用户名: 密码: 验证码:
绵羊口液对羊草生长的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动植物关系(plant-animal relationship)是生态学研究的核心问题之一。在自然界长期的协同进化过程中,动植物之间形成了稳定的适应(adaptation)和互惠关系(mutualism)。动物采食对植物的影响包括机械损伤(mechanical damage)和口液作用(saliva effect)。动物口液中的信号物质可以诱导植物化学防御(chemical defense),同时也会调节植物的生理代谢过程,促进植物生长。动物口液对植物生长的刺激作用是植物对动物采食补偿性响应的重要机制。因此,研究动物口液对植物生长的影响及其作用机制,对于理解动植物之间的协同进化和互惠关系具有重要意义。目前关于动物口液对植物生长影响的研究较少,机制尚不清楚。
     据此,本论文以松嫩草原优势物种(羊草,Leymus chinensis (Trin.) Tzvelev.)和主要放牧家畜(绵羊)为研究对象,分析探讨了动物口液对植物生长的作用规律及内在机制,具体包括以下5方面的研究内容:(1)动物口液是否能够促进植物生长?(2)动物采食强度对口液作用效果的影响;(3)口液作用随时间的变化规律;(4)口液中的重要化学成分对植物生长的影响;(5)植物碳水化合物转运对动物口液的响应。
     本研究通过盆栽的控制实验,采用完全随机实验设计和高效液相色谱分析技术,对绵羊口液调节羊草生长的作用规律及机制进行深入探讨,获得了以下主要结论:
     动物口液能够促进植物生长,并且口液对植物生长的促进作用主要表现为能够增加分蘖和芽库的数量。三年(2006、2007和2008)的实验结果表明,口液能够增加羊草地上生物量、地下生物量、分蘖和芽库数量,而对羊草高度没有显著作用。口液对羊草生长的促进作用主要表现在提高其分蘖能力上。羊草等多年生禾本科植物的生长过程包括伸长生长和增加分蘖两个阶段,伸长生长和分蘖这两种生长方式在时间上存在差异。植物生长发育早期进行伸长生长,生长达到一定阶段后,伸长生长逐渐减慢甚至停止,地下根茎上的芽库开始输出,不断增加地上分蘖。本研究进行实验处理时,羊草已开始分蘖,而伸长生长基本停止,所以芽库数量和分蘖对口液作用的响应最为敏感。分蘖是羊草的主要繁殖方式,也是对动物采食的重要适应性特征,芽库数量决定羊草潜在的分蘖能力。因此,口液对羊草分蘖和芽库的促进作用,能够提高羊草对动物采食的耐受性,维持动植物之间稳定的共存关系。
     动物口液对植物生长的作用具有采食强度依赖性,在轻度和完全刈割水平上,口液的作用最强。通过比较不同刈割水平上(0%,25%,50%,75%和100%)绵羊口液对羊草生长的作用差异,发现在轻度刈割(25%)和完全刈割(100%)两个刈割水平上,口液对羊草生长的促进作用最强。这是因为两个刈割水平分别接近羊草的顶端分生组织和基部分生组织,而口液中的生长因子和生长调节物质在分生组织附近对植物生长的调节作用最为有效。多年生禾本科植物的生长发育受顶端分生组织、居间分生组织和基部分生组织的调节,而植物的分蘖动态由顶端分生组织和基部分生组织的控制。本研究中,完全刈割水平(100%)靠近地面,与基部分生组织的距离最近,口液中的生长调节物质最容易到达地下芽库,能够刺激芽库输出,进而促进羊草进行分蘖。轻度刈割水平(25%)接近顶端分生组织,口液中的生长因子会通过顶端分生组织调节植物分蘖动态。因此,绵羊口液对羊草生长的作用具有刈割强度依赖性,在轻度和完全两个刈割水平上作用最强。在轻度采食强度上,动物口液可以提高植物的补偿生长能力,为优化放牧假说(optimal grazing hypothesis)提供新的实验支持证据;而在100%的完全采食强度上,口液对植物生长的促进作用可以降低重度放牧对植物的损伤,提高植物对动物采食的耐受性及其对长期放牧的适应性。
     动物口液对植物生长的调节作用具有时间依赖性。在本研究中,处理半天内羊草各构件内碳水化合物便发生变化;处理10天后口液对植株高度的影响已经表现出来;而口液对羊草分蘖和芽库数量以及生物量的作用主要表现在处理一个月后,其后,口液作用逐渐消失。植物被动物采食后,其再生能力受到贮藏碳水化合物转运和分生组织活性的调节。碳水化合物转运等生理过程在短时间内就会对动物采食做出响应,而分生组织对植物生长的调节过程需要较长的时间,所以口液对植物生长特征的影响需要更长的作用时间。植物伸长生长和分蘖两种生长方式对动物采食的敏感程度不同,伸长生长较快,而休眠芽库的激活需要一定诱导时间(inductive timeperiod)。因此,动物口液对植物生长的促进作用具有时间依赖性(time dependence),并且口液对植物生理过程和生长特征的作用时间存在差异。口液作用的时间依赖性表明,植物被动物采食后需要一定的时间进行恢复生长,这一研究结论强调轮牧、休牧等放牧管理策略的重要性。
     口液成分对植物生长没有发现促进作用。本研究比较了绵羊口液,表皮生长因子(epidermal growth factor)和硫胺素(thiamine),以及两者混合物对羊草生长的影响。实验结果表明,表皮生长因子和硫胺素,以及两者的混合物都没有促进羊草生长,而绵羊口液对羊草生长具有促进作用。表皮生长因子和硫胺素对羊草生长没有促进作用,可能是由于羊草生长在营养丰富的环境中,其合成的生长调节物质足以满足自身需要,而施加的外源生长物质对植物生长未能发挥促进作用。
     动物口液可以促进植物碳水化合物的转运。贮藏碳水化合物的快速转运是植物耐受动物采食、提高补偿生长能力的重要机制。本研究的实验结果显示,刈割处理3天后羊草各构件内果聚糖含量降低30-50%,之后趋于稳定。叶片和茎中的蔗糖含量在处理1天后增加2-3倍,3天后其含量降低到处理前的水平,而根茎和须根中的蔗糖含量在处理之后逐渐升高到处理前的3倍左右;刈割后,羊草各构件内葡糖和果糖含量逐渐增加到处理前的2-10倍。相对于单独刈割,绵羊口液加快了羊草各构件果聚糖的分解和单糖的积累。结果表明,被动物采食后的短时间内,植物各构件内的聚糖逐渐分解,单糖大量积累,为植物新生组织的再生过程提供能量。动物对植物碳水化合物转运的促进作用是植物补偿性生长的重要生理机制。
     总之,通过系列控制实验,本研究对动物口液影响植物生长的作用规律及机制获得了新的认识:绵羊口液能够促进羊草生长,并且口液作用具有采食强度和时间依赖性;采食强度对口液作用的影响是由植物分生组织的分布规律决定的,在顶端分生组织和基分生组织的位置上,动物口液对植物生长的调节作用最为有效。在轻度采食强度上动物口液可以提高植物的超补偿生长能力,这为优化放牧假说提供新的实验证据;在完全采食强度上,口液对植物生长的促进作用可以提高植物对重度放牧的适应性。动物口液对植物生长调节作用具有时间依赖性,这表明植物被动物采食后需要一定的恢复时间,这一结论强调休牧、轮牧等放牧管理策略的重要性。动物口液能够加快植物被动物采食后再生过程中碳水化合物的转运,为植物再生生长提供能量,这是植物对动物采食补偿生长的重要生理机制。本研究阐明了动物口液对植物生长的作用规律及机制,加深了对植物采食耐受性和补偿性生长机制的理解,丰富了动植物之间的互惠和协同进化理论,并为制定合理的草地管理策略提供科学依据。
Plant-animal relationship is a critical issue in ecology, and with long co-evolutionaryhistory there is complex adaptation and mutualism between grazer and grass in grasslandecosystems. Impacts of foraging on plant include influence of mechanical damage andsaliva effects. Cues in animal saliva can induce plant chemical defense, and regulatephysiological process of plant regrowth. The stimulatory effect of animal saliva is one ofthe mechanisms for plant compensatory response to herbivory. Therefore, the study onsalivary effects on plant growth and the mechanism can improve our knowledge on theco-evolutionary and mutualistic association between plants and animals. However, thereis little work on the impact of saliva on plant growth, and the mechanism keeps unclear.
     We performed a set of experiments to explore the effects of sheep saliva on growthof Leymus chinensis (Trin.) Tzvelev., which is a dominate species in the SongnenGrassland. This study was conducted to examine,(1) impacts of animal saliva on plantgrowth,(2) influence of herbivory intensity on saliva impacts,(3) change of saliva effectswith time,(4) response of plant growth to chemical components of animal saliva, and (5)effects of animal saliva on remobilization of carbohydrate reserve.
     Experiments were conducted in controlled environments with completelyrandomized design and carbohydrate was measured with high performance liquidchromatography (HPLC). The main results and conclusions are present as following:
     Sheep saliva stimulated growth of L. chinensis, especially for tillers and buds.Results in2006and2007showed that sheep saliva promoted growth of L. chinensis,increasing biomass, buds and tillers, but had no influence on height. Recruitment ofperennial growth depends mainly on vegetative growth, including elongation and tillering.Elongation is regulated by intercalary meristem and dynamic of tillers results fromoutgrowth of buds. The two growth patterns work at different time within one growingseason. At early period of development, plant growth comes from shoot elongation, inwhich there is accumulative increase in plant height and leaf area, and consequent highcapacity of photosynthesis and accumulation of assimilate. In the middle of development,elongation declines and even stops, and belowground buds begin to outgrowth. Whentreatments were performed in this study, L. chinensis began to tiller, and at this time basalmeristem started to regulate plant growth. In results of this study, tillers and budsresponded sensitively to saliva application, which can enhance plant tolerance toherbivory and keep the coexistence between plant and animal.
     Impact of animal saliva on plant growth was herbivory intensity dependent, andat light and complete herbivory intensities it was strongest. Results in three yearsshowed that sheep saliva had higher impacts on growth of L. chinensis at light (25%) andcomplete clipping (100%) levels. We suggested that this was associated with meristem distribution pattern within perennial herbaceous plants. Development of perennial grasseswas regulated by apical meristem, intercalary meristem and basal meristem. Intercalarymeristem controls plant elongation, and basal meristem and rhizomatous buds determinedynamic of tillering. Activity of both the meristem is regulated by apical meristem. Theresults showed that at light and complete clipping levels, sheep saliva had strongestpromotive effects on plant growth because the two positions were most close to apical andbasal meristem respectively. Tillers of L. chinensis came from outgrowth of buds at thebase of shoot and along the rhizome. The complete clipping level was most close to theground, and so it was easiest for growth regulators in animal saliva to reach belowgroundbud bank and stimulate tillering. Light clipping level was close to apical meristem andanimal saliva could regulate tillering through the regulation on apical meristem. Therefore,effect of sheep saliva on growth of L. chinensis was clipping level dependent, and at lightand complete clipping levels it was strongest.
     Effect of animal saliva on plant growth was time dependent. In this study, therewas response in carbohydrate content to sheep saliva within half a day after treatments.Plant height responded to saliva10days after treatments and30days after treatments,there was significant response in tillers, buds and biomass. Regrowth capacity of plantfollowing herbivory depends on the remobilization of restored carbohydrate and activityof meristem. Transfer of carbon reserve can respond to herbivory in a short time, andplant elongation and tillering differs in the sensitivity to herbivory. In this study,carbohydrate in every plant part changed within half a day after treatments, ten days laterthere was response to plant height, and thirty days after treatments impacts of sheep salivaon tillers and buds emerged. So, impact of animal saliva on plant growth was timedependent and there was difference in plant growth parameters to respond to saliva.
     The main salivary components had no positive effects on plant growth. There isa huge amount of growth factors and regulators within animal saliva, and saliva plays animportant role in plant-animal interaction. In this study, we compared different responseof L. chinensis growth to sheep saliva, epidermal growth factor (EGF), thiamine and themixture of the two chemicals. Results showed that EGF, thiamine or their mixture did notpromote growth of L. chinensis, and sheep saliva had high promotive effects than EGF,thiamine and their mixture. EGF or thiamine had no stimulation on growth of L. chinensis,and this may result from the favourable growth condition, in which plant growth is notlimited by growth factors.
     Animal saliva promoted remobilization of carbohydrate reserve. Rapidremobilization of carbohydrate reserve is one of the mechanisms of plant tolerance toherbivory and its capacity of compensatory growth. Results of this study showed that inevery plant part fructan content decreased by30-50%three days after treatments, and thekept in the later period of the experiment. Sucrose in leaf and stem increased by2to3times one days after treatments and then decreased to the level before treatments, while inrhizome and fine root sucrose content increased gradually three times. In every plant part,concentration of glucose and fructose increased gradually by2to10times. Compared with clipping, sheep saliva promoted hydrolization of fructans and accumulation ofglucose and fructose in every plant part, while it suppressed the accumulation of sucroseand then improved its concentration. The results demonstrated that during the short periodafter herbivory, fructans decreased, monosaccharides increased and were transported intonew tissues. In the process of herbivory, the saliva deposited on plant surface promotedmobilization of carbohydrate to support energy for compensatory growth.
     Results of this study showed that sheep saliva promoted growth and saliva effectswere herbivory intensity dependent. We proposed that this was associated withdistribution pattern of meristem within plant, and at the point of apical and basal meristemthe effects of animal saliva were most effective. The promotive effect of saliva on plantgrowth at intensive herbivory levels was associated with plant adaptation to long termgrazing, and the stimulatory impact of saliva on plant compensation at light herbivoryintensity can increase plant compensatory response to herbivory that gave support to theoptimal grazing hypothesis. The time dependence of animal saliva on plant growthaddressed the significance of delaying grazing and rotational grazing. Animal salivapromoted remobilization of carbohydrate during regrowth, with provided physiologicalmechanism of plant compensatory response and tolerance to herbivory. The stimulatoryeffects of animal saliva on plant growth and remobilization of carbohydrate expanded themutualism and coevolution theory, and gave guide to scientific grassland management.
引文
[1] Agrawal A A. Induced responses to herbivory and increased plant performance[J]. Science,1998,279(5354):1201-1202.
    [2] Agrawal A A, Strauss S Y, Stout M J. Costs of induced responses and tolerance to herbivory inmale and female fitness components of wild radish[J]. Evolution,1999,53(4):1093-1104.
    [3] Chew R M. Consumers as regulators of ecosystems: an alternative to energetics[J]. The OhioJournal of Science,1974,74(6):359-370.
    [4] Gordon I J, Prins H H T. The Ecology of Browsing and Grazing[M]. Berlin: Springer Verlag,2008.
    [5]王德利.植物与草食动物之间的协同适应及进化[J].生态学报,2004,24(11):2641-2648.
    [6] Krebs C J. Ecology: the Experimental Analysis of Distribution and Abundance[M]. California:Benjamin Cummings,2001.235-257.
    [7] Belsky A J. Does herbivory benefit plants? A review of the evidence[J]. American Naturalist,1986,127(6):870-892.
    [8] Crawley M J. Benevolent herbivores?[J]. Trends in Ecology and Evolution,1987,2(6):167-168.
    [9] Feeny P. Biochemical coevolution between plants and their insect herbivores[C]. In: Gilbert L E,Raven P H, eds, Coevolution of Animals and Plant. Austin: University of Texas Press,1975.3-19.
    [10] Paige K N. Overcompensation in response to mammalian herbivory: from mutulastic toantagonistic interactions[J]. Ecology,1992,73(6):2076-2085.
    [11] Painter E, Detling J. Effects of defoliation on net photosynthesis and regrowth of westernwheatgrass[J]. Journal of Range Management,1981,34(1):.68-71.
    [12] Thompson K, Uttley M G. Do grasses benefit from grazing[J]. Oikos,1982,39(1):113-115.
    [13] Hjalten J. Simulating herbivory: problems and possibilities[C]. In: Weisser W W, Siemann E,eds. Ecological Studies. Berlin: Springer Verlag,2004.243-255.
    [14] Lindgren, Klint J, Moen J. Defense mechanisms against grazing: a study of trypsin inhibitorresponses to simulated grazing in the sedge Carex bigelowii[J]. Oikos,2007,116(9):1540-1546.
    [15] McNaughton S J. Grazing as an optimization process: grass-ungulate relationships in theSerengeti[J]. American Naturalist,1979,113(5):691-703.
    [16] Capinera J L, Roltsch W J. Response of wheat seedlings to actual and simulated migratorygrasshopper defoliation[J]. Journal of Economic Entomology,1980,73(4):258-261.
    [17] Gadd M E, Young T P, Palmer T M. Effects of simulated shoot and leaf herbivory on vegetativegrowth and plant defense in Acacia drepanolobium[J]. Oikos,2001,92(3):515-521.
    [18] Boege K, Marquis R J. Facing herbivory as you grow up: the ontogeny of resistance in plants[J].Trends in Ecology and Evolution,2005,20(8):441-448.
    [19] Bogdanove A J. Pto update: recent progress on an ancient plant defence response signallingpathway[J]. Molecular Plant Pathology,2002,3(4):283-288.
    [20] Coley P D, Barone J A. Herbivory and plant defenses in tropical forests[J]. Annual Review ofEcology and Systematics,1996,27:305-335.
    [21] DeWitt T J, Sih A, Wilson D S. Costs and limits of phenotypic plasticity[J]. Trends in Ecologyand Evolution,1998,13(2):77-81.
    [22] Diggle P K. A developmental morphologist's perspective on plasticity[J]. Evolutionary Ecology,2002,16(3):267-283.
    [23] Rhoades D F. Offensive-defensive interactions between herbivores and plants: their relevance inherbivore population dynamics and ecological theory[J]. American Naturalist,1985,125(2):205-238.
    [24] Cates R G, Rhoades D F. Patterns in the production of antiherbivore chemical defenses in plantcommunities[J]. Biochemical Systematics and Ecology,1977,5(3):185-193.
    [25] Dyer M I, Detling J K, Coleman D C, Hilbert D W The role of herbivores in grasslands[C]. In:Estes J R, Tyrl R J, Brunken J N, eds, Grasses and Grasslands: Systematics and Ecology.Norman: The University of Oklahoma Press,1982.255-295.
    [26] Dyer M I, Turner C L, Seastedt T R. Herbivory and its consequences[J]. Ecological Applications,1993,3(1):10-16.
    [27] Halpern S L, Adler L S, Wink M. Leaf herbivory and drought stress affect floral attractive anddefensive traits in nicotiana quadrivalvis[J]. Oecologia,2010,163(4):961-971.
    [28] Havill N P, Raffa K F. Effects of elicitation treatment and genotypic variation on inducedresistance in Populus: impacts on gypsy moth (Lepidoptera: Lymantriidae) development andfeeding behavior[J]. Oecologia,1999,120(2):295-303.
    [29] Karban R, Adler F R. Induced resistance to herbivores and the information content of earlyseason attack[J]. Oecologia,1996,107(3):379-385.
    [30] Karban R, Agrawal A A, Thaler J S, Adler L S. Induced plant responses and information contentabout risk of herbivory[J]. Trends in Ecology and Evolution,1999,14(11):443-447.
    [31] Karban R, Baldwin I T. Induced Responses to Herbivory[M]. Chicago: The University ofChicago Press,1997.104-166.
    [32] Marquis R J. Plant architecture, sectoriality and plant tolerance to herbivores[J]. Vegetatio,1996,127(1):85-97.
    [33] Tiffin P, Inouye B D. Measuring tolerance to herbivory: accuracy and precision of estimatesmade using natural versus imposed damage[J]. Evolution,2000,54(3):1024-1029.
    [34] Tiffin P. Competition and time of damage affect the pattern of selection acting on plant defenseagainst herbivores[J]. Ecology,2002,83(7):1981-1990.
    [35] Gatehouse J A. Plant resistance towards insect herbivores: a dynamic interaction[J]. NewPhytologist,2002,156(2):145-169.
    [36] Strauss S Y, Agrawal A A. The ecology and evolution of plant tolerance to herbivory[J]. Trendsin Ecology and Evolution,1999,14(5):179-185.
    [37] Lennartsson T, Nilsson P, Tuomi J. Induction of overcompensation in the field gentian,Gentianella campestris[J]. Ecology,1998,79(3):1061-1072.
    [38] Lennartsson T, Tuomi J, Nilsson P. Evidence for an evolutionary history of overcompensation inthe grassland biennial Gentianella campestris (Gentianaceae)[J]. American Naturalist,1997,149(6):1147-1155.
    [39] Agrawal A A. Overcompensation of plants in response to herbivory and the by-product benefitsof mutualism[J]. Trends in Plant Science,2000,5(7):309-313.
    [40] Paige K N, Whitham T G. Overcompensation in response to mammalian herbivory: theadvantage of being eaten[J]. American Naturalist,1987,129(3):407-416.
    [41] Vittoria A, Rendina N. Fattori condizionanti la funzionalita tiaminica in piante superiori e cennisugli effetti dell bocca dei runinanti sull erbe pascolative[J]. Acta Medica Veterinaria (Naples),1960,6:379-405.
    [42] Musser R O, Hum-Musser S M, Eichenseer H, Peiffer M, Ervin G, Murphy J B, Felton G W.Caterpillar saliva beats plant defences[J]. Nature,2002,416(6881):599-600.
    [43] Musser R O, Farmer E, Peiffer M, Williams S A, Felton G W. Ablation of caterpillar labialsalivary glands: technique for determining the role of saliva in insect-plant interactions[J].Journal of Chemical Ecology,2006,32(5):981-992.
    [44] Hodgson J, Illius A W. The Ecology and Management of Grazing Systems[M]. New York:CABI Publishing,1996.3-36.
    [45] Lemaire G, Hodgson J, Moraes A D, Nabinger C. Grassland Ecophysiology and GrazingEcology[M]. New York: CABI Publishing,2000.191-207.
    [46] Waller S S, Moser L E, Reece P E, Gates G A. Understanding Grass Growth: the Key toProfitable Livestock Production[M]. Kanas: Trabon Print. Company,1985.1-20.
    [47] Vallentine J F. Grazing management[M]. California: Academic Press,2001.127-166.
    [48] Briske D D. Plant response to defoliation: morphological considerations and allocationpriorities[C]. In: Joss P J, Lynch P W, Williams O B, eds, Rangelands: a Resource under Siege.Cambridge: Cambridge University Press,1986.425-427.
    [49] Briske D D, Anderson V J. Tiller dispersion in populations of the bunchgrass Schizachyriumscoparium: implications for herbivory tolerance[J]. Oikos,1990,59(1):50-56.
    [50] Dahl B, Hyder D. Developmental morphology and management implications[J]. RangelandPlant Physiology,1977.257-290.
    [51] Olson B E, Richards J H. Tussock regrowth after grazing: intercalary meristem and axillary budactivity of tillers of Agropyron desertorum[J]. Oikos,1988,51(3):374-382.
    [52] Ryle G. Partition of assimilates in an annual and a perennial grass[J]. Journal of Applied Ecology,1970.217-227.
    [53] Tuomi J, Nilsson P, Astrom M. Plant compensatory responses: bud dormancy as an adaptation toherbivory[J]. Ecology,1994,75(5):1429-1436.
    [54] Flemmer A C, Busso C A, Fernandez O A. Bud viability in perennial grasses: water stress anddefoliation effects[J]. Journal of Range Management,2002,55:150-163.
    [55] Bergman M. Can saliva from moose, Alces alces, affect growth responses in the sallow, Salixcaprea?[J]. Oikos,2002,96(1):164-168.
    [56] Matches A G. Plant response to grazing: a review[J]. Journal of Production Agriculture,1992,5(1):1-7.
    [57] Danell K, Bergstrom R, Edenius L. Effects of large mammalian browsers on architecture,biomass, and nutrients of woody plants[J]. Journal of Mammalogy,1994,75(4):833-844.
    [58] Hunter M D, Schultz J C. Fertilization mitigates chemical induction and herbivore responseswithin damaged oak trees[J]. Ecology,1995,76(4):1226-1232.
    [59] Keurentjes J J B, Angenent G C, Dicke M, Santos V A P M D, Molenaar J, van der Putten W H,de Ruiter P C, Struik P C, Thomma B P H J. Redefining plant systems biology: from cell toecosystem[J]. Trends in Plant Science,2011,16(4):183-190.
    [60] Reymond P, Weber H, Damond M, Farmer E E. Differential gene expression in response tomechanical wounding and insect feeding in Arabidopsis[J]. The Plant Cell Online,2000,12(5):707-720.
    [61] Leriche H, Le Roux X, Desnoyers F, Benest D, Simioni G, Abbadie L. Grass response toclipping in an African savanna: testing the grazing optimization hypothesis[J]. EcologicalApplications,2003,13(5):1346-1354.
    [62] Hilbert D, Swift D, Detling J, Dyer M. Relative growth rates and the grazing optimizationhypothesis[J]. Oecologia,1981,51(1):14-18.
    [63] Cable D R. Partial defoliation stimulates growth of Arizona cottontop[J]. Journal of RangeManagement,1982.591-593.
    [64] McNaughton S J. Compensatory plant growth as a response to herbivory[J]. Oikos,1983,40(3):329-336.
    [65] Gao Y, Wang D L, Ba L, Bai Y G, Liu B. Interactions between herbivory and resourceavailability on grazing tolerance of Leymus chinensis[J]. Environmental and ExperimentalBotany,2008,63:113-122.
    [66] Maschinski J, Whitham T G. The continuum of plant responses to herbivory: the influence ofplant association, nutrient availability, and timing[J]. American Naturalist,1989,134(1):1-19.
    [67] Wise M J, Abrahamson W G. Beyond the compensatory continuum: environmental resourcelevels and plant tolerance of herbivory[J]. Oikos,2005,109(3):417-428.
    [68] Wise M J, Abrahamson W G. Effects of resource availability on tolerance of herbivory: a reviewand assessment of three opposing models[J]. American Naturalist,2007,169(4):443-454.
    [69] Hilbert D W, Swift D M, Detling J K, Dyer M I. Relative growth rates and the grazingoptimization hypothesis[J]. Oecologia,1981,51(1):14-18.
    [70] Givnish T J. Ecological constraints on the evolution of plasticity in plants[J]. EvolutionaryEcology,2002,16(3):213-242.
    [71]王静,杨持,韩文权,刘美玲.刈割强度对冷蒿可溶性碳水化合物的影响[J].生态学报,2003,23(5):908-913.
    [72] Sosebee R E, Wiebe H H. Effect of water stress and clipping on photosynthate translocation intwo grasses[J]. Agronomy Journal,1971,63:14-17.
    [73] Donaghy D J, Fulkerson W J. Priority for allocation of water-soluble carbohydrate reservesduring regrowth of Lolium perenne[J]. Grass and Forage Science,1998,53(3):211-218.
    [74] Schnyder H, De Visser R. Fluxes of reserve-derived and currently assimilated carbon andnitrogen in perennial ryegrass recovering from defoliation. The regrowing tiller and itscomponent functionally distinct zones[J]. Plant Physiology,1999,119(4):1423-1435.
    [75] Morvan-Bertrand A, Boucaud J, Le Saos J, Prud'homme M P. Roles of the fructans from leafsheaths and from the elongating leaf bases in the regrowth following defoliation of Loliumperenne L.[J]. Planta,2001,213(1):109-120.
    [76] Morvan-Bertrand A, Boucaud J, Prud'homme M P. Influence of initial levels of carbohydrates,fructans, nitrogen, and soluble proteins on regrowth of Lolium perenne L. cv. Bravo followingdefoliation[J]. Journal of Experimental Botany,1999,50(341):1817-1826.
    [77] Amiard V, Morvan-Bertrand A, Billard J P, Huault C, Prud'homme M P. Fate of fructosesupplied to leaf sheaths after defoliation of Lolium perenne L.: assessment by13C-fructoselabelling[J]. Journal of Experimental Botany,2003,54(385):1231-1243.
    [78] Young J Z, Hobbs M. The Life of Mammals[M]. Cambridge: Cambridge University Press,1975.
    [79] Owen D F. How plants may benefit from the animals that eat them[J]. Oikos,1980,35(2):230-235.
    [80] Georgiadis N J, McNaughton S J. Interactions between grazers and a cyanogenic grass[J].Cynodon Plectostachyus,1988.343-350.
    [81] McArthur C, Sanson G D, Beal A M. Salivary proline-rich proteins in mammals: roles in oralhomeostasis and counteracting dietary tannin[J]. Journal of Chemical Ecology,1995,21(6):663-691.
    [82] Hori K. Pectinase and plant growth-promoting factors in the salivary glands of the larva of thebug, Lygus disponsi[J]. Journal of Insect Physiology,1975,21(6):1271-1274.
    [83] Alborn H T, Turlings T C J, Jones T H, Stenhagen G, Loughrin J H, Tumlinson J H. An elicitorof plant volatiles from beet armyworm oral secretion[J]. Science,1997,276(5314):945-949.
    [84] Felton G W, Korth K L. Trade-offs between pathogen and herbivore resistance[J]. CurrentOpinion in Plant Biology,2000,3(4):309-314.
    [85] Chiu J, DeSalle R, Lam H M, Meisel L, Coruzzi G. Molecular evolution of glutamate receptors:a primitive signaling mechanism that existed before plants and animals diverged[J]. MolecularBiology and Evolution,1999,16(6):826-838.
    [86] Korth K L, Dixon R A. Evidence for chewing insect-specific molecular events distinct from ageneral wound response in leaves[J]. Plant Physiology,1997,115(4):1299-1305.
    [87] Imbusch R, Mueller M J. Formation of isoprostane F2-like compounds (Phytoprostanes F1)from α-linolenic acid in plants[J]. Free Radical Biology and Medicine,2000,28(5):720-726.
    [88] Turlings T C J, Alborn H T, Loughrin J H, Tumlinson J H. Volicitin, an elicitor of maizevolatiles in oral secretion of Spodoptera exigua: isolation and bioactivity[J]. Journal ofChemical Ecology,2000,26(1):189-202.
    [89] Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin I T. Molecular interactions betweenthe specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotianaattenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary andsufficient for herbivore-specific plant responses[J]. Plant Physiology,2001,125(2):711-717.
    [90] Pearce G, Strydom D, Johnson S, Ryan C A. A polypeptide from tomato leaves induceswound-inducible proteinase inhibitor proteins[J]. Science,1991,253(5022):895-897.
    [91] Moreno J J. Resveratrol modulates arachidonic acid release, prostaglandin synthesis, and3T6fibroblast growth[J]. Journal of Pharmacology and Experimental Therapeutics,2000,294(1):333-338.
    [92] Kistner C, Parniske M. Evolution of signal transduction in intracellular symbiosis[J]. Trends InPlant Science,2002,7(11):511-518.
    [93] Rosenthal G A, Berenbaum M R. Herbivores: Their Interactions with Secondary PlantMetabolites[M]. San Diego: Academic Press,1992.115-140.
    [94] Cao H, Baldini R L, Rahme L G. Common mechanisms for pathogens of plants and animals[J].Annual Review of Phytopathology,2001,39:259-284.
    [95] Tan M W, Ausubel F M. Caenorhabditis elegans: a model genetic host to study Pseudomonasaeruginosa pathogenesis[J]. Current Opinion in Microbiology,2000,3(1):29-34.
    [96] Schultz J C. Shared signals and the potential for phylogenetic espionage between plants andanimals[J]. Integrative and Comparative Biology,2002,42(3):454-462.
    [97] Gardner H W. Biological roles and biochemistry of the lipoxygenase pathway[J]. Hortscience,1995,30:197-205.
    [98] Berna A, Bernier F, Scott K, Stuhlmüller B. Ring up the curtain on DING proteins[J]. FebsLetters,2002,524:6-10.
    [99] Lindsey K, Casson S, Chilley P. Peptides: new signalling molecules in plants[J]. Trends in PlantScience,2002,7(2):78-83.
    [100] Heil M, Hilpert A, Kaiser W, Linsenmair K E. Reduced growth and seed set following chemicalinduction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs?[J] Journal of Ecology,2000,88(4):645-654.
    [101] Bj rkman C, H glund S, Eklund K, Larsson S. Effects of leaf beetle damage on stem woodproduction in coppicing willow[J]. Agricultural and Forest Entomology,2000,2(2):131-139.
    [102] Blée E. Impact of phyto-oxylipins in plant defense[J]. Trends in Plant Science,2002,7(7):315-321.
    [103] Mattiacci L, Dicke M, Posthumus M A. β-Glucosidase: an elicitor of herbivore-induced plantodor that attracts host-searching parasitic wasps[J]. Proceedings of the National Academy ofSciences of the United States of America,1995,92(6):2036-2040.
    [104] Spiteller D, Dettner K, Boland W. Gut bacteria may be involved in interactions between plants,herbivores and their predators: Microbial biosynthesis of N-acylglutamine surfactants aselicitors of plant volatiles[J]. Biological Chemistry,2000,381(8):755-762.
    [105] Howe G A, Jander G. Plant immunity to insect herbivores[J], Annual Review of Plant Biology,2008.41-66.
    [106] Kahl J, Siemens D H, Aerts R J, G bler R, Kühnemann F, Preston C A, Baldwin I T.Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defenseagainst an adapted herbivore[J]. Planta,2000,210(2):336-342.
    [107] Young J A, Schneyer C A. Composition of saliva in mammalia[J]. The Australian Journal ofExperimental Biology and Medical Science,1981,59(1):1-53.
    [108] Geuns J M C. Steroid hormones and plant growth and development[J]. Phytochemistry,1978,17(1):1-14.
    [109] Leshem Y. Physiological effects of animal steroid and gonadotropic hormones on curd cuttingsof Brassica oleracea L. var. cymosa[J]. Phyton-international Journal of Experimental Botany,1967,24:25-29.
    [110] Leshem Y, Avtalion R, Schwarz M, Kahana S. Presence and possible mode of action of aproteinaceous gonadotropin-like growth regulating factor in plant systems[J]. Plant Physiology,1969,44(1):75-77.
    [111] Leshem Y, Lunenfeld B. Gonadotropin promotion of adventitious root production on cuttings ofBegonia semperflorens and Vitis vinifera[J]. Plant Physiology,1968,43(3):313.
    [112] Reardon P O, Leinweber C L, Merrill L B. Response of sideoats grama to animal saliva andthiamine[J]. Journal of Range Management,1974,27:400-401.
    [113] Bonner J, Greene J. Further experiments on the relation of vitamin B1to the growth of greenplants[J]. Botanical Gazette,1939,101(2):491-500.
    [114] Reardon P O, Leinweber C L, Merrill L B. The effect of bovine saliva on grasses[J]. Journal ofAnimal Science,1972,34:897-898.
    [115] Carpenter G, Cohen S. Epidermal growth factor[J]. Annual Review of Biochemistry,1979,48(1):193-216.
    [116] Gray A, Dull T J, Ullrich A. Nucleotide sequence of epidermal growth factor cDNA predicts a128,000-molecular weight protein precursor[J]. Nature,1983,303(5919):722-725.
    [117] Gow C B, Phillips P A. Epidermal growth factor as a diuretic in sheep[J]. The Journal ofPhysiology,1994,477(1):27-33.
    [118] Kato R, Itagaki K, Uchida K, Shinomura T H, Harada Y. Effects of an epidermal growth factoron the growth of Zea coleoptiles[J]. Plant and Cell Physiology,1991,32(6):917-919.
    [119] Kato R, Nagayama E, Suzuki T, Uchida K, Shimomura T H, Harada Y. Promotion of plant celldivision by an epidermal growth factor[J]. Plant and Cell Physiology,1993,34(6):789-793.
    [120] Kato R, Shimoyama T, Suzuki T, Uchida K, Shinomura T H, Harada Y. Effects of an epidermalgrowth factor on growth of Zea primary roots and mesocotyls[J]. Plant and Cell Physiology,1995,36(1):197-199.
    [121] Dyer M I. Mammalian epidermal growth factor promotes plant growth[J]. Proceedings of theNational Academy of Sciences of the United States of America,1980,77:4836-4837.
    [122] Shemesh H, Ovadia O, Novoplansky A. Prioritized contingencies: context-dependentregeneratory effects of grazer saliva[J]. Plant Ecology,2012,213(1):167-174.
    [123] Dyer M I, Bokhari U G. Plant-animal interactions: studies of the effects of grasshopper grazingon blue grama grass[J]. Ecology,1976,57(4):762-772.
    [124] Vittoria A, Rendina N. Fattori condizionanti la funzionalita tiaminica in piante superiori e cennisugli effetti dell bocca dei runinanti sull erbe pascolative[J]. Acta Medica Veterinaria (Naples),1960,6:379-405.
    [125] Dyer M I. Plant-animal interactions: the effects of red-winged blackbirds on corn growth[C]. In:Proceedings of the6th Bird Control Seminar. Ohio: Bowling Green,1973.229-241.
    [126] Dyer M I. The effects of red-winged blackbirds (Agelaius phoeniceus L.) on biomass productionof corn grains (Zea mays L.)[J]. Journal of Applied Ecology,1975.719-726.
    [127] Harris P. A possible explanation of plant yield increases following insect damage[J].Agro-ecosystems,1974,1:219-225.
    [128] Mattson W J, Addy N D. Phytophagous insects as regulators of forest primary production[J].Science,1975,190(4214):515-522.
    [129] Detling J K, Ross C W, Walmsley M H, Hilbert D W, Bonilla C A, Dyer M I. Examination ofNorth American bison saliva for potential plant growth regulators[J]. Journal of ChemicalEcology,1981,7(2):239-246.
    [130] Detling J K, Dyer M I. Evidence for potential plant growth regulators in grasshoppers[J].Ecology,1981,62(2):485-488.
    [131] Detling J K, Dyer M I, Winn D T. Net photosynthesis, root respiration, and regrowth ofBouteloua gracilis following simulated grazing[J]. Oecologia,1979,41(2):127-134.
    [132] Poveda K, Gómez Jiménez M I, Kessler A. The enemy as ally: herbivore-induced increase incrop yield[J]. Ecological Applications,2010,20(7):1787-1793.
    [133] Mueller M J. Enzymes involved in jasmonic acid biosynthesis[J]. Physiologia Plantarum,1997,100(3):653-663.
    [134] Kessler A, Baldwin I T. Plant responses to insect herbivory: the emerging molecular analysis[J].Annual Review of Plant Biology,2002,53:299-328.
    [135] Pruski K, Astatkie T, Nowak J. Jasmonate effects on in vitro tuberization and tuber bulking intwo potato cultivars (Solanum tuberosum L.) Under different media and photoperiodconditions[J]. In Vitro Cellular and Developmental Biology-Plant,2002,38(2):203-209.
    [136] Fernie A R, Willmitzer L. Molecular and biochemical triggers of potato tuber development[J].Plant Physiology,2001,127(4):1459-1465.
    [137] Koda Y. Possible involvement of jasmonates in various morphogenic events[J]. PhysiologiaPlantarum,1997,100(3):639-646.
    [138] Johnston A, Bailey C B. Influence of bovine saliva on grass regrowth in the greenhouse[J].Canadian Journal of Animal Science,1972,52:573-574.
    [139] Detling J K, Dyer M I, Procter-Gregg C, Winn D T. Plant-herbivore interactions: examination ofpotential effects of bison saliva on regrowth of Bouteloua gracilis (H. B. K.) Lag[J]. Oecologia,1980,45(1):26-31.
    [140] Raven P H, Evert R F, Eichhorn S E. Biology of Plants[M]. New York: WH Freeman andCompany,2005.
    [141] Rooke T. Growth responses of a woody species to clipping and goat saliva[J]. African Journal ofEcology,2003,41(4):324-328.
    [142] Zhang Z, Wang S P, Jiang G M, Patton B, Nyren P. Responses of Artemisia frigida Willd.(Compositae) and Leymus chinensis (Trin.) Tzvel.(Poaceae) to sheep saliva[J]. Journal of AridEnvironments,2007,70:111-119.
    [143] Teng X, Ba L, Wang D, Wang L, Liu J. Growth responses of Leymus chinensis (Trin.) Tzvelevto sheep saliva after defoliation[J]. Rangeland Journal,2010,32(4):419-426.
    [144] Fan W, Cui W, Li X, Chen S, Liu G, Shen S. Proteomics analysis of rice seedling responses toovine saliva[J]. Journal of Plant Physiology,2011,168(5):500-509.
    [145] Bergmann L, Bergmann A. Aktivierung der biosynthese von thiamin in Calluskulturen vonNicotiana tabacum im Licht[J]. Planta,1968,79(1):84-91.
    [146] Inoue M, Maeda E. Thiamine as a factor of organ formation in rice callus cultures[J]. JapaneseJournal of Crop Science,1980,49:1-7.
    [147] McNaughton S J. Interactive regulation of grass yield and chemical properties by defoliation, asalivary chemical, and inorganic nutrition[J]. Oecologia,1985,65(4):478-486.
    [148] Reardon P O, Merrill L. Response of sideoats grama grown in different soils to addition ofthiamine and bovine saliva[C].In: Hyder D N, ed, Proceedings of the International RangelandCongress.1978.396-397.
    [149] Wallace L, Dyer M. Grassland management: Ecosystem maintenance and grazing[C]. In: JoernA, Keeler K H, eds, The Changing Prairie. New York: Oxford Press,1995.
    [150] Wang D L, Ba L. Ecology of meadow steppe in northeast China[J]. Rangeland Journal,2008,30(2):247-254.
    [151] Wang L, Wang D, He Z, Liu G, Hodgkinson K C. Mechanisms linking plant species richness toforaging of a large herbivore[J]. Journal of Applied Ecology,2010,47(4):868-875.
    [152] Wang L, Wang D, Bai Y, Jiang G, Liu J, Huang Y, Li Y. Spatial distributions of multiple plantspecies affect herbivore foraging selectivity[J]. Oikos,2010,119(2):401-408.
    [153] Wang L, Wang D, Bai Y, Huang Y, Fan M, Liu J, Li Y. Spatially complex neighboringrelationships among grassland plant species as an effective mechanism of defense againstherbivory[J]. Oecologia,2010,164(1):193-200.
    [154] Ba L, Wang D L, Hodgkinson K C, Xiao N Z. Competitive relationships between twocontrasting but coexisting grasses[J]. Plant Ecology,2006,183(1):19-26.
    [155]祝廷成.羊草生物生态学[M].长春:吉林科学技术出版社,2004.20-58.
    [156]贾慎修.中国饲用植物志[M].北京:农业出版社,1987.
    [157]杨允菲,刘庚长,张宝田.羊草种群年龄结构及无性繁殖对策的分析[J].植物学报,1995,37(2):147-153.
    [158] Zhang J T, Mu C S, Wang D L, Wang J F, Chen G X. Shoot population recruitment from a budbank over two seasons of undisturbed growth of Leymus chinensis[J]. Botany,2009,87(12):1242-1249.
    [159]杨允菲,郑慧莹,李建东.松嫩平原两种趋异类型羊草无性系种群特征的比较研究[J].植物学报,1997,39(11):1058-1064.
    [160] Liu J S, Wang L, Wang D L, Stephen P B, Sun F, Zhou Y F, Gao Y, Teng X. Plants can benefitfrom herbivory: stimulatory effects of sheep saliva on growth of Leymus chinensis[J]. PLoSONE,2012,7(1):1-8.
    [161] Forde B, Zhang H. Response: nitrate and root branching[J]. Trends in Plant Science,1998,3:204-205.
    [162] Mueller R J, Richards J H. Morphological analysis of tillering in Agropyron spicatum andAgropyron desertorum[J]. Annals of Botany,1986,58(6):911-921.
    [163] Jewiss O R. Tillering in grasses-its significance and control[J]. Grass and Forage Science,1972,27(2):65-82.
    [164] Harberd D. Some observations on natural clones in Festuca ovina[J]. New Phytologist,1962,85-100.
    [165] Harberd D. Observations on natural clones in Holcus mollis[J]. New Phytologist,1967,66(3):401-408.
    [166] Hart R H, Carlson G, McCloud D. Cumulative effects of cutting management on forage yieldsand tiller densities of tall fescue and orchardgrass[J]. Agronomy Journal,1971,63:895-898.
    [167] Murphy J S, Briske D D. Regulation of tillering by apical dominance: chronology, interpretivevalue, and current perspectives[J]. Journal of Range Management,1992,45(5):419-429.
    [168] Nilsson P, Tuomi J, str m M. Bud dormancy as a bet-hedging strategy[J]. American Naturalist,1996,147(2):269-281.
    [169] Ongaro V, Leyser O. Hormonal control of shoot branching[J]. Journal of Experimental Botany,2008,59(1):67-74.
    [170] Shimizu-Sato S, Mori H, Control of outgrowth and dormancy in axillary buds[J]. AmericanSociety of Plant Biologists,2001.1405-1413.
    [171] Dun E A, Ferguson B J, Beveridge C A. Apical dominance and shoot branching. Divergentopinions or divergent mechanisms?[J]. Plant Physiology,2006,142(3):812-819.
    [172] Bonner J. Vitamin B1a growth factor for higher plants[J]. Science,1937,85(2198):183-184.
    [173] Bonner J, Devirian P S. Growth factor requirements of four species of isolated roots[J].American Journal of Botany,1939,26(8):661-665.
    [174] Thomas R G, Hay M J M. Cumulative activation of axillary buds by nodal roots in Trifoliumrepens L[J]. Journal of Experimental Botany,2007,58(8):2069-2078.
    [175] Thomas R G, Hay M J M. Regulation of shoot branching patterns by the basal root system:towards a predictive model[J]. Journal of Experimental Botany,2008,59(6):1163-1173.
    [176] Tiffin P. Mechanisms of tolerance to herbivore damage: what do we know?[J]. EvolutionaryEcology,2000,14(4):523-536.
    [177] Huhta A P, Lennartsson T, Tuomi J, Rautio P, Laine K. Tolerance of Gentianella campestris inrelation to damage intensity: an interplay between apical dominance and herbivory[J].Evolutionary Ecology,2000,14(4):373-392.
    [178] Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption andeyelid opening in the new-born animal[J]. Journal of Biological Chemistry,1962,237(5):1555-1562.
    [179] Frazier W A, Boyd L F, Pulliam M W, Szutowicz A, Bradshaw R A. Properties and specificity ofbinding sites for125I-nerve growth factor in embryonic heart and brain[J]. Journal of BiologicalChemistry,1974,249(18):5918-5923.
    [180] Sporn M B, Roberts A B, Shull J H, Smith J M, Ward J M, Sodek J. Polypeptide transforminggrowth factors isolated from bovine sources and used for wound healing in vivo[J]. Science,1983,219(4590):1329-1331.
    [181] Cohen S. The stimulation of epidermal proliferation by a specific protein (EGF)[J].Developmental Biology,1965,12(3):394-407.
    [182] Engelbrecht L. Cytokinin activity in larval infected leaves[J]. Biochemie und Physiologie derPflanzen,1971.162:9-27.
    [183] Engelbrecht L, Orban U, Heese W. Leaf-miner caterpillars and cytokinins in the "green islands"of autumn leaves[J]. Nature,1969,223(5203):319-321.
    [184] Miles P. Insect secretions in plants[J]. Annual Review of Phytopathology,1968,6(1):137-164.
    [185] Miles P W. Aphid saliva[J]. Biological Reviews,1999,74(1):41-85.
    [186] Miles P W, Lloyd J. Synthesis of a plant hormone by the salivary apparatus of plant-suckinghemiptera[J]. Nature,1967,213(5078):801-802.
    [187] Neales T F, Incoll L. The control of leaf photosynthesis rate by the level of assimilateconcentration in the leaf: a review of the hypothesis[J]. The Botanical Review,1968,34(2):107-125.
    [188] Ryle G, Powell C. Defoliation and regrowth in the graminaceous plant: the role of currentassimilate[J]. Annals of Botany,1975,39(2):297.
    [189] Owen D F, Wiegert R G. Do consumers maximize plant fitness?[J]. Oikos,1976,27(3):488-492.
    [190] Owen D F, Wiegert R G. Mutualism between gasses and grazers: an evolutionary hypothesis[J].Oikos,1981,36(3):376-378.
    [191] Murphy R A, Saide J D, Blanchard M H, Young M. Molecular properties of the nerve growthfactor secreted in mouse saliva[J]. Proceedings of the National Academy of Sciences of theUnited States of America,1977,74(7):2672-2676.
    [192] Murphy R A, Saide J D, Blanchard M H, Young M. Nerve growth factor in mouse serum andsaliva: role of the submandibular gland [J]. Proceedings of the National Academy of Sciences ofthe United States of America,1977,74(6):2330-2333.
    [193] Murphy R A, Watson A Y, Metz J, Forssmann W G. The mouse submandibular gland: anexocrine organ for growth factors[J]. Journal of Histochemistry&Cytochemistry,1980,28(8):890-902.
    [194] Taylor J M, Mitchell W M, Cohen S. Epidermal growth factor[J]. Journal of BiologicalChemistry,1972,247(18):5928-5934.
    [195] Hollenberg M D. Epidermal growth factor-urogastrone, a polypeptide acquiring hormonalstatus[J]. Vitamins&Hormones,1980,37(69-110.
    [196] Bonner J. The hormones and vitamins of plant growth[J]. The Scientific Monthly,1938,47(5):439-448.
    [197] Bonner J. Thiamin (vitamin B1) and the growth of roots: the relation of chemical structure tophysiological activity[J]. American Journal of Botany,1938,25(7):543-549.
    [198] Bonner J, Greene J. Vitamin B1and the growth of green plants[J]. Botanical Gazette,1938,100(1):226-237.
    [199]张光辉,李增嘉,潘庆民,宁堂原,杨景成.内蒙古典型草原羊草和大针茅地下器官中碳水化合物含量的季节性变化[J].草业学报,2006,15(3):42-49.
    [200] Van den Ende W, De Roover J, Van Laere A. Effect of nitrogen concentration on fructan andfructan metabolizing enzymes in young chicory plants (Cichorium intybus)[J]. PhysiologiaPlantarum,1999,105(1):2-8.
    [201] Koch K E. Carbohydrate-modulated gene expression in plants[J]. Annual Review of PlantPhysiology and Plant Molecular Biology,1996,47:509-542.
    [202]刘颖,王德利,韩士杰,王旭.放牧强度对羊草草地植被再生性能的影响[J].草业学报,2004,13(6):39-44.
    [203]刘颖,王德利,韩士杰,程志茹,杜鹃,王旭.不同放牧率下羊草和芦苇可溶性碳水化合物和氮素含量的变化[J].应用生态学报,2003,14(12):2167-2170.
    [204]高英志,王艳华,王静婷,刘鞠善,王德利.草原碳水化合物对环境胁迫响应研究进展[J].应用生态学报,2009,20(11):2827-2831.
    [205] Stowe K A, Marquis R J, Hochwender C G, Simms E L. The evolutionary ecology of toleranceto consumer damage[J]. Annual Review of Ecology and Systematics,2000,31:565-595.
    [206] Lothier J, Lasseur B, Le Roy K, Van Laere A, Prud'homme M P, Barre P, Van Den Ende W,Morvan-Bertrand A. Cloning, gene mapping, and functional analysis of a fructan1-exohydrolase (1-FEH) from Lolium perenne implicated in fructan synthesis rather than infructan mobilization[J]. Journal of Experimental Botany,2007,58(8):1969-1983.
    [207] Van den Ende W, Michiels A, Van Wonterghem D, Clerens S P, De Roover J, Van Laere A J.Defoliation induces fructan1-exohydrolase II in witloof chicory roots. Cloning and purificationof two isoforms, fructan1-exohydrolase IIa and fructan1-exohydrolase IIb. Mass fingerprint ofthe fructan1-exohydrolase II enzymes[J]. Plant Physiology,2001,126(3):1186-1195.
    [208] Thornley J H M. A balanced quantitative model for root: shoot ratios in vegetative plants[J].Annuals of Botany,1972,36(431-441.
    [209] Wilson J B. A review of evidence on the control of shoot: root ratio, in relation to models[J].Annals of Botany,1988,61(4):433-449.
    [210] Briske D D. Developmental morphology and physiology of grasses[C]. In: Heitschmidt R K,Stuth J W, eds, Grazing Management. An Ecological Perspective. Portland: Timber Press,1991.85-108.
    [211] Rosenthal J P, Welter S C. Tolerance to herbivory by a stemboring caterpillar in architecturallydistinct maizes and wild relatives[J]. Oecologia,1995,102(2):146-155.
    [212] Schlichting C D. The evolution of phenotypic plasticity in plants[J]. Annual Review of Ecologyand Systematics,1986,17(1):667-693.
    [213] Tomlinson K W, O'Connor T G. Control of tiller recruitment in bunchgrasses: unitingphysiology and ecology[J]. Functional Ecology,2004,18(4):489-496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700