用户名: 密码: 验证码:
CO_2浓度升高对冬小麦生长及氮素利用的效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以冬小麦(Triticum aestivum L.)为供试材料,于2007-2010年连续3年利用开顶式气室(Open Top Chambers, OTCs)装置,通过土培和水培试验,系统研究了大气CO_2浓度升高对冬小麦光合、叶绿素荧光、光合源结构、根系形态和有机碳分泌、产量形成及氮素利用的影响。研究获得以下主要进展:
     (1)在不施氮或低氮条件下CO_2浓度升高使冬小麦旗叶叶绿素a、叶绿素b和叶绿素总量减少,促进可溶性糖累积,导致光合适应;供氮充分时通过调节叶绿素,特别是叶绿素a而减缓或消除光合适应现象,而通过调节叶绿素b及可溶性糖累积对光合适应现象的调控作用相对有限,说明改善氮素营养可消除光合适应现象。
     (2)CO_2浓度升高使冬小麦旗叶叶绿素基础荧光(Fo)增加1.4%~15.2%,最大荧光(Fm)、可变荧光(Fv)、最大光化学效率(Fv/Fm)以及潜在光化学活性(Fv/Fo)分别下降0.3%~9.3%、2.4%~12.0%、0.9%~4.7%和5.9%~22.7%;Fo值的增幅以及Fm、Fv、Fv/Fm和Fv/Fo的降幅随施氮水平提高而下降,表明CO_2浓度升高会导致PSII发生光损伤,使其电子传递、潜在活性和原初光能转换能力减弱,而改善氮素营养可减弱甚至消除CO_2浓度升高的这些负效应。
     (3)CO_2浓度升高使冬小麦叶片、茎鞘及单茎总光合面积分别增加11.5%~37.3%、14.5%~18.1%和7.3%~38.3%。叶片和茎节长度增加是光合面积增加的主要原因。CO_2浓度与供氮水平互作只对少数光合器官形态产生影响;CO_2浓度升高对单茎花后干物质积累量、粒重叶比和粒数叶比在不施氮时影响不明显或导致下降,施氮后均使其显著增加。说明改善氮素营养可促进CO_2浓度升高对花后干物质生产的效应,并有利于提高单位叶源的库承载力。
     (4)水培条件下,CO_2浓度升高使冬小麦幼苗根冠生物量、根长度、根面积、有机碳分泌速率及总量分别增加1.9%~42.8%、5.5%~27.7%、14.9%~92.9%、5.9%~71.4%、8.7%~11.8%和13.3%,叶片硝酸还原酶活性增加14.8%~33.5%,而对根冠比的影响缺乏规律性。在较低介质供氮水平下CO_2浓度升高对小麦幼苗根长和根面积以及有机碳分泌促进作用较大,表明当氮素营养不足时,CO_2浓度升高更有利于同化产物向根系的分配。
     (5)CO_2浓度升高使冬小麦每盆籽粒重量平均增加48.3%~70.0%,增产原因主要是穗数和穗粒数增加的结果。CO_2浓度升高促进了花前不同器官干物质积累,使花前地上部营养器官贮存物质在花后向籽粒的转运量、转运率和贡献率明显增加。CO_2浓度升高对每盆籽粒重量、干物质积累及转运的影响,在不施氮时不显著,施氮后在大多数情况下达显著水平。说明施氮有助于CO_2浓度升高对每盆籽粒重量、花前物质积累和转运的正向效应。
     (6)CO_2浓度升高使冬小麦开花期和成熟期植株氮素累积量分别增加15.0%~27.9%和13.9%~26.1%,使花前地上部营养器官氮素在花后向籽粒的转运量提高13.8%~77.4%;但对花前地上部氮素转运率及花后籽粒氮素累积贡献率的影响因品种而异。CO_2浓度升高也可提高氮素籽粒和干物质生产效率和氮素收获指数。不施氮时CO_2浓度升高对氮素累积、转运及籽粒中分配的影响不显著,施氮后显著增加。
     (7)增加冬小麦中、后期追氮比例,更有利于发挥CO_2浓度升高对作物生长的促进效应。在不施氮条件下,CO_2浓度升高使冬小麦旗叶SPAD值和可溶性蛋白含量下降,导致旗叶出现明显光合适应;施氮时这些现象均未发生;与一次性底施相比,在施氮比例(底肥﹕拔节肥﹕孕穗肥)为5:5:0和5:3:2时提高了灌浆期旗叶光合速率。结果同时表明,分期施氮比全部底施更有利于增加CO_2浓度升高对小麦生育后期光合能力、花前物质积累与转运、籽粒产量以及氮素利用的促进效应。主要创新点:
     (1)在介质供氮不足时,CO_2浓度升高会增加冬小麦叶片可溶性糖累积,导致PSII光损伤,叶绿素含量、PSII的电子传递、原初光化学效率和潜在活性降低,从而引起光合适应。改善氮素营养,特别增加中后施氮比例可减轻冬小麦光合适应,增强CO_2浓度升高对植株生长发育、籽粒产量形成和氮素利用的促进作用。
     (2)CO_2浓度升高可促进冬小麦源器官和根系生长发育,增强花前碳氮物质积累和花后向籽粒的转运,增加籽粒产量和氮素累积量,提高氮素生产效率。
     (3)综合分析研究结果认为,在介质供氮充分时,CO_2浓度升高导致花后非叶光合源面积增加及促进花前营养器官同化产物向籽粒转运是籽粒产量增加的主要原因。
The research was carried out with winter wheat(Triticum aestivum L.) as materialsduring the three growth seasons from2007to2010. Some pot and water culture experimentswere launched in four open top chambers (OTCs). The main aim of research was to assess theinfluence of CO_2concentration elevation on the photosynthesis, chlorophyll fluorescenceparameters, source components, root morphology and organic carbon secretion, yieldformation, nitrogen use efficency of winter wheat. The main results were as followings:
     (1) CO_2enrichment reduced chlorophyll a, chlorophyll b and total chlorophyll contents,increased soluble sugar content in wheat flag leaf, and led to photosynthetic down-regulationunder no nitrogen application or low nitrogen level, but under ample nitrogen application, iteased off or removed photosythesitic down-regulation mainly by increasing chlorophyllcontent, especially chlorophyll a content, and limitedly by chlorophyll b and soluble sugarcontents. This showed nitrogen nutrition improvement could regulate leaf photosythesiticacclimation to some extent.
     (2) When air CO_2concentration was elevated, the average value of initialfluorescence(Fo) in wheat flag leaf increased1.4%~15.2%, and the average value ofmaximumu fluorescence(Fm), variable fluorescence(Fv), maximal photochemicalefficiency(Fv/Fm) and potential photochemical efficiency(Fv/Fo) reduced0.3%~9.3%,2.4%~12.0%,0.9%~4.7%and5.9%~22.7%, respectively. The ranges of Fo increase, and Fm,Fv, Fv/Fm and Fv/Fo decrease fell with the increase of nitrogen level. It showed elevated CO_2gave biger photo-damage to wheat PSII, and restrained its electron transport, potential activityand original light conversion ability. Nitrogen addication could weaken or eliminate thenegative effects.
     (3) Compared of ambient CO_2concentration, CO_2enrichment increased thephotosynthesis areas of leaf, stem&sheath and whole stem by11.5%~37.3%,14.5%~18.1%and7.3%~38.3%, respectively. The expansion of photosynthesis area should mainly be due tothe increase of leaf and node lengths. The dry matter accumulation after anthesis, the ratios ofgrain number and weight to leaf area responded weakly or negatively to elevated CO_2under no nitrogen application, but significantly increased in the very great majority of cases undernitrogen addication. It showed that the positive effects of CO_2enrichment on dry matterproduction after anthesis and sink bearing capacity per source area could be enhanced byimproving nitrogen nutrition.
     (4) The hydroponics results showed that compared with the background CO_2concentration, elevated CO_2increased root and shoot biomass, root length, root area, rootorganic carbon excretion rate and content, and leaf NR activity in wheat seedling by1.9%~42.8%,5.5%~27.7%,14.9%~92.9%,5.9%~71.4%,8.7%~11.8%,13.3%and14.8%~33.5%, but its effect on the root/shoot ratio lacked regularity. Elevated CO_2influnenced root length and area, organic carbon excretion more significantly under lownitrogen nutrition than under apmle nitrogen. It showed that elevated CO_2led to the moreassimilate product distributed to root when lacking nitrogen nutrition.
     (5) CO_2enrichment significantly increased wheat grain weight per pot by48.3%~70.0%,mainly due to the improvement of spike number per pot and grain number per spike. ElevatedCO_2promoted the accumulation of dry matter in different organs before anthesis. The amountand rate of pre-anthesis dry matter in shoot transferring to grain after anthesis increased andthe contribution rate of pre-anthesis dry matter translocation rose with CO_2elevation. Theeffects of elevated CO_2on grain weight per pot, dry matter accumulation and translocationwere weak or not significant, but were mostly significant under nitrogen addication, whichindicated reasonable nitrogen application could improve the positive effects of elevated CO_2.
     (6) Elevated CO_2increased plant nitrogen accumulation at anthesis and mature stages,the amount of pre-anthesis nitrogen in shoot transferring to grain after anthesis by15.0%~27.9%,13.9%~26.1%and13.8%~77.4%, respectively, but it had different effect onthe contribution rate of pre-anthesis nitrogen in shoot of two varieties. Compared with thebackground CO_2concentration, the high CO_2concentration treatments increased nitrogenefficiencies for grain and dry matter production, and nitrogen harvest index. The effects ofelevated CO_2were not significant under no nitrogen application, and all sigficant undernitrogen application.
     (7) The effects of CO_2enrichment on wheat growth could be increased by applying morenitrogen at the middle or later stages. Elevated CO_2resulted in photosynthetic acclimation ofwheat flag leaf along with the decease of SPAD and soluble protein content under nonitrogen application, but the appearances were found under nitrogen addication; thephotosynthetic rate at grain-filling stage was enhanced by elevated CO_2under nitrogenapplications with ratios of5:5:0and5:3:2at before sowing, regreening and booting stage.Additionly, the length and area of the top three leaves at heading stage, photosynthesis after anthesis, grain yield, pre-anthesis dry matter accumulatio and translocation, and nitrogenusage were more easyly promoted by CO_2elevation under nitrogen spilt application thanunder nitrogen all-based application..
     Main innovations:
     (1) CO_2elevation would down-regulate winter wheat leaf photosythesis by inceasing leafsoluble sugar content and PSII light suppression, and reducing chlorophyll content, PSII lightchemistry efficiency and activity. By improvementing nitrogen nutrition, especiallyapplying more nitrogen at the middle and later stages, the leaf photosynthetic acclimationwould be relieved, and the positive effects of CO_2elevation on plant growth and development,yield formation and nitrogen usage would be strengthened.
     (2) CO_2enrichment would promote the growth and development of source organs androot, pre-antheis dry matter and nitrogen accumulation in shoot, and translocation to grainafter anthesis, increase grain yield and nitrigen accumulation in grain, and improve thenitrogen production effciency.
     3) The synthetical analyses showed that when nitrogen in medium was ample, thepositively effect of CO_2elevation on winter yield was mainly due to its accelerating thenon-leaf source areas and the translocation of dry matter restored in vegetative organs beforeanthesis to grain after anthesis.
引文
白莉萍,仝乘风,林而达,卢志光,饶敏杰.2004.大气CO2浓度增加对冬小麦品质性状的影响.自然科学进展,14(1):111~115
    白莉萍,仝乘风,林而达,卢志光,饶敏杰.2005.基于CTGC试验系统下面包小麦主要品质性状的研究.植物生态学报,15(5):814~818
    曹翠玲,李生秀.2003.供氮水平对小麦生殖生长时期叶片光合速率NR活性和核酸含量及产量的影响.植物学通报,20(3):319~324
    曹际玲,朱建国,马红亮,朱春梧,颜建,曾青,寇太记,谢祖彬.2009.不同氮素水平下冬小麦叶片酚酸类物质代谢对FACE的响应.中国生态农业学报,17(5):837~841
    陈丹,张放.2004.水分胁迫条件下CO2加富对枇杷叶绿素荧光及抗氧化酶的影响.浙江农业学报,16(2):63~67
    陈祥,同延安,康欢虎.2008.氮肥后移对冬小麦产量、氮肥利用率及氮素吸收的影响.植物营养与肥料学报,14(3):450~455
    陈宝明,王朝辉,李生秀.2002.菠菜叶片中硝态氮代谢库的测定.植物生理学通讯,38(2):124~126
    陈法军,吴刚,戈峰.2006.春小麦对大气CO2浓度升高的响应及其对麦长管蚜生长发育和繁殖的影响.应用生态学报,17(1):91~96
    陈法军,戈峰,刘向辉.2004.棉花对大气CO2浓度升高的响应及其对棉蚜种群发生的作用.生态学报,24(5):991~996
    陈法军,吴刚,戈峰.2004.在高CO2浓度下生长的小麦对棉铃虫生长发育和繁殖的影响.昆虫学报,(6):774~779
    陈根云.2003.植物对开放式CO2浓度增高(FACE)的响应与适应研究进展.植物生理与分子生物学学报,29(6):479~486
    陈贻竹,李晓萍.1995.叶绿素荧光技术在植物环境胁迫研究中的应用.热带亚热带植物学报,3(4):79~86
    崔金梅.1982.小麦幼穗发育进程及温度对其影响的研究.河南农业大学学报,16(2):1~12
    樊丽莉,蒋跃林.2008.不同氮素处理水平下CO2浓度对小麦生产力的影响.安徽农学通报,(7):59~60,45
    范桂枝,蔡庆生.2005.植物对大气CO2浓度升高的光合适应机理.植物学通报,22(4):486~493
    房世波,沈斌,谭凯炎,高西宁.2010.大气[CO2]和温度升高对农作物生理及生产的影响.中国生态农业学报,18(5):1116~1124
    冯建灿,胡秀丽,毛训甲.2002.叶绿素荧光动力学在研究植物逆境生理中的应用.经济林研究,12(4):14~20
    傅春霞,曹旸.1985.不同小麦品种叶片结构与CO2同化力的比较观察.植物学通报,(6):30~34
    高俊凤.2006.植物生理学实验指导[M].北京:高等教育出版社:74~77
    高素华,郭建平.2000.高CO2浓度条件下小麦大豆对土壤水分胁迫的响应.环境科学学报,20(5):648~650
    郭建平,高素华.1999. CO2浓度倍增对春小麦不同品系影响的试验研究.资源科学,21(6):25~28
    郭天财,方保停,王晨阳,李鸿斐.2005.水分调控对小麦旗叶叶绿素荧光动力学参数及其产量的影响.干旱地区农业研究,23(2):6~10
    郭文善,周振兴,彭永欣,封超年,朱新开,王蔚华,方明奎.1997.小麦籽粒胚乳细胞增殖动态及其与粒重的关系.浙江农业研究,18(3):15~20
    韩雪.2009.大气CO2浓度升高对冬小麦生理生态的影响研究[硕士学位论文].中国农业科学院
    胡莹莹,赵天宏,徐玲,史奕,赵艺欣.2007. CO2浓度升高对春小麦不同生育时期抗氧化系统的影响.华北农学报,22(1):15~18
    姜丽娜,赵艳岭,邵云,余海波,林琳,杨金芳,李春喜.2011.玻璃温室与田间栽培小麦幼穗分化的比较.生态学报,31(15):4207~4214
    蒋跃林,张庆国,张仕定,岳伟,陈庭甫.2006.大气CO2浓度升高对小麦旗叶衰老和产量的影响.种子,25(5):1~3
    蒋跃林,张庆国,张仕定,岳伟,陈庭甫.2005.小麦光合特性气孔导度和蒸腾速率对大气CO2浓度升高的响应.安徽农业大学学报,32(2):169~173
    蒋跃林,张庆国,岳伟,姚玉刚,王公明.2005.大气CO2浓度升高对大豆生长和产量的影响.中国农学通报,21(6):355~357
    蒋跃林,张庆国,张仕定,岳伟,谢超群.2005.大气CO2含量增加对小麦籽粒营养品质的影响.中国农业大学学报,10(5):21~25
    B A Kimbal,朱建国,程磊, Kobayashi K, Bindi M.2002.开放系统中农作物对空气CO2浓度增加的响应.应用生态学报,13(10):1323~1338
    康绍中,张富仓.1999.土壤水分和CO2浓度增加对小麦玉米棉花蒸散光合及生长的影响.作物学报,25(1):55~63
    康绍忠,蔡焕杰.1997.大气CO2浓度增加对春小麦冠层温度蒸发蒸腾与土壤剖面水分动态影响的试验研究.生态学报,17(4):412~417
    寇太记,朱建国,谢祖彬,刘钢,曾青.2007.冬小麦旺盛生长期间CO2浓度升高对根际呼吸的影响.生态学报,27(4):1420~1427
    寇太记,朱建国,谢祖彬,刘钢,曾青,李小平.2007.冬小麦旺盛生长期CO2浓度升高对土壤呼吸的影响.农业环境科学学报,26(3):1111~1116
    寇太记;朱建国;谢祖彬,刘钢,曾青.2008. CO2浓度增加和不同氮肥水平对冬小麦根系呼吸及生物量的影响.植物生态学报,32(4):922~931
    郎红东,杨剑虹.2004.土壤CO2浓度变化及其影响因素的研究.西南大学学报(自然科学版),26(6):731~734,739
    雷鸣,李树云,张石宝.2009.氮素对红波罗花光合作用和生长的影响.云南植物研究,31(1):82~88
    雷亚柯,王辉,宋美丽,魏艳丽.2007.不同穗型冬小麦源库关系及源库性状改良.麦类作物学报,27(3):493~496
    李娟,周建民,段增强,杜昌文,王火焰.2006. CO2与养分交互作用对番茄幼苗形态的影响.江苏农业科学,(1):76~77
    李朝霞,赵世杰,孟庆伟,邹琦,田纪春.2004.不同粒叶比小麦品种非叶片光合器官光合特性的研究.作物学报,30(5):419~426
    李朝霞,赵世杰,孟庆伟,邹琦,田纪春.2002.高粒叶比小麦群体生理基础研究进展.麦类作物学报,22(4):84~88
    李伏生,康绍忠,张富仓.2003. CO2浓度升高氮与土壤水分对春小麦生长及干物质积累的效应.中国生态农业学报,11(2):37~40
    李伏生,康绍忠,张富仓.2003. CO2浓度氮和水分对春小麦光合蒸散及水分利用效率的影响.应用生态学报,40(3):387~393
    李伏生,康绍忠.2002. CO2浓度氮和土壤水分对春小麦养分利用效率的影响.中国农业科学,35(8):953~958
    李伏生,康绍忠.2004. CO2浓度氮素和水分对春小麦碳素固定的影响.土壤通报,25(5):546–549
    李伏生,康绍忠.2002. CO2浓度升高氮和水分对春小麦养分吸收和土壤养分的效应.植物营养与肥料学报,8(3):303~309.
    李伏生,康绍忠.2003.两种氮水平下CO2浓度升高对冬小麦生长和氮磷浓度的影响.土壤学报,40(4):599~606
    李伏生,康绍忠.2002. CO2浓度和氮素水平对春小麦水分利用效率的影响.作物学报,28(6):835~840
    李果梅,史奕,陈欣.2008.二氧化碳和臭氧浓度升高对春小麦生长及次生代谢的影响.应用生态学报,19(6):1283~1288
    李军营,葛晶,高亚雄,朱建国,蔡庆生.2004.空气CO2浓度增加(FACE)对不同穗型冬小麦非结构性碳水化合物含量及其分配的影响.中国植物生理学会第九次全国会议论文摘要汇编
    李军营.2006.二氧化碳浓度升高对水稻幼苗叶片生长蔗糖转运和籽粒灌浆的影响及其机制[博士学位论文].南京农业大学
    李清明,刘彬彬,邹志荣.2011. CO2浓度升高对干旱胁迫下黄瓜幼苗光合特性的影响.中国农业科学,44(5):963~971
    党蕊娟,李世清,穆晓慧,李生秀.2008.施氮对半湿润农田冬小麦冠层叶片氮素含量和叶绿素相对值垂直分布的影响.西北植物学报,28(5):1036~1042
    李永华,王献,孔德政,叶庆生.2007.长期CO2加富对苗期红掌(Anthurium andraeanum L.)植株生长和光合作用的影响[J].生态学报,27(5):1852~1857
    廖轶,陈根云,张道允.2003.冬小麦光合作用对开放式空气CO2浓度增高(FACE)的非气孔适应.植物生理与分子生物学学报,29(6):494~500
    廖建雄,王根轩.2002.干旱CO2和温度升高对春小麦光合蒸发蒸腾及水分利用效率的影响.应用生态学报,13(5):547~555
    林久生,王根轩.2000. CO2升高对渗透胁迫下小麦叶片抗氧化酶类及细胞程序性死亡的影响.植物生理学报,26(5):453~457
    林伟宏.1998.植物光合作用对大气CO2浓度升高的反应.生态学报,18(5):83~92
    凌启鸿.2000.作物群体质量.上海:上海科学技术出版社:8~9
    刘合芹.2002.不同年代推出的冬小麦(Triticum astivum L.)农艺性状以及光合生理生态特性[博士论文].中国科学院研究生院(植物研究所)
    鲁如坤.2000.土壤农业化学分析方法.中国农业科技出版社:311~312
    路娜,胡维平,邓建才,陈效民.2011.大气CO2浓度升高对植物影响的研究进展.土壤通报,42(2):477~482
    路文静,张树华,郭程瑾,段巍巍,肖凯.2009.不同氮素利用效率小麦品种的氮效率相关生理参数研究.植物营养与肥料学报,15(5):985~991.
    马红亮,徐一杰,朱建国,吴艳红,谢祖彬,刘钢,高人.2009a.大气CO2浓度升高对稻麦根系周围土壤C P K的影响.生态学报,29(9):4949~4955
    马红亮,朱建国,谢祖彬,刘钢,曾青.2009b.开放式空气CO2浓度升高对水稻/小麦轮作土壤速效钾的影响.植物营养与肥料学报,15(3):607~612
    马红亮,朱建国,谢祖彬.2005.不同氮水平下CO2浓度升高对小麦土壤可溶性C N和P的影响.土壤,37(3):284~289
    马红亮,朱建国,谢祖彬,张雅丽,刘刚,曾青.2004.开放式空气CO2浓度升高对水稻土壤可溶性C N和P的影响.土壤,36(4):392~397
    马红亮,朱建国,谢祖彬,刘刚,曾青,韩勇.2005.开放式空气CO2浓度升高对冬小麦P K吸收和C∶N,C∶P比的影响.农业环境科学学报,24(6):1192~1198
    马红亮,朱建国,谢祖彬,刘刚,张雅丽,曾青.2005.开放式空气CO2浓度升高对冬小麦生长和N吸收的影响.作物学报,31(12):1634~1639
    马占云.2009.气候变化对中国农林生物质能的区域影响研究[博士学位论文].首都师范大学.
    门中华,李生秀.2005. CO2浓度对冬小麦氮代谢的影响.中国农业科学,38(2):320~326
    缪有刚,李立人.1991.水稻RubisCO的纯化及其与烟草RubisCO性质的比较.植物生理学报,17:183~193
    牟会荣,姜东,戴廷波,荆奇,曹卫星.2008.遮荫对小麦旗叶光合及叶绿素索荧光特性的影响.中国农业科学,41(2):599~606
    潘庆民,于振文,田奇卓,王月福,刘万兴,王瑞英.1998.追氮时期对超高产小麦旗叶和根系衰老的影响.作物学报,24(6):924~929
    乔匀周,王开运,张远彬.2007. CO2浓度升高对两个种植密度下红桦生长和养分含量的影响.生态学杂志,26(3):301~306
    裘昭峰,翟立业.1985.小麦穗和芒表面积的估测.作物学报,11(2):138
    上海市植物生理学会编.1999.现代植物生理学实验指南.上海:科学与技术出版社:127
    申海兵,杨德龙,景蕤莲,昌小平,曲延英.2007.小麦穗颈维管束遗传特性及其与产量的关系.麦类作物学报,27(3):465~470
    沈宏,严小龙.2001.根系分泌作用及其诱导机制.土壤与环境,10(4):339~342
    沈宏,严小龙.2001.根系分泌物及分泌机制.土壤与环境,10(4):339~342
    史奕,李杨,周全来,朱建国.2004.空气CO2体积分数升高对稻麦根系活力及其VA菌根侵染率的影响.生态环境,13(4):480~482,492
    宋淑英,许育彬,李世清,沈玉芳.2010. CO2浓度升高对不同氮水平下小麦幼苗根系及叶片NR活性的影响[J].西北植物学报,30(11):2203~2209
    孙传范,戴廷波,荆奇,姜东,曹卫星.2004.小麦品种氮利用效率的评价指标及其氮营养特性研究.应用生态学报,15(6):983~987
    唐如航,贾军伟,李立人.1997.烟草Rubisco活化酶的纯化及其特性.植物生理学报,23:89~94
    王晨阳,朱云集,夏国军,宋家永,李九星,王永华,罗毅.1998.氮肥后移对超高产小麦产量及生理特性的影响.作物学报,24(1):978~983
    王春乙,郭建平,崔读昌,王修兰,梁红,徐师华.2000. CO2浓度增加对小麦和玉米品质影响的实验研究.作物学报,26(6):931~936
    王大力,林伟宏.1999. CO2浓度升高对水稻根系分泌物的影响―总有机碳甲酸和乙酸含量的变化.生态学报,19(4):570~572
    王精明,李永华,黄胜琴,叶庆生.2004. CO2浓度升高对凤梨叶片生长和光合特性的影响.热带亚热带植物学报,12(6):511~514
    王精明,李永华,黄胜琴,刘丽娜,叶庆生.2005. CO2浓度升高对红掌光合速率与生长发育的影响.园艺学报,32(2):335~338
    王美玉,赵天宏,张巍巍,史奕.2007. CO2浓度升高与温度干旱相互作用对植物生理生态过程的影响.干旱地区农业研究,25(2):99~103
    王小纯,熊淑萍,马新明.2005.不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响.生态学报,25(4):802~808
    王修兰,徐师华,李佑祥.1996. CO2浓度升高对小麦生育性状和产量构成的影响.生态学报,16(3):328~332
    王义琴,张慧娟,杨奠安.1998.大气CO2浓度升高对植物幼苗根系生长影响的分形分析.科学通报,43(16):1736~1738
    王月福,于振文,李尚霞,余松烈.2003.土壤肥力和施氮量对小麦根系氮同化及子粒蛋白质含量的影响.植物营养与肥料学报,9(1):39~44
    王之杰,郭天财,朱云集,王永华,王纪华,赵明.2004.不同穗型超高产小麦旗叶CO2同化能力的比较.作物学报,29(8):837~842
    王志敏,张英华,张永平,吴永成.2004.麦类作物穗器官的光合性能研究进展.麦类作物学报,24(4):136~139
    魏爱丽.2008.源库调节对不同穗型小麦品种灌浆及生理特性的影响[硕士学位论文].西北农林科技大学
    魏小平,王根轩,吴冬秀.2005.干旱和CO2浓度升高对不同春小麦光合作用和气孔阻力及水分蒸腾效率的影响.兰州大学学报(自然科学版),41(6):42~46
    吴冬秀,王根轩,白永飞,廖建雄,任红旭.2002. CO2浓度升高和干旱对春小麦生长和水分利用的生态效应.植物学报(英文版),44(12):1477~1483
    吴坤君.1993.大气中CO2含量增加对植物—昆虫关系的影响.应用生态学报,4(2):198~202
    吴英奇.1995.不同氮素和CO2浓度对小麦生产力的影响.麦类作物学报,16(6):16~17
    谢辉,范桂枝,荆彦辉,东丽,邓华凤.2006.植物对大气CO2浓度升高的光合适应机理研究进展.中国农业科技导报,8(3):29~34
    邢璐.2009.银杏(Ginkgo biloba L.)幼苗叶片光合特性及气孔参数对CO2浓度升高的响应[硕士学位论文].南京农业大学
    徐凯,郭延平,张上隆,吴慧敏.2007.不同氮素水平下二氧化碳加富对草莓叶片光抑制的影响.应用生态学报,18(1):87~93
    徐凯,郭延平,张上隆,戴文圣,符庆功.2006.不同氮营养水平下草莓叶片光合作用对高CO2浓度的适应.植物生理与分子生物学学报,32(4):473~480
    徐玲,赵天宏,胡莹莹,曹莹,史奕.2008. CO2浓度升高对春小麦光合作用和籽粒产量的影响.麦类作物学报,28(5):867~872
    徐仰仓,王静,林久生,王根轩.2000.不同CO2浓度下渗透胁迫对小麦膜伤害的影响.应用生态学报,11(6):878~880
    杨连新,李世峰,王余龙,黄建晔,杨洪建,董桂春,朱建国,刘钢.2007.开放式空气二氧化碳浓度增高对小麦产量形成的影响.应用生态学报,18(1):75~80
    杨连新,王余龙,李世峰,黄建晔,董桂春,朱建国,刘钢,韩勇.2007.开放式空气二氧化碳浓度增高对小麦物质生产与分配的影响.应用生态学报,18(2):339~346
    杨连新,黄建晔,李世峰,杨洪建,朱建国,董桂春,刘红江,王余龙.2007.开放式空气二氧化碳浓度增高对小麦氮素吸收利用的影响.应用生态学报,18(3):519~525
    杨松涛,李彦舫,胡玉熹,林金星,邹啸环.1998. CO2倍增对3种禾本科植物叶绿体超微结构的影响.西北植物学报,18(3):330~334
    杨兆芳,于永强,黄耀.2005.稻麦作物净初级生产力模型研究:模型检验与情景预测.环境科学,26(2):16~20
    叶优良,韩燕来,王文亮,黄玉芳.2006.高产小麦氮肥施用研究进展.中国农学通报,22(9):264~267
    叶优良,黄玉芳,刘春生,曲日涛,宋海燕,崔振岭.2010.氮素实时管理对冬小麦产量和氮素利用的影响.作物学报,36(9):1578~1584
    于佳,于显枫,郭天文,张绪成,马一凡.2010.施氮和大气CO2浓度升高对春小麦拔节期光合作用的影响.麦类作物学报,(4):651~655
    岳伟,蒋跃林,陈庭甫.大豆生长对CO2浓度增加的响应.安徽农学通报,2005,11(6):44~45,12
    曾青,朱建国,刘刚,韩勇,张雅莉,谢祖彬,马红亮,程磊.2002.开放式空气CO2浓度增高条件下C3作物(水稻)与C4杂草(稗草)的竞争关系[J].应用生态学报,13(10):1231~1234
    张宽政,陈凤玉,王荣富.植物生理学实验技术.沈阳:辽宁科学技术出版社,1994:63~69
    张敏敏,翟丙年,宋翔,李生秀.2007.冬小麦不同基因型氮素利用效率的差异及机理分析.中国农学通报,23(8):245~249
    张敏敏,翟丙年,宋翔,李生秀.2000.冬小麦不同基因型氮素利用效率的差异及机理分析.中国农学通报,23(8):245~249
    张其德,蒋高明,朱新广,王强,卢从明,白克智,匡廷云,魏其克,李振声.2001.12个不同基因型冬小麦的光合能力.植物生态学报,25(5):532~536
    张其德,张建华,刘合芹,李建民.2000.限水灌溉和不同施肥方式对冬小麦旗叶某些光合功能的影响.植物营养与肥料学报,6(l):24~29
    张守仁.1999.叶绿素荧光动力学参数的讨论及意义.植物学通报,16(4):444~448
    张绪成,上官周平.2007.施氮对旱地不同抗旱性小麦叶片光合色素含量与荧光特性的影响.核农学报,21(3):299~304
    张绪成,于显枫,高世铭.2010.高大气CO2浓度下氮素对小麦叶片光能利用的影响.植物生态学报,(10):1196~1203
    张绪成,张福锁,于显枫,陈新平.2010.氮素对高大气CO2浓度下小麦叶片光合功能的影响.作物学报,36(8):1362~1370
    张耀兰,齐华,金路路,白向历,李春,任志萍.2005.氮肥对春小麦叶片光合特性的影响.辽宁农业科学,(6):5~7
    赵甍,王秀伟,毛子军.2005.不同氮素浓度下CO2浓度温度对蒙古栎(Quercus mongolica)幼苗叶绿素含量的影响.辽宁农业科学,(6):5~7
    赵光影,刘景双,王洋,窦晶鑫.2009.大气CO2浓度升高和氮肥施用对三江平原湿地小叶章生物量及根冠比的影响.生态与农村环境学报,25(1):38~41
    赵广琦,王勋陵,王利权.2005.增强UV~B辐射和CO2升高的交互作用对蚕豆幼苗的保护酶活性及脂质过氧化作用的影响.应用与环境生物学报,11(3):296~299
    赵天宏,孙加伟,付宇,赵艺欣,胡莹莹,徐玲,史奕.2009. CO2和O3浓度升高对春小麦活性氧代谢及抗氧化酶活性的影响.中国农业科学,42(1):64~71
    赵增煜.常用农业科学试验法.北京:农业出版社,1986:20
    钟爽,李琪,梁文举,孟凡祥,朱建国.2008.大气CO2浓度升高与氮肥管理对麦田土壤有效氮的影响.沈阳农业大学学报,39(6):652~655
    邹琦.2002.植物生理实验指导.北京:中国农业出版社:56~59
    左宝玉,张泉.2002. CO2浓度升高对小麦叶绿体超微结构超分子结构及光谱特性的影响.植物学报,44(8):908~912
    Adam NR, Wall GW, Kimball BA, Pinter PJ Jr, Lamorte RL, Hunsaker DJ, Adamsen FJ, Thompson T,Matthias AD, Leavitt SW, Webber AN.2000. Acclimation response of spring wheat in a free-air CO2enrichment(FACE) atmosphere with variable soil nitrogen regimes.1. Leaf position and phenologydetermine acclimation response. Photosynthesis Research,66(1-2):65~77
    Adamsen F J, Wechsung G, Wechsung F, G W Wall, B A Kimball, P J Pinter, Jr, R L LaMorte, R L Garcia,D J Hunsaker, S W Leavitt.2005. Temporal changes in soil and biomass nitrogen for irrigated wheatgrown under free~air carbon dioxide enrichment (FACE). Agronomy Journal,97(1):160~168
    Amthor J S.2001. Effects of atmospheric CO2concentration on wheat yield: review of results fromexperiments using various approaches to control CO2concentration [Review]. Field Crops Research,73(1):1~34
    Asseng S, Jamieson P D, Kimball B, K Sayre, JW Bowden, S M Howden.2004. Simulated wheat growthaffected by rising temperature, increased water deficit and elevated atmospheric CO2. Field CropsRes.,85:85~102
    B J Mulholland, J Craigon, C R Black, J J Colls, J Atherton, G Landon.1998. Growth, light interceptionand yield responses of spring wheat(Triticum aestivum L.) grown under elevated CO2and O3inopen~top chambers. Global Change Biology,4(2):121~130
    Barrett D J, Richardson A E, Gifford R M.1998. Elevated atmospheric CO2concentrations increase wheatroot phosphatase activity when growth is limited by phosphorus. Australian Journal of PlantPhysiology,25(1):87~93
    Bauer G A, Berntson G M.2000. Ammonium and nitrate acquisition by plants in response to elevated COzconcentration;the roles of root physiology and architecture.Tree Physiology,21(2~3):137~144
    Bazzaz F A.1990. The response of natural ecosystems to the rising global CO2levels.Annual Review ofEcology and Systematics,21:167~196
    Bencze S, Kerésztenyi E, Veisz O.2007. Change in heat stress resistance in wheat due to soil nitrogen andatmospheric CO2levels. Cereal Research Communications,35:229~223
    Bencze S, Veisz O, Janda T, Bed Z.2000. Effects of elevated CO2level and N and P supplies on twowinter wheat varieties in the early developmental stage. Cereal Res. Commun.,28:123~130
    Bencze S,Veisz O, Bedo Z.2004. Effects of high atmospheric CO2and heat stress on phytomass, yield andgrain quality of winter wheat. Cereal Research Communications,32(1):75~82
    Besford Rt, Hand D W.1989. The effects of carbon dioxide enrichment and nitrogen oxides on some calvincycle enzymes and nitrate reductase in glasshouse lettuce. Journal of ExperimentalBotany,40:329~336
    Bloom A J, Smart D R, Nguyen D T, Duy T Nguyen, Peter S Searles.2002. Nitrogen assimilation andgrowth of wheat under elevated carbon dioxide. Proceedings of the National Academy of Sciences,USA,99:1730~1735
    Bunce J A.1998. The temperature dependence of the stimulation of photosynthesis by elevated carbondioxide in wheat and barley. Journal of Experimental Botany,49:1555~1561
    Ceulemansr, Mousseau M.1994. Effects of elevated atmospheric CO2on woody plants.New Physiology,127:425~446.
    Cheng W, Johnson DW.1998. Elevated CO2, rhizosphere process and soil organic matter decomposition.Plant and Soil,202:167~174
    Cousins A B, Bloom A J.2004. Oxygen consumption during leaf nitrate assimilation in a C3and C4plant:the role of mitochondrial respiration [J]. Plant, Cell&Environ.,27:1537~1545
    Daepp M, Suter D, Almeida J P F.2000. Yiels responses of Lolium perenne swards to free air CO2enrichment increased over six years in a high N input system on fertile soil[J]. Global Change Biology,6:805-816.
    Del Pozo A, Pilar P′erez, Diego Guti′errez, Aitor Alonso, Rosa Morcuende, Rafael Mart′nez-Carrasco.2007. Gas exchange acclimation to elevated CO2in upper-sunlit and lower~shaded canopy leaves inrelation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environ. Exp. Bot.,59:371~380
    Del Pozo A, Perez P, Morcuende R, Alonso Aitor, Martínez-Carrasco R.2005. Acclimatory responses ofstomatal conductance and photosynthesis to elevated CO2and temperature in wheat crops grown atvarying levels of N supply in a Mediterranean environment. Plant Science,169(5):908~916
    Dempster WF, Nelson M, Silverstone S, Allen, JP.2009. Carbon dioxide dynamics of combined crops ofwheat, cowpea, pinto beans in the laboratory biosphere closed ecological system. Adv. Space Res.,43(8):1229~1235
    Derner JD, Tischler CR, Polley HW, Johnson HB.2004. Intergenerational above-and belowgroundresponses of spring wheat (Triticum aestivum L.) to elevated CO2.Basic and Applied Ecology,5(2):145~152
    Dijkstra P, Groenwold K, Jansen M, Marinus Jansen, Siebe C Van De Geijn.1999. Seasonal changes in theresponse of winter wheat to elevated atmospheric CO2concentration grown in Open-Top Chambersand field tracking enclosures. Global Change Biology,5(5):563~576
    Douglas C, Tsung M K, Frederick C F.1988. Enzymes of sucrose and hexose metabolism in developingkernels of two inbreds of maize[J]. Plant Physiology,86:1013~1019
    Ewert F, Pleijel H.1999. Phenological development, leaf emergence, tillering and leaf area index, andduration of spring wheat across Europe in response to CO2and ozone. European Journal of Agronomy,10(3-4):171~184
    Fangmeier A, Hogy P, Vermehren B, Jager H J.1997. Effects of elevated CO2nitrogen supply andtropospheric ozone on spring wheat.2. nutrients (N, P, K, S, CA, Mg, Fe, Mn, Zn). EnvironmentalPollution,96(1):43~59
    Fangmeier A, Temmerman L de, Mortensen L, Kemp K, Burke J, Mitchell R, van Oijen M, Weigel HJ.1999. Effects on nutrients and on grain quality in spring wheat crops grown under elevated CO2concentrations and stress conditions in the European, multiple~site experiment 'ESPACE-wheat'.European Journal of Agronomy,10(3-4):215~229
    Farage PK, McKee IF, Long SP.1998. Does a low nitrogen supply necessarily lead to acclimation ofphotosynthesis to elevated CO2. Plant Physiology,118(2):573~580
    Ferrarrio~Mery S,Thibaud M C, Betsche T,et a1.1997. Modulation of carbon and nitrogen metabolism,andof nitrate reductase,in untransformed Nicotiana plumbaginifolfa during CO2enrichment of plantsgrown in pots and hydroponic culture. Planta,20:510~521
    Fleisher D H, Timlin D J, Reddy V R.2008. Interactive Effects of carbon dioxide and water stress onpotato canopy growth and development.Agronomy Journal,100(3):711~719
    Garcia R L, Long S P, Wall G W, Osborne C P, Kimball B A, Nie G Y, Pinter PJ, Lamorte R L, WechsungF.1998. Photosynthesis and conductance of spring-wheat leaves: field response to continuous free-airatmospheric CO2enrichment. Plant, Cell and Environment,21:659~669
    Geiger M, Walch-Liu P,Engels C, J Harnecker, E D Schulze, F Ludewig, U Sonnewald, W R Scheible, MStitt.1998. Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity inolder plants, and a large stimulation of nitrate reductase activity and higher levels of amino acids inyoung tobacco plants.Plant,Cell and Environment,2l(3):253~268
    Genthon C, Baron La J M, Reynaud D.1987. Vostok ice core: climatic response to CO2and orbital forcingchanges over the last climatic cycle [J]. Nature,329:414~418
    Ghildiyal MC, Rafique S, Sharma-Natu P.2001. Photosynthetic acclimation to elevated CO2in relation toleaf saccharide constituents in wheat and sunflower. Photosynthetica,39(3):447~452
    Harnos N, Tuba Z and Szente, K.2002. Modeling net photosynthetic rate of winter wheat in elevated airCO2concentrations.Photosynthetica,40:293~300
    Herppich W B, Peckmann K.1997. Responses of gas exchange, photosynthesis, nocturnal acidaccumulation and water relations of Aptenia Cordifolia to short-term drought and re-watering. Journalof Plant Physiology,150:467~474
    Hocking P J, Meyer C P.1991. Effects of CO2enrichment and nitrogen stress on growth and partitioning ofdry matter and nitrogen in wheat and maize.Australian Journal of Plant Physiology,18:339~356.
    Hodge A, Grayson S J, Ord B G.1996. A novel method for characterization and quantification of plant rootexudates.Plant and Soil,184:97~104
    H gy P, Wieser H, K hler P, Schwadorf K, Breuer J, Franzaring J, Muntifering R, Fangmeier A.2009.Effects of elevated CO2on grain yield and quality of wheat: results from a3-year free-air CO2enrichment experiment. Plant Biol.,11(suppl):60~69
    Hunsaker D J, Kimball B A, Pinter P J, G W Wall, RL LaMorte, F J Adamsen, S W Leavitt, T L Thompson,A D Matthias, T J Brooks.2000. CO2enrichment and soil nitrogen effects on wheatevapotranspiration and water use efficiency. Agricultural and Forest Meteorology,104:85~105
    Jensen B, Christensen BT.2004. Interactions between elevated CO2and added N: Effects on water use,biomass, and soil15N uptake in wheat. Acta Agricultural Scandinavia: Section B, Soil and plantscience,54(3):175~184
    Kgope Barney Stephen.2000. Effects of sustained elevated CO2concentration and Nitrogen nutrition onwheat (Triticum aestivum L. cv Gamtoos)[Masters thesis]. Rhodes University
    Kim YoungGuk, Cho YoungSon, Seo JongHo, Kim SokDong, Shin JinChul, Park HoKi.2008. Effects ofelevated CO2on maize growth. Korean Journal of Crop Science,53(1):93~101
    Kimball B A, Kobayashi K and Bindi M.2002. Responses of agricultural crops to free-air CO2enrichment.Advances in Agronomy,77:293~368
    Kimball B A, Morris C F, Pinter Jr, G W Wall, D J Hunsaker, F J Adamsen, R L LaMorte, S W Leavitt, TL Thompson, A D Matthias, T J Brooks.2001. Elevated CO2, drought and soil nitrogen effects onwheat grain quality. New Phytologist,150:295~303
    Kimball B A, Pinter P J Jr, Garcia R L, Robert L Lamorte, Gerard W Wall, Douglas J Hunsaker, GabrieleWechsung, Frank Wechsung, Thomas Kartschall.1995. Productivity and water use of wheat underfree air CO2enrichment. Global Change Biol.,1:429~442
    Li AiGuo, Trent A, Wall GW, Kimball B A, Hou Y S, Pinter P J Jr, Garcia R L, Hunsaker D V, LaMorte RL.1997, Free~air CO2enrichment effects on rate and duration of apical development of spring wheat.Crop Science,37(3):789~796
    Li AiGuo, Wall GW, Trent A, Hou Yuesheng.1999. Free-air CO2enrichment effects on apex dimensionalgrowth of spring wheat. Crop Science,39(4):1083~1088
    Li F S, Kang S Z, Zhang J H.2003. CO2enrichment on biomass accumulation and nitrogen nutrition ofspring wheat under different soil nitrogen and water status. Journal of Plant Nutrition,26(4):769~788.
    Ma HongLiang, Zhu JianGuo, Xie ZuBin, Liu Gang, Zeng Qing, Han Yong.2007. Responses of rice andwinter wheat to free-air CO2enrichment (China FACE) at rice/wheat rotation system. Plant and Soil,294(1/2):137~146
    Maeskaya S N,Andreeva T F, Voevudskaya S Y U, Cherkasova, N N.1990. Effect of high carbon dioxideconcentration on photosynthesis andnitrogen metabolism in leaf mustard plants. Fiziologia Rasta,37:921~927
    Manderscheid R, Burkart S, Bramm A, Weigel H J.2003. Effect of CO2enrichment on growth and dailyradiation use efficiency of wheat in relation to temperature and growth stage. Eur. J. Agron.,19:411~425
    Manderscheid R,Weigel H J.1997. Photosynthetic and growth responses of old and modern spring wheatcultivars to at mospheric CO2enrichment. Agriculture, Ecosystems&Environment,64(1):65~73
    Martinez Carrasco R, Perez P, Morcuende R.2005. Interactive effects of elevated CO2, temperature andnitrogen on photosynthesis of wheat grown under temperature gradient tunnels. Environmental andExperimental Botany,54(1):49~59
    Masle J.2000. The effects of elevated CO2concentrations on cell division rates, growth patterns, and bladeanatomy in young wheat plants are modulated by factors related to leaf position, vernalization, andgenotype. Plant Physiology,122(4):1399~1415
    Mccarthy HR, Oren R, Finzi AC, David S Ellsworth, Hyun-seok Kim, Kurt H Johnsen, Bonnie Millar.2007. Temporal dynamics and spatial variability in the enhancement of canopy leaf area underelevated atmospheric CO2. Global Change Biology,13(12):2479~2497
    McMaster GS, Le Cain DR, Morgan JA, LI Aiguo, D L Hendrix.1999. Elevated CO2increases wheat CER,leaf and tiller development, and shoot and root growth. Journal of Agronomy and Crop Science,183(2):119~128
    Mercado J M,Javier F,Gordillo L, Xavier Niell F, Félix L Figueroa.1999. Effect of different levels of CO2on photosynthesis and cell components of the red alga Porphyry leucosticte.Journal of AppliedPsychology,11:455~461
    Mitchell RAC, Black CR, Burkart S, Burke J I, Donelly Alison, de Tememerman L, Fangmeier A,Mulholland Barry J, Theobald Julian C, van Oijen M.1999. Photosynthetic responses in spring wheatgrown under elevated CO2concentrations and stress conditions in the European, multiple~siteexperiment’ESPACE-wheat’. European Journal of Agronomy,10(3-4):205~214
    Monje O, Bugbee B.1998. Adaptation to high CO2concentration in an optimal environment: radiationcapture, canopy quantum yield and carbon use efficiency. Plant, Cell&Environment,21(3):315~324
    Mulholland BJ, Craigon J, Black CR, Colls J J, Atherton J, Landon G.1997. Effects of elevated carbondioxide and ozone on the growth and yield of spring wheat(Triticum aestivum L.). Journal ofExperimental Botany,48(306):113~122
    NakamuraY, Yuki K, Park S Y.1989. Carbohydrate metabolism in the developing endosperm of rice grains.Plant Cell Physiology,30(6):833~839
    Nasser R R, Fuller M P, Jellings A J.2008. Effect of elevated CO2and nitrogen levels on lentil growth andnodulation. Agronomy for Sustainable Development,28(2):175~180
    Colin P. Osborne, Julie La Roche, Richard L, Bruce A Kimball, Gerard W Wall, Paul J Pinter Jr, Robert L.La Morte, George R Hendrey, Steve P Long.1998. Does leaf position within a canopy affectacclimation of photosynthesis to elevated CO2? Plant Physiology,117(3):1037~1045
    Pal M, Rao L S, Jain V, Srivastava A C, Pandey R, Raj A, Singh K P.2005. Effects of elevated CO2andnitrogen on wheat growth and photosynthesis. Biol. Plant,49:467~470
    Pandurangam V, Sharma-Natu P, Sreekanth B, Ghildiyal MC.2006. Photosynthetic acclimation to elevatedCO2in relation to Rubisco gene expression in three C3species. Indian Journal of ExperimentalBiology,44(5):408~415
    Perez P, Morcuende R, Martin del Molino I, Rafael Martnez-Carrasco.2005. Diurnal changes of Rubiscoin response to elevated CO2, temperature and nitrogen in wheat grown under temperature gradienttunnels. Environmental and Experimental Botany,53(1):13~27
    Pleijel H, Danielsson H.2009. Yield dilution of grain Zn in wheat grown in open-top chamber experimentswith elevated CO2and O3exposure. Journal of Cereal Science,50(2):278~282
    Pleijel H, Gelang J, Sild E, Danielsson H, Younis S, Karlsson P E, Wallin G, Sk rby L, Selldén G.2000.Effects of elevated carbon dioxide, ozone and water availability on spring wheat growth and yield.Physiol. Plant,108:61~70
    Prltchards G, Rogers H H, Davis M A, Edzard Van Santen, Stephen A Prior, William H. Schlesinger.2001.The influences of elevated atmospheric CO2on fine root dynamics in an intact temperate forest.GlobalChange Biology,7(7):829~837
    Purvis A C.Peters D B, Hageman R H.1974. Effect of carbon dioxide Off nitrate accumulation and nitratereductase induction in corn seedlings. Plant Physiology,53:934~941
    Ravi I, Khan FA, Sharma~Natu P, Ghildiyal MC.2001. Yield response of durum (Triticum durum) andbread wheat (T aestivum)varieties to carbon dioxide enrichment. Indian Journal of AgriculturalSciences,71(7):444~449
    Richard J N.1994. Issues and perspectives for investigating root responses to elevated atmospheric carbondioxide[J].Plant and Soil,165:9~20
    Rogers A, Fischer BU, Bryant J, Marco Frehner, Herbert Blum, Christine A Raines, Stephen P. Long.1998.Acclimation of photosynthesis to elevated CO2under low nitrogen nutrition is affected by the capacityfor assimilate utilization. Perennial ryegrass under free air CO2enrichment. Plant Physiology,118:683~689
    Rogers G S, Milham P J, Gillings M, Conroy J P.1996. Sink strength may be the key to growth andnitrogen responses in N-deficient wheat at elevated CO2. Aust. J. Plant Physiol.,23:253~264
    Rogers H H, Peterson C M,Mccrimmon Jn,Cure J D.1992. Response of plant roots to elevated atmosphericcarbon dioxide. Plant, Cell and Environment,15(6):749~752
    Rudorff BFT, Mulchi CL, Fenny P, Rowland, R, Pausch R.1996. Wheat grain quality under enhancedtropospheric CO2and O3concentrations. Journal of Environmental Quality,25(6):1384~1388
    Seneweera S P, Conroy J P.2005. Enhanced leaf elongation rates of wheat at elevated CO2is it relatedtocarbon and nitrogen dynamics within the growing leaf blade? Environmental and ExperimentalBotany,54(2):174~181
    Sharma A, Sen G U K.1990. Carbon dioxide enrichment effects on photosynthesis and related enzymes inVigna radiata L.Wilczek.Indian Journal of Plant Physiology,33:340~346
    Sicher RC, Bunce JA.1998. Evidence that premature senescence affects photosynthetic decline of wheatflag leaves during growth in elevated carbon dioxide. International Journal of Plant Science,159(5):798~804
    Sinclair TR, Pinter PJ Jr, Kimball BA, Adamsen FJ, LaMorte RL, Wall GW, Hunsaker DJ, Adam N, Brook.2000. Leaf nitrogen concentration of wheat subjected to elevated [CO2] and either water or N deficits.Agriculture, Ecosystems&Environment,79(1):53~60
    Smart D R, Ritchie K, Bloom A J, Bugbee B B.1998. Nitrogen balance for wheat canopies (Triticumaestivum cv. Veery10) grown under elevated and ambient CO2concentrations. Plant, Cell&Environ.,21:753~763
    Srivastava A C,Pal M,Sengupta U K.2002. Changes in nitrogen metabolism of Vigna radiata in responseto elevated CO2. Biologia Plantarum,45:395~399
    Srivastava AC, Khanna Y P, Meena R C, Pal Madan, Pandian VK, UK Sengupta.2002. Diurnal changes inphotosynthesis, sugars, and nitrogen of wheat and mung bean grown under elevated CO2concentration.Photosynthetica,40:221~225
    Taylor G, Tricker PJ, Zhang FZ, Victoria J Alston, Franco Miglietta, Elena Kuzminsky.2003. Spatial andtemporal effects of free-air CO2enrichment (POPFACE) on leaf growth, cell expansion, and cellproduction in a closed canopy of poplar. Plant Physiology,131(1):177~185
    Theobald JC, Mitchell RAC, Parry MAJ, David W Lawlor.1998. Estimating the excess investment inribulose-1,5-bisphosphatecarboxylase/oxygenase in leaves of spring wheat grown under elevated CO2.Plant physiology,118(3):945~955
    Tsai-Mei, OU-LEE, SETTER T L.1985. Effect of increased temperature in apical regions of maize ears ontotal starch~synthesis enzymes and accumulation of sugars and total starch. Plant Physiology,79:852~855
    Uselman S M, Qualls R G.Thomanrb.2000. Effects of inereased atmospheric CO2, temperature and soil Navailability on root exudation of dissolved organic carbon by a N-fixing tree(Robinia pseudoacaciaL.).Plant and Soil,222:191~202
    Van Vuuren M M I, Robinson D, Scrimgeour C M, Charles M Scrimgeourb, John A Ravena, Alastair HFitterc.2000. Decomposition of13C-labelled wheat root systems following growth at different CO2concentrations[J]. Soil Biol. Biochem.,32:404~413
    Veisz O, Bencze S and Bedo Z.2005. Effect of elevated CO2on wheat at various nutrient supplylevels.Cereal Research Communications,33:333~336
    Vuuren MMI van, Robinson D, Fitter AH, Scott D Chasalow, Lisa Williamson, John A Raven.1997.Effects of elevated atmospheric CO2and soil water availability on root biomass, root length, and N, Pand K uptake by wheat. New Phytologist,135(3):455~465
    Wall G W, Adam N R, Brooks T J, Bruce A Kimball, Paul J Pinter, Robert L LaMorte, Floyd J Adamsen,Douglas J Hunsaker, Gabrielle Wechsung, Frank Wechsung.2000. Acclimation response of springwheat in a free air CO2enrichment (FACE) atmosphere with variable soil nitrogen regimes.2. Netassimilation and stomatal conductance of leaves. Photosynthesis Research,66:79~95
    Wardlaw I F and Willenbrink J.1994. Carbonhydrate storage and mobilization by the culm of wheatbetween heading and grain maturity: The relation to sucrose synthase and sucrose-phosphate synthase.Australion Journal of Plant Physiology,21:251~271
    Wechsung G, Wechsung F, Wall G W, Adamsen F J, Kimball B A, Pinter JR P J, Lamorte R L, Garcia R L,Kartschall TH.1999. The effects of free-air CO2enrichment and soil water availability on spatial andseasonal patterns of wheat root growth. Global Change Biology,5:519~529
    Williams M, Robertson EJ, Leech RM, Harwood, J L.1998. Lipid metabolism in leaves from young wheat(Triticum aestivum cv. Hereward) plants grown at two carbon dioxide levels. Journal of Experimental
    Botany,49(320):511~520
    Williams M, Robertson EJ, Leech RM, Harwood J L.1998. The effects of elevated atmospheric CO2onlipid metabolism in leaves from mature wheat (Triticum aestivum cv. Hereward) plants. Plant, Celland Environment,21(9):927~936
    Wu D X, Wang G X, Bai Y F, Liao J X.2004. Effects of elevated CO2concentration on growth, water use,yield and grain quality of wheat under two soil water levels. Agric. Ecosyst. Environ.,104:493~507
    Wullschlegers D, Post W M,King A W.1995. On the potential for a CO2fertilization effect inforests:estimates of the biotic growth factor based on58controlled exposure studies.NewYork:Oxford University Press:85~107
    Xiao Guoju,Liu Weixiang, Xu Qiang, Sun Zhaojun, Wang Jing.2005. Effects of temperature increase andelevated CO2concentration, with supplemental irrigation, on the yield of rain-fed spring wheat in asemiarid region of China.Agricultural Water Management,74(3):243~255
    Zhu Chunwu, Zhu Jianguo, Zeng Qing, Liu Gang, Xie Zubing, Tang Haoyan, Cao Jiling, Zhao Xingzeng.2009. Elevated CO2accelerates flag leaf senescence in wheat due to ear photosynthesis which causesgreater ear nitrogen sink capacity and ear carbon sink limitation. Functional Plant Biology,36(4):291~299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700