchteverwertung,1999,49:57-64
    [56]Zekri M, Parsons L R. Growth and root hydraulic conductivity of several citrus rootstock under salt and polyethylene glycol stresses [J]. Physiol. Plant,1989,77:99-106
    [57]Zekri M. Evaluation of orange trees budded on several rootstocks and planted at high density on flatwoods soil [J]. Proc. Fla. State Hort. Soc,2000,113:119-123
    [58]Zekri M, Al-Jaleel A. Evaluation of rootstocks for Valencia and Navel orange trees in Saudi Arabia [J]. Fruits,2004,59:91-100
    [59]Zekri M, Parsons L R. Growth and root hydraulic conductivity of several citrus rootstocks under salt and polyethylene glycol stresses [J]. Physiol. Plant,1989,77:99-106
    [1]陈立松,刘星辉.果树重金属毒害及抗性机理[J].福建农业大学学报,2001,30(4):462-469
    [2]陈龙池,廖利平,汗思龙,等.根系分泌物生态学研究[J].生态学杂志,2002,21(6):57-62.
    [3]冯建国,陶训,于毅,等.苹果园的污染和病虫无公害防技术研究[J].中国果树,2002,(1):24-26
    [4]冯明祥,王佩圣,王继青,等.青岛郊区果园土壤重金属和农药污染研究[J].中国果树,2002.2:24-26
    [5]郭碧云,张广军,赵政阳.无公害苹果园土壤环境质量评价方注与管理信息系统研究[J]. 干旱地区农业研究,2006,24(3):182-184
    [6]孔庆新.几种土壤微量重金属化学形态在土体中的分布[[J].1993,12(6):267-270.
    [7]李振侠,徐继忠,高仪,等.苹果砧木SH40和八棱海棠缺铁胁迫下根系有机酸分泌的差异[J].园艺学报,2007,34(2):279-282
    [8]刘春生,史衍玺,马丽,等.过量铜对苹果树生长及代谢的影响[J].植物营养与肥料学报,2000,6(4):451-456.
    [9]刘文菊,张西科,张福锁.根分泌物对根际难溶性Cd的活化作用及对水稻吸收、运输Cd的影响[J].生态学报,2000,20(3):448-451.
    [10]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000
    [11]聂继云,董雅凤.果园重金属污染的危害与防治[J].中国果树,2002,1:44-47
    [12]王俊儒,安保珠,尉庆丰.油菜、荞麦根分泌物中糖及有机酸组分的研究[J].西北农业大学学报,1995,23(6):42-46.
    [13]张安宁,王金政,孔祥震.山东省设施栽培果树的果品污染检测[J].中国果树,2003,2:11-13
    [14]张金彪.Cd对草莓的毒害及机理和调控研究[D].博十论文,2001
    [15]张连忠,路克国,杨洪强.苹果幼树铜、Cd分布特征与累积规律研究[J].园艺学报,2006,33(1):111-114
    [16]张林森,梁俊,武春林,等.陕西苹果园土壤重金属含量水平及其评价[J].果树学报,2004,21(2):102-105
    [17]Cohen S, Naor A. The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance [J]. Plant Cell Environ,2002,25,17-28
    [18]Coombe B. Grafting. In Robinson J. (ed.) The oxford Compinion to Wine,2nd Edition. The Oxford University Press Inc. New York.1999
    [19]Estan M T, Martinez-Rodriguez M M, Perez-Alfocea F, et al. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot [J]. J. Exp. Bot, 2005,56,703-712
    [20]Laurie S H, Manthey J A. The Manthey J A, et al. chemistry and role of metal ion chelation Luster D G (eds) Biochemistry of in plant uptake processes.ln:metal micronutrients in the rhizosphere [J]. Lewis Publishers, Boca Raton F L,1994,165-182.
    [21]Lena Q M A, Gaden R A O. Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils [J]. Journal of Environment Quality,1997,26:259-264.
    [22]Li J T, Qiu J W, Wang X W, et al. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China [J]. Environ. Pollut.2006,143,159-165
    [23]Mench M, Martin E. Mobilization of cadmium and d other metals from two soils by root exudates of Zeamays L., Nicotiana tabacum L. and NicotiaM rustica L [J]. Plant and Soil, 1991,132:187-196
    [24]Morano L, Kliewer W M. Root distribution of three grapevine rootstocks grafted to Cabernet Sauvignon grown on a very gravelly clay loam soil in Oakville, California [J]. Amer. J. Enol. Viticult,1994,45:345-348
    [25]Otani T, Seike N. Comparative effects of rootstock and scion on dieldrin and endrin uptake by grafted cucumber(Cucumis sativus) [J]. J. Pestic. Sci,2006,31:316-321
    [26]Rauret G L, Sanchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. J. Environ. Monit,1999,1:57-61
    [27]Rivero R M, Ruiz J M, Sanchez E, et al. Does grafting provide tomato plants an advantage against H2O2 production under conditions of thermal shock [J]. Physiol. Plant,2003,117: 44-50
    [28]Romera F J, Alcantara E, Guardia M D. Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution [J]. Plant Soil,1991,130:115-119.
    [29]Rouphael Y, Cardarell M, Rea E, et al. Grafting of cucumber as means to miminize copper toxicity [J]. Environ. Exp. Bot,2008,63:49-58
    [30]Shan X Q, Lian J, Wen B, et al. Effect of organic acids on adsorption and desorption of rare earth elements [J]. Chemosphere,2002,47:701-710
    [31]Thuvander A, Oskarsson A. Adeverse health effects due to soil and water acidification [J]. Swedish Environmental Protection Agency, Stockholm,1998
    [32]Ure A M, Quevauviller P H, Muntau H, et al. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of European Communities [J]. Int. J. Environ. Anal.Chem,1993,51:135-151
    [1]付庆灵,胡红青,黎佳佳,等.灰潮土Cd, Pb复合污染对萝卜产量品质和矿质元素吸收的影响[J].农业环境科学学报,2005,24(2):231-235
    [2]李秀珍.重金属在枇杷中的分配累积规律及其对枇杷品质影响研究[M].硕士毕业论文,2008,四川农业大学
    [3]邬飞波.大麦Cd累积和耐性差异的机理研究[D].博士学位论文,2002
    [4]孙赛初,王焕校.水生维管束植物受Cd污染后的生理变化及受害机制初探[J].植物生理学报,1985,11(2):113-121
    [5]谢建治,李博文,刘树庆Cd, Zn污染对小白菜营养品质的影响[J].华南农业火学学报,2005,26(1):42-45
    [6]杨居荣,贺建新,蒋婉茹.Cd污染对植物生理生化的影响[J].农业环境保护,1995,14(5):193-197
    [7]张建光,郭庆凯,史聪平,等.土壤重金属污染对果树生长结果的影响及其治理途径[J].山西果树,2004,5:33-35
    [8]张连忠,路克国,王宏伟,等.重金属Cd、铜在苹果幼树体内的分布特性及生物有机肥对减少重金属效应的研究[J].水土保持学报,2004,18(3):123-125.
    [9]张连忠,路克国,王宏伟,等.重金属和生物有机肥对苹果根区土壤微生物的影响[J].水土保持学报,2005,19(2):92-95.
    [10]张连忠,路克国,杨洪强.苹果幼树铜、Cd分布特征与累积规律研究[J].园艺学报,2006,33(1):111-114
    [11]A1-Jalleel A, Zekri M, Hammam Y. Yield, fruit quality, and tree health of'Allen Eureka'lemon on seven rootstocks in Saudi Arabia [J]. Scientia Hort,2005,105:457-465
    [12]Baker A J M, Walker P L. Ecophysiology of metal uptake by tolerant plants. In:Shaw, A.J. (Ed.), Heavy Metal Tolerance in Plants:Evolutionary Aspects. CRC Press Inc., Boca Raton, FL,1989, pp.155-173.
    [13]Chaney R L, Reeves P G, Ryan J A, et al. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks [J]. Biometals,2004,17:549-553
    [14]Cui Y J, Zhu Y G, Zhai R H, et al. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China [J]. Environment International,2004,30:785-791.
    [15]Edelstein M, Ben-Hur M. Use of grafted vegetables to minimize chemical usage and damage to plant growth and yield quality under irrigation with marginal water [J]. Acta Hort,2006,699: 159-167
    [16]Edelstein M, Ben-Hur M, Cohen R, et al. Born and salinity effects on grafted and non-grafted melon plants [J]. Plant Soil,2005,269:273-284
    [17]Estan M T, Martinez-Rodriguez M M, Perez-Alfocea F, et al. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot [J]. J. Exp. Bot, 2005,56:703-712
    [18]Hogue C. EPA is working to ensure that the unique properties of metals are part of risk assessments [J]. Chemical and Engineering News,2004,82 (32),23-24
    [19]Li J T, Qiu J W, Wang X W, et al. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China. Environ. Pollut,2006,143:159-165
    [20]MHPRC (Ministry of Health People's Republic of China),1994. Tolerance Limit of Cadmium in Foods (GB 15201-94). MHPRC, Beijing.
    [21]Otani T, Seike N. Comparative effects of rootstock and scion on dieldrin and endrin uptake by grafted cucumber (Cucumis sativus) [J]. J. Pestic. Sci,2006,31:316-321
    [22]Peryea F J. Heavy metal contamination in deciduous tree fruit orchards:implications for mineral nutritient management [J]. Acta Hort,2001,564:31-39
    [23]Rouphael Y, Cardarell M, Rea E, et al. Grafting of cucumber as means to miminize copper toxicity [J]. Environ. Exp. Bot,2008,63:49-58
    [24]Thuvander A, Oskarsson A. Adverse Health Effects Due to Soil and Water Acidification [J]. Swedish Environmental Protection Agency, Stockholm,1998
    [25]WHO. Evaluation of Certain Food Additives and Contaminants (Thirty third Report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Series No.837. WHO,1989, Geneva.
    [26]Woolhouse H W, Walker S. The physiological basis of copper toxicity and copper tolerance in higher plants. In:Loneragan, J.F., Robson, A.D., Graham, R.D. (Eds.), Copper in Soils and Plants. Academic Press, New York,1981, pp.235-258.
    [27]Yeung A T, Hsu C.-n. Electrokinetic remediation of cadmium-contaminated clay [J]. Journal of Environmetal Engineering,2005,73:270-275
    [28]Zheljazkov V D, Craker L E. Xing B. Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environ. Exp.Bot,2006,58:9-16.
    [29]Zheljazkov V D, Warman P R. Application of high Cu compost to dill and peppermint [J]. J. Agric. Food Chem,2004,52:2615-2622.
    [30]Zheng Y, Wang L, Dixon M. Greenhouse pepper growth and yield response to copper application [J]. HortScience,2005,40:2132-2134.
    [1]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002,22(4):503-507
    [2]严重玲,洪业汤Cd、Pb胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报,1997,17(5):488-492
    [3]张芬琴,孟红梅,沈振国,等.Cd胁迫下绿豆和箭舌豌豆幼苗的抗氧化反应[J].西北植物学报,2006,26(7):1384-1389
    [4]Al-Jalleel A, Zekri M, Hammam Y. Yield, fruit quality, and tree health of'Allen Eureka' lemon on seven rootstocks in Saudi Arabia [J]. Scientia Hort,2005,105:457-465
    [5]Carrier P, Baryla A, Havaux M. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil [J]. Planta,2003,216: 939-950.
    [6]Cohen S, Naor A. The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance [J]. Plant Cell Environ,2002,25:17-28
    [7]Dariusz L, Jerzy K, Kazimierz S. Inhibition of zeaxanthin epoxidase activity by cadmium ions in higher plants [J]. J. Inorg. Biochem,2005,99:2081-2087.
    [8]Demiral T, Tiirkan I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance [J]. Environ. Exp. Bot,2005,53: 247-257
    [9]Dong J, Wu F B, Zhang G P. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum) [J]. Chemosphere, 2006,64:1659-1666.
    [10]Edelstein M, Ben-Hur M. Use of grafted vegetables to minimize chemical usage and damage to plant growth and yield quality under irrigation with marginal water [J]. Acta Hort,2006,699: 159-167
    [11]Edelstein M, Ben-Hur M, Cohen R, et al. Born and salinity effects on grafted and non-grafted melon plants [J]. Plant Soil,2005,269:273-284
    [12]Estan M T, Martinez-Rodriguez M M, Perez-Alfocea F, et al. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot [J]. J. Exp. Bot, 2005,56:703-712
    [13]FAO (2005) STAT database in www. Fao. org.
    [14]Fomazir R F, Ferreira R R, Vitoria A P, et al. Effect of cadmium on antioxidant enzyme antivities in sugar cane [J]. Biol plant,45(1):91-97
    [15]Giorgia M, Capocasaa F, Scalzo J. The rootstock effects on plant adaptability, production, fruit quality, and nutrition in the peach (cv. 'Suncrest') [J]. Scientia Hort,2005,107:36-42
    [16]Guo T R, Zhang G P, Zhang Y H. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium [J]. Colloid and Surfaces B:Biointerfaces,2007, 57:182-188
    [17]Hegedus A, Erdei S, Horvath G.. Comparative studies of H2O2 detoxifying enzymes in green and greening barely seedlings under cadmium stress [J]. Plant Sci,2001,160:1085-1093
    [18]Hu Y D. Jia H J. A method for extracting and determing anthocyanin from peach fruit and its application [J]. J. Fruit Sci,2004,21:167-169
    [19]Kaserer H, Blahous D, Brandes W, et al. Optimizing wine grape quality by considering rootstock scion interaction [J]. Acta Hort,1997,427:267-276
    [20]Kirkham M B. Cadmium in plants on polluted soils:Effects of soil factors, hyperaccumulation, and amendments [J]. Geoderma,2006,137:19-32
    [21]Li H, Hu Y F. A survey of world grapevine and wine [J]. Ino-overseas grapevine and vine. 2008,1:66-69
    [22]Li J T, Qiu J W, Wang X W, et al. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China [J]. Environ. Pollut,2006,143:159-165
    [23]Liu P C, Wang H, Cheng J Q, et al. Regulation of nitric oxide on drought-induced membrane lipid peroxidation in wheat leaves [J]. Acta Bot. Borea-Occident. Sin,2004,24:141-145
    [24]Meng X H, Liu B Q, Liu J, et al. Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage [J]. Food chem.,2008, 106:501-508
    [25]MHPRC (Ministry of Health People's Republic of China).1994. Tolerance Limit of Cadmium in Foods (GB 15201--94). MHPRC, Beijing
    [26]Milone M T, Sgherri C, Clijsters H, et al. Antioxidative responses of wheat treated with realistic concentration of cadmium [J]. Environ. Exp. Bot,2003,50:265-276
    [27]Mobin M, Khan N A. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in potosynthetic capacity subjected to cadmium stress [J]. J. plant physiol,2007,164:601-610
    [28]Mysliwa-Kurdzifl B, Strzalka K. Influence of metals on biosynthesis of photosynthetic pigments. In:M.N.V. Prasad, K. Strzalka (Eds.), Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Kluwer Academic Publishers. AH Dordrecht, Netherlands, 2002, pp.201-227.
    [29]Novello V, Bica D, Palma D. Rootstock effects on vegetative productive indices in grapevine cv. Erbaluce trained to pergola system [J]. Acta Hort,1996,427:233-240
    [30]Olmos E, Martinez-Solano J R., Piqueras A, et al. Early steps in the oxidative burst induced by cadmium in cultured tobaccos cells (BY-2 line) [J]. J. Exp. Bot,2003,54:291-301.
    [31]Otani T, Seike N. Comparative effects of rootstock and scion on dieldrin and endrin uptake by grafted cucumber (Cucumis sativus) [J]. J. Pestic. Sci,2006,31:316-321
    [32]Peryea F J. Heavy metal contamination in deciduous tree fruit orchards:implications for mineral nutritient management [J]. Acta Hort,2001,564:31-39
    [33]Qiu R.L, Zhao X, Tang Y T, et al. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F [J]. Chemosphere,2008,74:6-12
    [34]Rouphael Y, Cardarell M, Rea E, et al. Grafting of cucumber as means to miminize copper toxicity [J]. Environ. Exp. Bot,2008,63:49-58
    [35]Shah K, Kumar R G, Verma S, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings [J]. Plant Sci,2001, 161(6):1135-1144
    [36]Singh S, Eapen S, D'Souza S F. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L [J]. Chemosphere,2006, 233-246
    [37]Sun R.L, Zhou Q X, Sun F H, et al. Anoxidative defense and proline/photochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L [J]. Environ. Exp. Bot,2007,60:468-476
    [38]Wei Z G, Wong J W, Chen D Y. Speciation of heavy metal binding non-protein thiols in Agropyron elongatum by size-exclusion HPLC-ICP-MS [J]. Microchemical Journal,2003,74: 207-213.
    [39]Wei Z G, Wong J W, Hong F S, et al. Determination of inorganic and organic anions in xylem saps of two constrasting oilseed rape (Brassica juncea L.) varieties:Roles of anions in long-distance transport of cadmium [J]. Microchemical Journal,2007,86:53-59.
    [40]Wu F B, Zhang G P, Dominy P. Four barley genotypes respond differently to cadmium:lipid peroxidation and activities of antioxidant capacity [J]. Environ. Exp. Bot,2003,50:67-78.
    [41]Yeung AT, Hsu C-n. Electrokinetic remediation of cadmium-contaminated clay [J]. J. Environ. Eng,2005,131:298-304.
    [1]陈瑛,李延强,杨肖娥.Cd对不同基因型小白菜根系生长特性的影响[J].植物营养与肥料学报,2009,15(1):170-176
    [2]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000
    [3]秦天才,吴玉树,王焕校等.Cd、铅及其相互作用对小白菜根系生理生态效应的研究[J].生态学报,1998,18(3):320-325
    [4]孙建云,王桂萍,沈振国.不同基因型甘蓝对Cd胁迫的响应[J].南京农业大学学报,2005,28(4):40-44
    [5]陶建敏,章镇,林惠莲,等.葡萄无菌苗体系建立试验初探[J].中外葡萄与葡萄酒,2003,2:16-18
    [6]杨居荣,贺建群,黄翌,等.农作物Cd耐性的种内和种间差异[J].应用生态学报,1994,5(2):192-196
    [7]杨居荣,贺建群,黄翌,等.农作物隔耐性的种内和种间差异-种内差[J].应用生态学报,1995,6(增):132-136
    [8]张建光,郭庆凯,史聪平,等.十壤重金属污染对果树生长结果的影响及其治理途径[J].山西果树,2004,5:33-35
    [9]张连忠,路克国,王宏伟,等.重金属利生物有机肥对苹果根区土壤微生物的影响[J].水土保持学报,2005,19(2):92-95.
    [10]di Toppi L S, Gabbrilli R. Response to cadmium in higher plants [J]. Environ Exp Bot,1999, 41:105-130
    [11]Lombardi L, Sebastiani L. Copper toxicity in Prunus cerasifera:growth and antioxidant enzymes responses of in vitro grown plants [J]. Plant Science.2005,168:797-802
    [12]Li J T, Qiu J W, Wang X W, et al. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China. Environ. Pollut,2006,143:159-165
    [13]Otani T, Seike N. Comparative effects of rootstock and scion on dieldrin and endrin uptake by grafted cucumber (Cucumis sativus) [J]. J. Pestic. Sci,2006,31:316-321
    [14]Peryea F J. Heavy metal contamination in deciduous tree fruit orchards:implications for mineral nutritient management [J]. Acta Hort,2001,564:31-39
    [15]Rouphael Y, Cardarell M, Rea E, et al. Grafting of cucumber as means to miminize copper toxicity [J]. Environ. Exp. Bot,2008,63:49-58
    [16]Thuvander A, Oskarsson A. Adeverse health effects due to soil and water acidification [J]. Swedish Environmental Protection Agency, Stockholm,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700