用户名: 密码: 验证码:
水稻高温逆境下全基因组差异基因表达谱分析与特异启动子的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻作为全世界最重要的粮食作物之一,受到高温、干旱、病虫害等多种逆境的影响也越来越大,因此而造成的损失已经引起全世界的关注。为此,改善和提高水稻抗逆性就成为全球性的重大课题。通过筛选和克隆逆境相关基因和启动子并鉴定其功能就成为借助基因工程手段改良水稻性状的重要内容。
     本论文利用水稻全基因组微阵列技术平台,开展了水稻幼穗和剑叶的高温全基因组表达谱数据的分析和挖掘,取得了一些有意义的成果。在此基础上,利用转基因技术,进一步分析了3个高温显著响应基因的启动子在经高温和干旱处理的水稻幼穗和剑叶中的表达活性。结果如下:
     (1)在利用HCL等方法进行数据质量控制和评价的基础上,分别获得了水稻幼穗和剑叶在高温条件下的差异表达基因。对各个时间点的差异表达基因数目分析发现,高温处理2h可能是水稻响应高温逆境的一个重要转折点;GO分析及基因表达规律分析的结果表明,来自幼穗和剑叶的热激响应基因主要与转运蛋白、蛋白结合、抗氧化、催化、转录调控、逆境响应等相关;且对两个组织中受高温显著调控的包括Hsf、AP2/ERF、bHLH、bZIP、Myb、WRKY、NAC和C2H2等在内的转录因子和Hsp家族基因的表达特征进行了比较分析。这些研究结果将为组织特异性的高温响应基因和启动子的筛选与鉴定提供重要线索;
     (2)发现水稻幼穗中高温响应的ROS相关基因的复杂而显著的表达变化有助于维持ROS的平衡;与生长素、ABA和乙烯代谢与信号传导相关的基因均表达下调,而与光、钙离子相关的蛋白基因和G蛋白编码基因则有显著上调;
     (3)对水稻幼穗中共表达基因的启动子进行了分析和挖掘,发现GCC box、 CE3、ABRE和HSE等在早期上调的聚类中显著富集,而GCC box和CE3还成为两个共现网络的中心,且HSE和ABRE与这两个元件关系密切,具有显著的共现特征;
     (4)构建了以ROS为中心的调控模型,利用水稻幼穗全基因组微阵列数据和ROS定量分析的结果阐述了ROS平衡机制在水稻幼穗高温响应中的重要性;
     (5)阐述了高温对水稻剑叶中糖酵解与TCA代谢通路、次生代谢、UPS及光合作用中的光反应等相关基因的表达的影响;发现高温显著促进酵解和UPS,但抑制TCA通路、次生代谢、光合作用等生理学过程;
     (6)在对微阵列数据进行筛选和逆境诱导基因表达水平进行qRT-PCR验证及启动子生物信息学分析的基础上,克隆了3个逆境响应元件较为集中的目的启动子片段,转化水稻日本晴,并进行了阳性转基因水稻的筛选。对成熟期转基因水稻分别进行了高温和干旱处理,并利用组织化学染色和MU荧光测定法、qRT-PCR等对幼穗和剑叶中的GUS酶活和基因表达水平进行了分析,结果表明,在3个候选启动子中,Hsfp在高温和干旱条件下的幼穗中具有最高水平的活性,但在剑叶中没有表现出明显的活性;Dehp在干旱或高温处理的水稻剑叶和幼穗中均没有显著的活性变化;Putp在干旱处理的幼穗中的活性较强,而其在干旱的剑叶和高温条件下的活性则不明显。
As one of the most important crops in the world, rice has been encountering varous adverse environmental factors such as heat, drought, disease, which has attracted more and more attentions all around the world. Consequently, it becomes an important task to improve rice resistence to various stresses based on gene engineering via cloning and characterizing stress-related genes and promoters.
     The expression profile in rice panicle and flag leaf under heat stress was analyzed through rice microarray. Furthermore, using transgenic technology, the expression activity of the three promoters from the highly heat-inducible genes in rice panicle and flag leaf under heat and drought was detected. The major results are as followed:
     (1) The differentially expressed genes (DEGs) in rice panicle and flag leaf under heat treatment were obtained under the condition of quality control and evaluation using HCL. The analysis on the DEGs showed the time point2h of heat treatment may be an important transition for rice response to heat stress. The results from GO retrieve and gene expression pattern analysis showed the heat-responsive (HR) genes in rice panicle and flag leaf are mainly involved in transporter, protein binding, antioxidation, catalysis, transcription regulation and stress response. The comprehensive statement and primary comparison on the HR transcription factors such as Hsf, AP2/ERF, bHLH, bZIP, Myb, WRKY, NAC and C2H2as well as Hsp family genes from both tissues was carried out. These work provided important clues for the characterization and identification of tissue-specific heat-responsive genes and promoters.
     (2) The expression profile analysis showed that the complicated changes of ROS-related genes in rice panicle under heat stress helps maintain ROS balance, and that the genes related to auxin, ABA and ethylene metabolism and signal transduction were mainly down-regulated, and the ones involved in light, calcium and G-protein were up-regulated.
     (3) The analysis on the promoters of co-regulated genes in rice panicle showed that GCC box, CE3, ABRE and HSE are significantly enriched in the early-regulated cluster, and GCC box and CE3are the centers of the two co-occurrence network, with which HSE and ABRE significantly co-occured, respectively.
     (4) A regulation model central to ROS was established, and the data from the rice panicle microarray and ROS quantification help elucidate the importance of ROS balance in the rice panicle response to heat shock.
     (5) The pathway analysis on the HR genes in rice flag leaf showed that heat shock significantly promoted glycolysis and UPS, and repressed TCA, secondary metabolism, and photosynthesis via inhibiting light reaction.
     (6) Based on the screening microarray data, qRT-PCR idenfitication and bioinformatics analysis on promoters, the three candidate promoters for the highly heat-inducible genes were cloned, transformed into rice, and the positive transgenic lines were characterized using PCR. After heat and drought treatment on the mature transgenic rice, GUS enzyme activity and expression level was detected using histochemical staining, fluorescence quantification and qRT-PCR in rice panicle and flag leaf. The results showed that, among the three candidate promoters, Hsfp exhibited highest activity in rice panicle under heat and drought, bu none in flag leaf; Dehp had no activity in both tissues under stress conditions; Putp showed higher activity only in panicle under drought.
引文
[1]田小海,松井勤,李守华,林俊城.水稻花期高温胁迫研究进展与展望[J].应用生态学报2007,18:2632—2636.
    [2]Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development[J]. Plant Cell Physiol 2009,50:1911-1922.
    [3]Yamakawa H, Hakata M. Atlas of rice grain filling-related metabolism under high temperature:joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation[J]. Plant Cell Physiol 2010,51:795-809.
    [4]McAinsh MR, Pittman JK. Shaping the calcium signature[J]. New Phytol 2009,181:275-294.
    [5]DeFalco TA, Bender KW, Snedden WA. Breaking the code:Ca2+ sensors in plant signalling[J]. Biochem J 2010,425:27-40.
    [6]Reddy AS. Calcium:silver bullet in signaling[J]. Plant Sci 2001,160:381-404.
    [7]李冰,刘宏涛,穆睿聆,孙大业,周人纲.钙调素对植物热激转录因子的DNA结合活性的影响[J].科学通报2002,47:1578-1581.
    [8]Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY. Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis[J]. Plant Physiol 2009, 149:1773-1784.
    [9]Wu HC, Jinn TL. Heat shock-triggered Ca2+ mobilization accompanied by pectin methylesterase activity and cytosolic Ca2+ oscillation are crucial for plant thermotolerance[J]. Plant Signal Behav 2010,5:1252-1256.
    [10]Reddy AS, Ali GS, Celesnik H, Day IS. Coping with stresses:roles of calcium- and calcium/calmodulin-regulated gene expression[J]. Plant Cell 2011,23:2010-2032.
    [11]Finka A, Cuendet AF, Maathuis FJ, Saidi Y, Goloubinoff P. Plasma Membrane Cyclic Nucleotide Gated Calcium Channels Control Land Plant Thermal Sensing and Acquired Thermotolerance[J]. Plant Cell 2012.
    [12]张宗申,利容千,王建波.外源Ca2+预处理对高温胁迫下辣椒叶片细胞膜透性和GSH、AsA含量及Ca2+分布的影响[J].植物生态学报2001,25:230-234.
    [13]燕张,李天飞,力方,姚照兵,蒋金辉.钙对高温胁迫下烟草幼苗抗氧化代谢的影响[J].生命科学研究2002,6:356-361.
    [14]Sun XZ, Guo XF, Zheng CS, Wang WL, Liang F. Effects of exogenous Ca2+ on leaf photosynthetic apparatus and active oxygen scavenging enzyme system of chrysanthemum under high temperature stress[J]. Ying Yong Sheng Tai Xue Bao 2008,19:1983-1988.
    [15]Bray EA. Wild-type levels of abscisic Acid are not required for heat shock protein accumulation in tomato[J]. Plant Physiol 1991,97:817-820.
    [16]Robertson AJ, Ishikawa M, Gusta LV, MacKenzie SL. Abscisic acid-induced heat tolerance in Bromus inermis Leyss cell-suspension cultures. Heat-stable, abscisic acid-responsive polypeptides in combination with sucrose confer enhanced thermostability[J]. Plant Physiol 1994,105:181-190.
    [17]Larkindale J, Knight MR. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid[J]. Plant Physiol 2002,128:682-695.
    [18]Wang XJ, Loh CS, Yeoh HH, Sun WQ. Drying rate and dehydrin synthesis associated with abscisic acid-induced dehydration tolerance in Spathoglottis plicata orchidaceae protocorms[J]. J Exp Bot 2002,53:551-558.
    [19]李雪梅,陈强,王兰兰,郝林.脱落酸对小麦幼苗光合及抗氧化酶的影响[J].沈阳师范大学学报2006,2:221-223.
    [20]Zhang H, Li H, Yuan L, Wang Z, Yang J, Zhang J. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice[J]. J Exp Bot 2012,63:215-227.
    [21]Baron KN, Schroeder DF, Stasolla C. Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana[J]. Plant Sci 2012,188-189:48-59.
    [22]Dhaubhadel S, Browning KS, Gallie DR, Krishna P. Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress[J]. Plant J 2002, 29:681-691.
    [23]Dat JF, Lopez-Delgado H, Foyer CH, Scott IM. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings[J]. Plant Physiol 1998,116:1351-1357.
    [24]马德华,庞金安,李淑菊,霍振荣.温度逆境锻炼对高温下黄瓜幼苗生理的影响[J].园艺学报1998,25:350-355.
    [25]王利军,战吉成,黄卫东.葡萄幼苗高温锻炼过程中与水杨酸相关的信号转导的初步研究[J].植物学通报2002,38:619-623.
    [26]王利军,黄卫东,于风义.高温胁迫对(14)C-水杨酸在葡萄苗中运转分配的影响[J].植物生理学报2001,27:129-134.
    [27]何亚丽,刘友良,陈权,卞爱华.水杨酸和热锻炼诱导的高羊茅幼苗的耐热性与抗氧化的关系[J].植物生理与分子生物学学报2002,28:89-95.
    [28]王利军,黄卫东,战吉成.水杨酸和高温锻炼与葡萄抗热性及抗氧化的关系[J].园艺学报2003,30:452-454.
    [29]王利军,李家永,战吉成,黄卫东.水杨酸对受高温胁迫的葡萄幼苗光合作用和同化物分配的影响[J].植物生理学通讯2003,39:215-217.
    [30]Seemann JR, Berry JA, Downton WJ. Photosynthetic response and adaptation to high temperature in desert plants:a comparison of gas exchange and fluorescence methods for studies of thermal tolerance[J]. Plant Physiol 1984,75:364-368.
    [31]唐婷,郑国伟,李唯奇.植物光合系统对高温胁迫的响应机制[J].中国生物化学与分子生物学报2012,28:127-132.
    [32]Kobza J, Edwards GE. Influences of leaf temperature on photosynthetic carbon metabolism in wheat[J]. Plant Physiol 1987,83:69-74.
    [33]Lee HY, Hong YN, Chow WS. Photoinactivation of photosystem Ⅱ complexes and photoprotection by non-functional neighbours in Capsicum annuum L. leaves[J]. Planta 2001,212:332-342.
    [34]李鹏民,高辉远,Strasser RJ快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报2005,31:559-566.
    [35]Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV. Photosynthetic acclimation:does the dynamic structure and macro-organisation of photosystem Ⅱ in higher plant grana membranes regulate light harvesting states?[J]. FEBS J 2008,275:1069-1079.
    [36]Horton P, Ruban A. Molecular design of the photosystem Ⅱ light-harvesting antenna: photosynthesis and photoprotection[J]. J Exp Bot 2005,56:365-373.
    [37]Jin E, Yokthongwattana K, Polle JEW, Melis A. Role of the Reversible Xanthophyll Cycle in the Photosystem Ⅱ Damage and Repair Cycle in Dunaliella salina[J]. Plant Physiol 2003,132: 352-364.
    [38]Ma Y-Z, Holt NE, Li X-P, Niyogi KK, Fleming GR. Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting[J]. PNAS 2003,100:4377-4382.
    [39]Yin Y, Li S, Liao W, Lu Q, Wen X, Lu C. Photosystem Ⅱ photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves[J]. J Plant Physiol 2010,167:959-966.
    [40]Zhang R, Sharkey TD. Photosynthetic electron transport and proton flux under moderate heat stress[J]. Photosynth Res 2009,100:29-43.
    [41]DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G, Joliot P, Barbato R, Leister D. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis[J]. Cell 2008,132:273-285.
    [42]Baena-Gonzalez E, Aro EM. Biogenesis, assembly and turnover of photosystem Ⅱ units[J]. Philos Trans R Soc Lond B Biol Sci 2002,357:1451-1459; discussion 1459-1460.
    [43]Schroda M, Vallon O, Wollman FA, Beck CF. A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem Ⅱ during and after photoinhibition[J]. Plant Cell 1999,11:1165-1178.
    [44]Lu Y, Hall DA, Last RL. A small zinc finger thylakoid protein plays a role in maintenance of photosystem Ⅱ in Arabidopsis thaliana[J]. Plant Cell 2011,23:1861-1875.
    [45]Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasaki H. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals[J]. Plant Cell Physiol 2004,45:251-255.
    [46]Janda K, Hideg E, Szalai G, Kovacs L, Janda T. Salicylic acid may indirectly influence the photosynthetic electron transport[J]. J Plant Physiol 2012,169:971-978.
    [47]Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves[J]. BMC Plant Biol 2010,10:34.
    [48]张桂莲,陈立云,张顺堂,刘国华,唐文邦,贺治洲,王明.抽穗开花期高温对水稻剑叶理化特性的影响[J].中国农业科学2007,40:1345—1352.
    [49]滕中华,智丽,吕俊,宗学凤,王三根,何光华.灌浆期高温对水稻光合特性、内源激素和稻米品质的影响[J].生态学报2010,30:6504—511.
    [50]Cho JI, Ryoo N, Eom JS, Lee DW, Kim HB, Jeong SW, Lee YH, Kwon YK, Cho MH, Bhoo SH, Hahn TR, Park YI, Hwang I, Sheen J, Jeon JS. Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors[J]. Plant Physiol 2009,149:745-759.
    [51]Cho YH, Yoo SD, Sheen J. Regulatory functions of nuclear hexokinasel complex in glucose signaling[J]. Cell 2006,127:579-589.
    [52]Cho JI, Ryoo N, Hahn TR, Jeon JS. Evidence for a role of hexokinases as conserved glucose sensors in both monocot and dicot plant species[J]. Plant Signal Behav 2009,4:908-910.
    [53]Fu J, Thiemann A, Schrag TA, Melchinger AE, Scholten S, Frisch M. Dissecting grain yield pathways and their interactions with grain dry matter content by a two-step correlation approach with maize seedling transcriptome[J]. BMC Plant Biol 2010,10:63.
    [54]Narsai R, Howell KA, Carroll A, Ivanova A, Millar AH, Whelan J. Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings[J]. Plant Physiol 2009,151:306-322.
    [55]Shingaki-Wells RN, Huang S, Taylor NL, Carroll AJ, Zhou W, Millar AH. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance[J]. Plant Physiol 2011,156:1706-1724.
    [56]Parsell DA, Lindquist S. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins[J]. Annu Rev Genet 1993,27:437-496.
    [57]Agarwal M, Katiyar-Agarwal S, Sahi C, Gallie DR, Grover A. Arabidopsis thaliana Hsp100 proteins:kith and kin[J]. Cell Stress Chaperones 2001,6:219-224.
    [58]Agarwal M, Sahi C, Katiyar-Agarwal S, Agarwal S, Young T, Gallie DR, Sharma VM, Ganesan K, Grover A. Molecular characterization of rice hsp101:complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types[J]. Plant Mol Biol 2003,51:543-553.
    [59]Sanchez Y, Lindquist SL. HSP104 required for induced thermotolerance[J]. Science 1990,248: 1112-1115.
    [60]Milioni D, Hatzopoulos P. Genomic organization of hsp90 gene family in Arabidopsis[J]. Plant Mol Biol 1997,35:955-961.
    [61]Scafaro AP, Haynes PA, Atwell BJ. Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice[J]. J Exp Bot 2010,61:191-202.
    [62]Zhang ZL, Zhu JH, Zhang QQ, Cai YB. Molecular characterization of an ethephon-induced Hsp70 involved in high and low-temperature responses in Hevea brasiliensis[J]. Plant Physiol Biochem 2009,47:954-959.
    [63]Liu D, Lu Z, Mao Z, Liu S. Enhanced thermotolerance of E. coli by expressed OsHsp90 from rice (Oryza sativa L.)[J]. Curr Microbiol 2009,58:129-133.
    [64]Reddy PS, Thirulogachandar V, Vaishnavi CS, Aakrati A, Sopory SK, Reddy MK. Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation[J]. Gene 2011,474:29-38.
    [65]Queitsch C, Sangster TA, Lindquist S. Hsp90 as a capacitor of phenotypic variation[J]. Nature 2002,417:618-624.
    [66]Meiri D, Breiman A. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs[J]. Plant J 2009,59:387-399.
    [67]Smock RG, Rivoire O, Russ WP, Swain JF, Leibler S, Ranganathan R, Gierasch LM. An interdomain sector mediating allostery in Hsp70 molecular chaperones[J]. Mol Syst Biol 2010,6: 414.
    [68]Mogk A, Haslberger T, Tessarz P, Bukau B. Common and specific mechanisms of AAA+ proteins involved in protein quality control[J]. Biochem Soc Trans 2008,36:120-125.
    [69]Montero-Barrientos M, Hermosa R, Cardoza RE, Gutierrez S, Nicolas C, Monte E. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses[J]. J Plant Physiol 2010,167:659-665.
    [70]Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice [J]. FEBS Lett 2011,585:231-239.
    [71]Sarkar NK, Kim YK, Grover A. Rice sHsp genes:genomic organization and expression profiling under stress and development[J]. BMC Genomics 2009,10:393.
    [72]Kim KH, Alam I, Kim YG, Sharmin SA, Lee KW, Lee SH, Lee BH. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue[J]. Biotechnol Lett 2012,34:371-377.
    [73]Kim KH, Alam I, Kim YG, Sharmin SA, Lee KW, Lee SH, Lee BH. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue[J]. Biotechnol Lett 2011.
    [74]Jofre A, Molinas M, Pla M A 10-kDa class-CI sHsp protects E. coli from oxidative and high-temperature stress[J]. Planta 2003,217:813-819.
    [75]Gao C, Jiang B, Wang Y, Liu G, Yang C. Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast[J]. Mol Biol Rep 2011.
    [76]Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F. A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana[J]. Plant Cell Environ 2009,32:1046-1059.
    [77]Zhang X, Hu Y, Jiang C, Zhang W, Li Z, Ming F. Isolation of the Chinese rose sHSP gene promoter and its differential regulation analysis in transgenic Arabidopsis plants[J]. Mol Biol Rep 2012,39: 1145-1151.
    [78]He LH, Chen JY, Kuang JF, Lu WJ. Expression of three sHSP genes involved in heat pretreatment-induced chilling tolerance in banana fruit[J]. J Sci Food Agric 2012,92:1924-1930.
    [79]Stengel F, Baldwin AJ, Painter AJ, Jaya N, Basha E, Kay LE, Vierling E, Robinson CV, Benesch JL. Quaternary dynamics and plasticity underlie small heat shock protein chaperone function[J]. Proc Natl Acad Sci U S A 2010,107:2007-2012.
    [80]Sato M, Yamahata H, Watanabe S, Nimura-Matsune K, Yoshikawa H. Characterization of dnaJ multigene family in the cyanobacterium Synechococcus elongatus PCC 7942[J]. Biosci Biotechnol Biochem 2007,71:1021-1027.
    [81]Ben-Zvi AP, Goloubinoff P. Review:mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones[J]. J Struct Biol 2001,135:84-93.
    [82]Awad W, Estrada I, Shen Y, Hendershot LM. BiP mutants that are unable to interact with endoplasmic reticulum DnaJ proteins provide insights into interdomain interactions in BiP[J]. Proc Natl Acad Sci U S A 2008,105:1164-1169.
    [83]Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses:from genes to the field[J]. J Exp Bot 2012,63:3523-3543.
    [84]Foyer CH, Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis[J]. Plant Physiol 2011,155:93-100.
    [85]Ishibashi Y, Tawaratsumida T, Kondo K, Kasa S, Sakamoto M, Aoki N, Zheng SH, Yuasa T, Iwaya-Inoue M. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells[J]. Plant Physiol 2012,158:1705-1714.
    [86]He J, Yue X, Wang R, Zhang Y. Ethylene mediates UV-B-induced stomatal closure via peroxidase-dependent hydrogen peroxide synthesis in Vicia faba L[J]. J Exp Bot 2011,62: 2657-2666.
    [87]Jakubowicz M, Galganska H, Nowak W, Sadowski J. Exogenously induced expression of ethylene biosynthesis, ethylene perception, phospholipase D, and Rboh-oxidase genes in broccoli seedlings[J]. J Exp Bot 2010,61:3475-3491.
    [88]Li G, Lin F, Xue HW. Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLD beta 1 in seed germination[J], Cell Res 2007,17:881-894.
    [89]Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K. Regulation of Rice N ADPH Oxidase by Binding of Rac GTPase to Its N-Terminal Extension[J]. Plant Cell 2007,19:4022-4034.
    [90]Fukao T, Yeung E, Bailey-Serres J. The Submergence Tolerance Regulator SUB1A Mediates Crosstalk between Submergence and Drought Tolerance in Rice[J]. Plant Cell 2011,23:412-427.
    [91]Zhao Q, Guo HW. Paradigms and paradox in the ethylene signaling pathway and interaction network[J]. Mol Plant 2011,4:626-634.
    [92]Guo H, Ecker JR. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor[J]. Cell 2003,115:667-677.
    [93]Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes[J]. J Biol Chem 2007, 282:1183-1192.
    [94]Mori IC, Schroeder JI. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction[J]. Plant Physiol 2004,135:702-708.
    [95]Reddy ASN, Ali GS, Celesnik H, Day IS. Coping with Stresses:Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression[J]. Plant Cell 2011,23:2010-2032.
    [96]Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munne-Bosch S, Antonio C, Tohge T, Fernie AR, Kaufmann K, Xue GP, Mueller-Roeber B, Balazadeh S. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis[J]. Plant Cell 2012,24:482-506.
    [97]Miller G, Mittler R. Could heat shock transcription factors function as hydrogen peroxide sensors in plants?[J]. Ann Bot 2006,98:279-288.
    [98]Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis[J]. J Genet Genomics 2008,35:105-118.
    [99]Chauhan H, Khurana N, Agarwal P, Khurana P. Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress[J]. Mol Genet Genomics 2011,286:171-187.
    [100]Cohen-Peer R, Schuster S, Meiri D, Breiman A, Avni A. Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance[J]. Plant Mol Biol 2010,74:33-45.
    [101]Liu AL, Zou J, Zhang XW, Zhou XY, Wang WF, Xiong XY, Chen LY, Chen XB. Expression Profiles of Class A Rice Heat Shock Transcription Factor Genes Under Abiotic Stresses[J]. J Plant Biol 2010,53:142-149.
    [102]Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance[J]. Plant Physiol 2011,157:1243-1254.
    [103]Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice[J]. Plant Cell Physiol 2011,52:344-360.
    [104]Sharoni AM, Nuruzzaman M, Satoh K, Moumeni A, Attia K, Venuprasad R, Serraj R, Kumar A, Leung H, Islam AK, Kikuchi S. Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64[J]. Mol Genet Genomics 2012,287:1-19.
    [105]Xu ZS, Chen M, Li LC, Ma YZ. Functions and application of the AP2/ERF transcription factor family in crop improvement[J]. J Integr Plant Biol 2011,53:570-585.
    [106]Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martinez-Garcia JF, Bilbao-Castro JR, Robertson DL. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae[J]. Plant Physiol 2010,153: 1398-1412.
    [107]Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice[J]. Plant J 2011,65:907-921.
    [108]Zhou J, Li F, Wang JL, Ma Y, Chong K, Xu YY. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt-and osmotic stress in Arabidopsis[J]. J Plant Physiol 2009,166:1296-1306.
    [109]Nijhawan A, Jain M, Tyagi AK, Khurana JP. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiol 2008,146:333-350.
    [110]Zou M, Guan Y, Ren H, Zhang F, Chen F. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance[J]. Plant Mol Biol 2008,66:675-683.
    [111]Zhang L, Zhao G, Jia J, Liu X, Kong X. Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress[J]. J Exp Bot 2012,63:203-214.
    [112]Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH, Yu SM. A novel MYB S3-dependent pathway confers cold tolerance in rice[J]. Plant Physiol 2010,153:145-158.
    [113]Zhai H, Bai X, Zhu Y, Li Y, Cai H, Ji W, Ji Z, Liu X, Liu X, Li J. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis[J]. Biochem Biophys Res Commun 2010,394:1018-1023.
    [114]Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors[J]. Trends Plant Sci 2010,15:247-258.
    [115]Ray S, Dansana PK, Giri J, Deveshwar P, Arora R, Agarwal P, Khurana JP, Kapoor S, Tyagi AK. Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice[J]. Funct Integr Genomics 2011,11:157-178.
    [116]Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiol 2005,137:176-189.
    [117]Zhang ZL, Shin M, Zou X, Huang J, Ho TH, Shen QJ. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells[J]. Plant Mol Biol 2009,70:139-151.
    [118]Liu XQ, Bai XQ, Qian Q, Wang XJ, Chen MS, Chu CC. OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1[J]. Cell Res 2005,15: 593-603.
    [119]Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Rep 2009,28:21-30.
    [120]Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. NAC transcription factors in plant abiotic stress responses[J]. Biochim Biophys Acta 2012,1819:97-103.
    [121]Sun H, Huang X, Xu X, Lan H, Huang J, Zhang HS. ENAC1, a NAC Transcription Factor, is an Early and Transient Response Regulator Induced by Abiotic Stress in Rice (Oryza sativa L.)[J]. Mol Biotechnol 2011.
    [122]Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice[J]. Mol Genet Genomics 2010,284:173-183.
    [123]Ahsan N, Donnart T, Nouri MZ, Komatsu S. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach[J]. J Proteome Res 2010,9:4189-4204.
    [124]Lee DG, Ahsan N, Lee SH, Kang KY, Bank JD, Lee IJ, Lee BH. A proteomic approach in analyzing heat-responsive proteins in rice leaves[J]. Proteomics 2007,7:3369-3383.
    [125]Gammulla CG, Pascovici D, Atwell BJ, Haynes PA. Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high- and low-temperature stress[J]. Proteomics 2010,10: 3001-3019.
    [126]Lin SK, Chang MC, Tsai YG, Lur HS. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression[J]. Proteomics 2005,5:2140-2156.
    [127]Lin CJ, Li CY, Lin SK, Yang FH, Huang JJ, Liu YH, Lur HS. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.)[J]. J Agric Food Chem 2010,58:10545-10552.
    [128]Han F, Chen H, Li XJ, Yang MF, Liu GS, Shen SH. A comparative proteomic analysis of rice seedlings under various high-temperature stresses[J]. Biochim Biophys Acta 2009,1794: 1625-1634.
    [129]王富刚,陈先农.基因芯片数据的聚类分析[J].国外医学生物医学工程分册2004,27:98-101.
    [130]Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M, Jr., Haussler D. Knowledge-based analysis of microarray gene expression data by using support vector machines[J]. Proc Natl Acad Sci U S A 2000,97:262-267.
    [131]Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data[J]. Bioinformatics 2000,16:906-914.
    [132]Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M, Yakhini Z. Tissue classification with gene expression profiles[J]. J Comput Biol 2000,7:559-583.
    [133]Sharov AA, Dudekula DB, Ko MS. A web-based tool for principal component and significance analysis of microarray data[J]. Bioinformatics 2005,21:2548-2549.
    [134]Hastie T, Tibshirani R, Eisen MB, Alizadeh A, Levy R, Staudt L, Chan WC, Botstein D, Brown P. 'Gene shaving'as a method for identifying distinct sets of genes with similar expression patterns[J]. Genome Biol 2000,1:RESEARCH0003.
    [135]Rubel O, Weber GH, Huang MY, Bethel EW, Biggin MD, Fowlkes CC, Luengo Hendriks CL, Keranen SV, Eisen MB, Knowles DW, Malik J, Hagen H, Hamann B. Integrating data clustering and visualization for the analysis of 3D gene expression data[J]. IEEE/ACM Trans Comput Biol Bioinform 2010,7:64-79.
    [136]Herrero J, Dopazo J. Combining hierarchical clustering and self-organizing maps for exploratory analysis of gene expression patterns[J]. J Proteome Res 2002,1:467-470.
    [137]Dopazo J, Carazo JM. Phylogenetic reconstruction using an unsupervised growing neural network that adopts the topology of a phylogenetic tree[J]. J Mol Evol 1997,44:226-233.
    [138]Luo F, Khan L, Bastani F, Yen IL, Zhou J. A dynamically growing self-organizing tree (DGSOT) for hierarchical clustering gene expression profiles[J]. Bioinformatics 2004,20:2605-2617.
    [139]李霞,饶绍奇,张田文,郭政,张庆普,K.L.Moser, E.J.Topol应用DNA芯片数据挖掘复杂疾病相关基因的集成决策方法[J].中国科学C辑2004,20:195-202.
    [140]Krishna K, Murty MN. Genetic K-Means Algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics-Patr B:Cybernetics 1999,29.
    [141]Zhang H, Yu CY, Singer B. Cell and tumor classification using gene expression data: construction of forests[J]. Proc Natl Acad Sci U S A 2003,100:4168-4172.
    [142]Kasturi J, Acharya R. Clustering of diverse genomic data using information fusion[J]. Bioinformatics 2005,21:423-429.
    [143]Shmulevich I, Astola J, Cogdell D, Hamilton SR, Zhang W. Data extraction from composite oligonucleotide microarrays[J]. Nucleic Acids Res 2003,31:e36.
    [144]Brown PO, Botstein D. Exploring the new world of the genome with DNA microarrays[J]. Nat Genet 1999,21:33-37.
    [145]Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays[J]. Nature 2000,405: 827-836.
    [146]Gonzali S, Loreti E, Novi G, Poggi A, Alpi A, Perata P. The use of microarrays to study the anaerobic response in Arabidopsis[J]. Ann Bot 2005,96:661-668.
    [147]Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi AK. Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis[J]. Plant Mol Biol 2007,65:467-485.
    [148]Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene 2010,465:30-44.
    [149]Fujita M, Horiuchi Y, Ueda Y, Mizuta Y, Kubo T, Yano K, Yamaki S, Tsuda K, Nagata T, Niihama M, Kato H, Kikuchi S, Hamada K, Mochizuki T, Ishimizu T, Iwai H, Tsutsumi N, Kurata N. Rice expression atlas in reproductive development[J]. Plant Cell Physiol 2010,51: 2060-2081.
    [150]Wang L, Xie W, Chen Y, Tang W, Yang J, Ye R, Liu L, Lin Y, Xu C, Xiao J, Zhang Q. A dynamic gene expression atlas covering the entire life cycle of rice[J]. Plant J 2010,61:752-766.
    [151]Wong CE, Zhao YT, Wang XJ, Croft L, Wang ZH, Haerizadeh F, Mattick JS, Singh MB, Carroll BJ, Bhalla PL. MicroRNAs in the shoot apical meristem of soybean [J]. J Exp Bot 2011,62: 2495-2506.
    [152]Christensen AH, Sharrock RA, Quail PH. Maize polyubiquitin genes:structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation[J]. Plant Mol Biol 1992,18:675-689.
    [153]McElroy D, Zhang W, Cao J, Wu R. Isolation of an efficient actin promoter for use in rice transformation[J]. Plant Cell 1990,2:163-171.
    [154]毛自朝,于秋菊,甄伟,郭俊毅,胡鸢雷,高音,林忠平.果实专一性启动子驱动ipt基因在番茄中的表达及其对番茄果实发育的影响[J].科学通报2002,47:444—448.
    [155]Yang YT, Yu YL, Yang GD, Zhang JD, Zheng CC. Tissue-specific expression of the PNZIP promoter is mediated by combinatorial interaction of different cis-elements and a novel transcriptional factor[J]. Nucleic Acids Res 2009,37:2630-2644.
    [156]Gomez MD, Beltran JP, Canas LA. The pea END1 promoter drives anther-specific gene expression in different plant species[J]. Planta 2004,219:967-981.
    [157]Prandl R, Schoffl F. Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation [J]. Plant Mol Biol 1996,31:157-162.
    [158]Conkling MA, Cheng CL, Yamamoto YT, Goodman HM. Isolation of transcriptionally regulated root-specific genes from tobacco[J]. Plant Physiol 1990,93:1203-1211.
    [159]Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish[J]. Dev Biol 2002,248:307-318.
    [160]Puente P, Wei N, Deng XW. Combinatorial interplay of promoter elements constitutes the minimal determinants for light and developmental control of gene expression in Arabidopsis[J]. EMBO J 1996,15:3732-3743.
    [161]Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development[J]. Plant Cell 1990,2:1201-1224.
    [162]Bate N, Twell D. Functional architecture of a late pollen promoter:pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements[J]. Plant Mol Biol 1998,37:859-869.
    [163]de Pater S, Pham K, Chua NH, Memelink J, Kijne J. A 22-bp fragment of the pea lectin promoter containing essential TGAC-like motifs confers seed-specific gene expression [J]. Plant Cell 1993, 5:877-886.
    [164]石东乔,周奕华,万里红,刘桂珍,胡赞民,陈正华.甘蓝型油菜BcNA1基因启动子在转基因烟草中对GUS基因表达的调控[J].植物生理学报2001,27:313-320.
    [165]Wu C, Washida H, Onodera Y, Harada K, Takaiwa F. Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter:minimal cis-element requirements for endosperm-specific gene expression[J]. Plant J 2000,23:415-421.
    [166]Won SK, Lee YJ, Lee HY, Heo YK, Cho M, Cho HT. Cis-element- and transcriptome-based screening of root hair-specific genes and their functional characterization in Arabidopsis[J]. Plant Physiol 2009,150:1459-1473.
    [167]Mahajan S, Tuteja N. Cold, salinity and drought stresses:an overview[J]. Arch Biochem Biophys 2005,444:139-158.
    [168]Medina J, Catala R, Salinas J. Developmental and stress regulation of RCI2A and RCI2B, two cold-inducible genes of arabidopsis encoding highly conserved hydrophobic proteins[J]. Plant Physiol 2001,125:1655-1666.
    [169]Dunn MA, White AJ, Vural S, Hughes MA. Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.)[J]. Plant Mol Biol 1998,38:551-564.
    [170]Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray[J]. Plant Cell 2001,13:61-72.
    [171]Guo L, Yu Y, Xia X, Yin W. Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus[J]. BMC Plant Biol 2010,10:18.
    [172]Wu XF, Wang CL, Xie EB, Gao Y, Fan YL, Liu PQ, Zhao KJ. Molecular cloning and characterization of the promoter for the multiple stress-inducible gene BjCHII from Brassica juncea[J]. Planta 2009,229:1231-1242.
    [173]Qi X, Zhang Y, Chai T. Characterization of a novel plant promoter specifically induced by heavy metal and identification of the promoter regions conferring heavy metal responsiveness [J]. Plant Physiol 2007,143:50-59.
    [174]Barros MD, Czarnecka E, Gurley WB. Mutational analysis of a plant heat shock element[J]. Plant Mol Biol 1992,19:665-675.
    [175]Rojas A, Almoguera C, Carranco R, Scharf KD, Jordano J. Selective activation of the developmentally regulated Ha hsp17.6 G1 promoter by heat stress transcription factors[J]. Plant Physiol 2002,129:1207-1215.
    [176]Zahur M, Maqbool A, Irfan M, Barozai MY, Qaiser U, Rashid B, Husnain T, Riazuddin S. Functional analysis of cotton small heat shock protein promoter region in response to abiotic stresses in tobacco using Agrobacterium-mediated transient assay[J]. Mol Biol Rep 2009,36: 1915-1921.
    [177]Coca MA, Almoguera C, Thomas TL, Jordano J. Differential regulation of small heat-shock genes in plants:analysis of a water-stress-inducible and developmentally activated sunflower promoter[J]. Plant Mol Biol 1996,31:863-876.
    [178]王雅琴.嗜麦芽假单胞菌热休克基因dnaK启动子的亚克隆及其在大肠杆菌中功能的研究[J].工业微生物2001,31:29-35.
    [179]伊淑莹,孙爱清,赵春梅,刘箭.番茄多胁迫诱导型LeMTshsp启动子的分子克隆及其功能分析[J].云南植物研究2007,29:223-230.
    [180]Lim CJ, Hwang JE, Chen H, Hong JK, Yang KA, Choi MS, Lee KO, Chung WS, Lee SY, Lim CO. Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance[J]. Biochem Biophys Res Commun 2007,362:431-436.
    [181]Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. Plant Cell 2004,16:2481-2498.
    [182]Yang W, Paschen W. Conditional gene silencing in mammalian cells mediated by a stress-inducible promoter[J]. Biochem Biophys Res Commun 2008,365:521-527.
    [183]Rombauts S, Dehais P, Van Montagu M, Rouze P. PlantCARE, a plant cis-acting regulatory element database[J]. Nucleic Acids Res 1999,27:295-296.
    [184]Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database:1999[J]. Nucleic Acids Res 1999,27:297-300.
    [185]Morris RT, O'Connor TR, Wyrick JJ. Osiris:an integrated promoter database for Oryza sativa L[J]. Bioinformatics 2008,24:2915-2917.
    [186]Karlowski WM, Schoof H, Janakiraman V, Stuempflen V, Mayer KF. MOsDB:an integrated information resource for rice genomics[J]. Nucleic Acids Res 2003,31:190-192.
    [187]O'Connor TR, Dyreson C, Wyrick JJ. Athena:a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences[J]. Bioinformatics 2005,21:4411-4413.
    [188]Prabu G, Prasad DT. Functional characterization of sugarcane MYB transcription factor gene promoter (PScMYBAS1) in response to abiotic stresses and hormones[J]. Plant Cell Rep 2012, 31:661-669.
    [189]Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K., Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nat Biotechnol 1999,17:287-291.
    [190]杨东歌,杨凤萍,陈绪清,张立全,张晓东.外源脱水应答转录因子CBF4基因转化玉米的获得[J].作物学报2009,35:1759—1763.
    [191]石君,吴忠义,黄丛林,贾桂霞,张秀海.利用Cre/IoxP系统和rd29A启动子构建诱导型植物标记基因删除载体[J].分子植物育种2009,7:1040-1044.
    [192]Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, Yamaguchi-Shinozaki K, Watanabe KN. Arabidopsis rd29A::DREB1A enhances freezing tolerance in transgenic potato[J]. Plant Cell Rep 2007,26:1275-1282.
    [193]Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis[J]. Plant Mol Biol 2006,60:51-68.
    [194]Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses[J]. Plant J 2003,34:137-148.
    [195]Pino MT, Skinner JS, Park EJ, Jeknic Z, Hayes PM, Thomashow MF, Chen TH. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield[J]. Plant Biotechnol J 2007,5:591-604.
    [196]Zhang DB, Wilson ZA. Stamen specification and anther development in rice[J]. Chinese Science Bulletin 2009,54:2342-2353.
    [197]Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J. TM4:a free, open-source system for microarray data management and analysis[J]. Biotechniques 2003,34:374-378.
    [198]Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns[J]. Proc Natl Acad Sci U S A 1998,95:14863-14868.
    [199]Hobo T, Suwabe K, Aya K, Suzuki G, Yano K, Ishimizu T, Fujita M, Kikuchi S, Hamada K, Miyano M, Fujioka T, Kaneko F, Kazama T, Mizuta Y, Takahashi H, Shiono K, Nakazono M, Tsutsumi N, Nagamura Y, Kurata N, Watanabe M, Matsuoka M. Various spatiotemporal expression profiles of anther-expressed genes in rice[J]. Plant Cell Physiol 2008,49:1417-1428.
    [200]Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, Scheible WR, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M. Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses [J]. Plant Physiol 2005,138: 1195-1204.
    [201]Grant CE, Bailey TL, Noble WS. FIMO:scanning for occurrences of a given motif[J]. Bioinformatics 2011,27:1017-1018.
    [202]Zhou F, Olman V, Xu Y. Insertion Sequences show diverse recent activities in Cyanobacteria and Archaea[J]. BMC Genomics 2008,9:36.
    [203]Chang WC, Lee TY, Huang HD, Huang HY, Pan RL. PlantPAN:Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups[J]. BMC Genomics 2008,9:561.
    [204]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res 2003,13:2498-2504.
    [205]Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G. Disruption of OsYSL15 leads to iron inefficiency in rice plants[J]. Plant Physiol 2009,150:786-800.
    [206]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods 2001,25:402-408.
    [207]Fukao T, Yeung E, Bailey-Serres J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice[J]. Plant Cell 2011,23:412-427.
    [208]Chi WC, Fu SF, Huang TL, Chen YA, Chen CC, Huang HJ. Identification of transcriptome profiles and signaling pathways for the allelochemical juglone in rice roots[J]. Plant Mol Biol 2011,77:591-607.
    [209]Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E. The Arabidopsis C1pB/Hsp100 family of proteins:chaperones for stress and chloroplast development[J]. Plant J 2007,49:115-127.
    [210]Tonsor SJ, Scott C, Boumaza I, Liss TR, Brodsky JL, Vierling E. Heat shock protein 101 effects in A. thaliana:genetic variation, fitness and pleiotropy in controlled temperature conditions[J]. Mol Ecol 2008,17:1614-1626.
    [211]Xu X, Song H, Zhou Z, Shi N, Ying Q, Wang H. Functional characterization of AtHsp90.3 in Saccharomyces cerevisiae and Arabidopsis thaliana under heat stress[J]. Biotechnol Lett 2010, 32:979-987.
    [212]Bhattacharya A, Kurochkin AV, Yip GN, Zhang Y, Bertelsen EB, Zuiderweg ER. Allostery in Hsp70 chaperones is transduced by subdomain rotations[J]. J Mol Biol 2009,388:475-490.
    [213]Dafny-Yelin M, Tzfira T, Vainstein A, Adam Z. Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis[J]. Plant Mol Biol 2008,67:363-373.
    [214]Cheng C, Yun KY, Ressom HW, Mohanty B, Bajic VB, Jia Y, Yun SJ, de los Reyes BG. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice[J]. BMC Genomics 2007,8:175.
    [215]Almagro L, Gomez Ros LV, Belchi-Navarro S, Bru R, Ros Barcelo A, Pedreno MA. Class Ⅲ peroxidases in plant defence reactions[J]. J Exp Bot 2009,60:377-390.
    [216]Bonnecarrere V, Borsani O, Diaz P, Capdevielle F, Blanco P, Monza J. Response to photoxidative stress induced by cold in japonica rice is genotype dependent[J]. Plant Sci 2011,180:726-732.
    [217]Lee YP, Baek KH, Lee HS, Kwak SS, Bang JW, Kwon SY. Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions[J]. J Exp Bot 2010,61:2499-2506.
    [218]Zhang Y, Xi D, Wang J, Zhu D, Guo X. Functional analysis reveals effects of tobacco alternative oxidase gene (NtAOX1a) on regulation of defence responses against abiotic and biotic stresses[J]. Biosci Rep 2009,29:375-383.
    [219]Pinot F, Beisson F. Cytochrome P450 metabolizing fatty acids in plants:characterization and physiological roles[J]. FEBS J 2011,278:195-205.
    [220]Blokhina O, Fagerstedt KV. Oxidative metabolism, ROS and NO under oxygen deprivation[J]. Plant Physiol Biochem 2010,48:359-373.
    [221]Davidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems[J]. Microbiol Mol Biol Rev 2008,72:317-364.
    [222]Conde A, Chaves MM, Geros H. Membrane Transport, Sensing and Signaling in Plant Adaptation to Environmental Stress[J]. Plant Cell Physiol 2011,52:1583-1602.
    [223]Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. Identification of 33 rice aquaporin genes and analysis of their expression and function[J]. Plant Cell Physiol 2005,46: 1568-1577.
    [224]Mazzucotelli E, Belloni S, Marone D, De Leonardis A, Guerra D, Di Fonzo N, Cattivelli L, Mastrangelo A. The E3 ubiquitin ligase gene family in plants:regulation by degradation[J]. Curr Genomics 2006,7:509-522.
    [225]Thangasamy S, Guo CL, Chuang MH, Lai MH, Chen J, Jauh GY. Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence[J]. New Phytol 2011,189: 869-882.
    [226]Park HC, Kim H, Koo SC, Park HJ, Cheong MS, Hong H, Baek D, Chung WS, Kim DH, Bressan RA, Lee SY, Bohnert HJ, Yun DJ. Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice[J]. Plant Cell Environ 2010,33:1923-1934.
    [227]Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress[J]. Plant Physiol 2007,143:1467-1483.
    [228]Aiken CT, Kaake RM, Wang X, Huang L. Oxidative stress-mediated regulation of proteasome complexes[J]. Mol Cell Proteomics 2011,10:R110006924.
    [229]Chen J, Burke JJ, Velten J, Xin Z. FtsH11 protease plays a critical role in Arabidopsis thermotolerance[J]. Plant J 2006,48:73-84.
    [230]Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A. Auxins reverse plant male sterility caused by high temperatures [J]. Proc Natl Acad Sci U S A 2010,107:8569-8574.
    [231]Kriechbaumer V, Park WJ, Piotrowski M, Meeley RB, Gierl A, Glawischnig E. Maize nitrilases have a dual role in auxin homeostasis and -cyanoalanine hydrolysis[J]. J Exp Bot 2007,58: 4225-4233.
    [232]Kant S, Bi YM, Zhu T, Rothstein SJ. SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice[J]. Plant Physiol 2009,151:691-701.
    [233]Qin F, Shinozaki K, Yamaguchi-Shinozaki K. Achievements and Challenges in Understanding Plant Abiotic Stress Responses and Tolerance[J]. Plant Cell Physiol 2011,52:1569-1582.
    [234]Zhu G, Ye N, Yang J, Peng X, Zhang J. Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets[J]. J Exp Bot 2011,62:3907-3916.
    [235]Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T. Differential activation of the rice sucrose nonfermentingl-related protein kinase2 family by hyperosmotic stress and abscisic acid[J]. Plant Cell 2004,16:1163-1177.
    [236]Darwish E, Testerink C, Khalil M, El-Shihy O, Munnik T. Phospholipid signaling responses in salt-stressed rice leaves[J]. Plant Cell Physiol 2009,50:986-997.
    [237]Adamska I, Kloppstech K, Ohad I. UV light stress induces the synthesis of the early light-inducible protein and prevents its degradation[J]. J Biol Chem 1992,267:24732-24737.
    [238]Harari-Steinberg O, Ohad I, Chamovitz DA. Dissection of the light signal transduction pathways regulating the two early light-induced protein genes in Arabidopsis[J]. Plant Physiol 2001,127: 986-997.
    [239]Reimmann C, Dudler R. Circadian rhythmicity in the expression of a novel light-regulated rice gene[J]. Plant Mol Biol 1993,22:165-170.
    [240]Kundu S, Chakraborty D, Pal A. Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo[J]. J Proteomics 2011,74:337-349.
    [241]Qudeimat E, Faltusz AM, Wheeler G, Lang D, Holtorf H, Brownlee C, Reski R, Frank W. A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens[J]. Proc Natl Acad Sci U S A 2008,105:19555-19560.
    [242]Bourne HR, Sanders DA, McCormick F. The GTPase superfamily:conserved structure and molecular mechanism[J]. Nature 1991,349:117-127.
    [243]Wu H-m, Hazak O, Cheung AY, Yalovsky S. RAC/ROP GTPases and Auxin Signaling[J]. Plant Cell 2011,23:1208-1218.
    [244]Chen L, Shiotani K, Togashi T, Miki D, Aoyama M, Wong HL, Kawasaki T, Shimamoto K. Analysis of the Rac/Rop Small GTPase Family in Rice:Expression, Subcellular Localization and Role in Disease Resistance [J]. Plant Cell Physiol 2010,51:585-595.
    [245]Speth EB, Imboden L, Hauck P, He SY. Subcellular localization and functional analysis of the Arabidopsis GTPase RabE[J]. Plant Physiol 2009,149:1824-1837.
    [246]Wang X, Xu Y, Han Y, Bao S, Du J, Yuan M, Xu Z, Chong K. Overexpression of RAN1 in rice and Arabidopsis alters primordial meristem, mitotic progress, and sensitivity to auxin[J]. Plant Physiol 2006,140:91-101.
    [247]Song XF, Yang CY, Liu J, Yang WC. RPA, a class Ⅱ ARFGAP protein, activates ARF1 and U5 and plays a role in root hair development in Arabidopsis[J]. Plant Physiol 2006,141:966-976.
    [248]Seabra MC, Wasmeier C. Controlling the location and activation of Rab GTPases[J]. Curr Opin Cell Biol 2004,16:451-457.
    [249]Konigshofer H, Tromballa HW, Loppert HG. Early events in signalling high-temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production[J]. Plant Cell Environ 2008,31:1771-1780.
    [250]Sessa G, Meller Y, Fluhr R. A GCC element and a G-box motif participate in ethylene-induced expression of the PRB-lb gene[J]. Plant Mol Biol 1995,28:145-153.
    [251]Zhang H, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Lu X, Huang D, Huang R. The ethylene-, jasmonate-, abscisic acid-and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco[J]. Planta 2004,220: 262-270.
    [252]Yamamoto YY, Yoshioka Y, Hyakumachi M, Maruyama K, Yamaguchi-Shinozaki K, Tokizawa M, Koyama H. Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data[J]. BMC Plant Biol 2011,11:39.
    [253]Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Huang R. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice[J]. PLoS One 2011,6:e25216.
    [254]Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H. Rapid Transcriptome Changes Induced by Cytosolic Ca2+ Transients Reveal ABRE-Related Sequences as Ca2+-Responsive cis Elements in Arabidopsis[J]. Plant Cell 2006,18:2733-2748.
    [255]Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H, Jin H, Zhang D, Liang W. Transcriptional regulation of Arabidopsis MIR168a and argonautel homeostasis in abscisic acid and abiotic stress responses[J]. Plant Physiol 2012,158:1279-1292.
    [256]Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K, Yamaguchi-Shinozaki K. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis[J]. Plant Cell Physiol 2011,52:2136-2146.
    [257]Yamamoto A, Mizukami Y, Sakurai H. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae[J]. J Biol Chem 2005,280:11911-11919.
    [258]Volkov RA, Panchuk, II, Mullineaux PM, Schoffl F. Heat stress-induced H(2)O (2) is required for effective expression of heat shock genes in Arabidopsis[J]. Plant Mol Biol 2006,61: 733-746.
    [259]Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y, Shigeoka S. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress[J]. Plant Cell Physiol 2011,52:933-945.
    [260]李成德.高温导致水稻出现大量空壳分析[J].陕西农业科学2003,(5):45-47.
    [261]郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响[J].植物学报2000,42:673-678.
    [262]黄英金,罗永锋,黄兴作,志饶,刘宜柏.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系[J].中国水稻科学1999,13:205-210.
    [263]汤日圣,郑建初,陈留根,张大栋,金之庆,童红玉.高温对杂交水稻籽粒灌浆和剑叶某些生理特性的影响[J].植物生理与分子生物学学报2005,31:657-662.
    [264]欧志英,林桂珠,彭长连.超高产杂交水稻培矮64S/E32和两优培九剑叶对高温的响应[J].中国水稻科学2005,19:249—254.
    [265]Yang A, Dai X, Zhang WH. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice[J]. J Exp Bot 2012,63:2541-2556.
    [266]Abbruscato P, Nepusz T, Mizzi L, Del Corvo M, Morandini P, Fumasoni I, Michel C, Paccanaro A, Guiderdoni E, Schaffrath U, Morel JB, Piffanelli P, Faivre-Rampant O. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast[J]. Mol Plant Pathol 2012, 13:828-841.
    [267]Zhang H, Ni L, Liu Y, Wang Y, Zhang A, Tan M, Jiang M. The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice[J]. J Integr Plant Biol 2012,54:500-510.
    [268]Tzin V, Galili G. The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana[J]. Arabidopsis Book 2010,8:e0132.
    [269]Bate NJ, Orr J, Ni W, Meromi A, Nadler-Hassar T, Doerner PW, Dixon RA, Lamb CJ, Elkind Y. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis[J]. Proc Natl Acad Sci U S A 1994,91:7608-7612.
    [270]Pincon G, Maury S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M. Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth [J]. Phytochemistry 2001,57:1167-1176.
    [271]Al-Ghazi Y, Bourot S, Arioli T, Dennis ES, Llewellyn DJ. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality[J]. Plant Cell Physiol 2009,50:1364-1381.
    [272]Lee D, Douglas CJ. Two divergent members of a tobacco 4-coumarate:coenzyme A ligase (4CL) gene family. cDNA structure, gene inheritance and expression, and properties of recombinant proteins[J]. Plant Physiol 1996,112:193-205.
    [273]Kajita S, Hishiyama S, Tomimura Y, Katayama Y, Omori S. Structural Characterization of Modified Lignin in Transgenic Tobacco Plants in Which the Activity of 4-Coumarate:Coenzyme A Ligase Is Depressed[J]. Plant Physiol 1997,114:871-879.
    [274]Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees[J]. Nat Biotechnol 1999,17:808-812.
    [275]郭启芳,邹琦,王玮.植物泛素/26S蛋白酶体通路的生理功能和分子生物学[J].植物生理学通讯2004,40:533-537.
    [276]Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling[J]. Plant J 2010,61:1029-1040.
    [277]Kombrink E. Chemical and genetic exploration of jasmonate biosynthesis and signaling paths[J]. Planta 2012.
    [278]Lyzenga W, Stone SL. Regulation of ethylene biosynthesis through protein degradation[J]. Plant Signal Behav 2012,7.
    [279]Lyzenga WJ, Booth JK, Stone SL. The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-l-carboxylate synthase 7[J]. Plant J 2012,71:23-34.
    [280]Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xie Q. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance[J]. Plant Cell 2012,24:233-244.
    [281]Yanagawa Y, Komatsu S. Ubiquitin/proteasome-mediated proteolysis is involved in the response to flooding stress in soybean roots, independent of oxygen limitation[J]. Plant Sci 2012,185-186: 250-258.
    [282]Guerra D, Mastrangelo AM, Lopez-Torrejon G, Marzin S, Schweizer P, Stanca AM, del Pozo JC, Cattivelli L, Mazzucotelli E. Identification of a protein network interacting with TdRFl, a wheat RING ubiquitin ligase with a protective role against cellular dehydration[J]. Plant Physiol 2012, 158:777-789.
    [283]Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X, Liu X, Dai L, Xie Q, Wang GL. The SINA E3 ligase OsDISl negatively regulates drought response in rice[J]. Plant Physiol 2011,157:242-255.
    [284]Goltsev V, Zaharieva I, Chernev P, Kouzmanova M, Kalaji HM, Yordanov I, Krasteva V, Alexandrov V, Stefanov D, Allakhverdiev SI, Strasser RJ. Drought-induced modifications of photosynthetic electron transport in intact leaves:Analysis and use of neural networks as a tool for a rapid non-invasive estimation[J]. Biochim Biophys Acta 2012,1817:1490-1498.
    [285]Vass I. Molecular mechanisms of photodamage in the Photosystem Ⅱ complex[J]. Biochim Biophys Acta 2012,1817:209-217.
    [286]Luo HB, Ma L, Xi HF, Duan W, Li SH, Loescher W, Wang JF, Wang LJ. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves[J]. PLoS One 2011,6:e23033.
    [287]Essemine J, Govindachary S, Ammar S, Bouzid S, Carpentier R. Functional aspects of the photosynthetic light reactions in heat stressed Arabidopsis deficient in digalactosyl-diacylglycerol[J]. J Plant Physiol 2011,168:1526-1533.
    [288]Crafts-Brandner SJ, Salvucci ME. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress[J]. Plant Physiol 2002,129:1773-1780.
    [289]Savitch LV, Ivanov AG, Gudynaite-Savitch L, Huner NP, Simmonds J. Cold stress effects on PSI photochemistry in Zea mays:differential increase of FQR-dependent cyclic electron flow and functional implications[J]. Plant Cell Physiol 2011,52:1042-1054.
    [290]Dreaden TM, Chen J, Rexroth S, Barry B A. N-formylkynurenine as a marker of high light stress in photosynthesis[J]. J Biol Chem 2011,286:22632-22641.
    [291]Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, DeLucia EH. Biotic stress globally downregulates photosynthesis genes[J]. Plant Cell Environ 2010,33:1597-1613.
    [292]邹杰.水稻OsHSP基因表达分析与遗传转化研究[硕士学位论文][J].湖南农业大学:2008.
    [293]Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. EMBO J 1987,6:3901-3907.
    [294]Hansch R, Koprek T, Mendel RR, Schulze J. An improved protocol for eliminating endogenous β-glucuronidase background in barley[J]. Plant Science 1995,105:63-69.
    [295]Munoz-Mayor A, Pineda B, Garcia-Abellan J, Anton T, Garcia-Sogo B, Sanchez-Bel P, Flores FB, Atares A, Angosto T, Pintor-Toro JA, Moreno V, Bolarin MC. Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato[J]. J Plant Physiol 2012,169:459-468.
    [296]Czarnecka E, Key JL, Gurley WB. Regulatory domains of the Gmhsp17.5-E heat shock promoter of soybean[J]. Mol Cell Biol 1989,9:3457-3463.
    [297]Kim KY, Kwon SY, Lee HS, Hur Y, Bang JW, Kwak SS. A novel oxidative stress-inducible peroxidase promoter from sweetpotato:molecular cloning and characterization in transgenic tobacco plants and cultured cells[J]. Plant Mol Biol 2003,51:831-838.
    [298]杨梅,熊立仲.水稻干旱诱导型启动子Oshox24P的分离与鉴定[J].华中农业大学学报2011,5:525-531.
    [299]Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis[J]. Planta 2008,228:225-240.
    [300]Mukherjee K, Choudhury AR, Gupta B, Gupta S, Sengupta DN. An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice[J]. BMC Plant Biol 2006,6:18.
    [301]Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K. Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean[J]. DNA Res 2012,19:37-49.
    [302]Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu JK, Gong Z. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis[J]. Plant J 2010.
    [303]李嘉平,张先文,陈信波.转录因子结合位点共现研究进展[J].中国生物工程杂志2012,32:87-94.
    [304]Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling[J]. Plant Cell 2002,14:749-762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700