用户名: 密码: 验证码:
小麦HMW-GS缺失种质资源的筛选鉴定及其品质效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子量谷蛋白亚基(high molecular weight glutenin subunits, HMW-GS)是面团粘弹性的主要决定因素,HMW-GS的组成和变异直接影响到小麦的加工品质。本研究在对小麦种质资源HMW-GS组成分析的基础上,选择HMW-GS不同缺失类型的材料与长江下游地区主栽弱筋小麦品种扬麦13、扬麦18杂交组配,衍生回交群体与自交高代姊妹系群体,对HMW-GS不同缺失类型的遗传与品质效应进行了研究,探讨HMW-GS不同缺失类型在弱筋小麦品质改良上的应用价值。主要实验结果如下:
     1、小麦HMW-GS缺失种质资源的筛选和鉴定:采用SDS-PAGE电泳检测方法,对261份小麦微核心种质和54份应用核心种质、97份CIMMYT人工合成小麦、20份普通六倍体小麦和2份转基因小麦进行了HMW-GS组成分析。供试的小麦微核心种质和应用核心种质在Glu-Al、 Glu-B1禾(?)Glu-D1三个位点的组成比较单一,主要由Null、7+8和2+12亚基组成。部分微核心种质表现出HMW-GS的缺失现象。其中,5份材料Glu-B1位点缺失1By亚基,表达1Bx7或1Bx22亚基;3份材料Glu-D1位点缺失1Dx或1Dy亚基,表达1Dyl2或lDx2亚基。在人工合成小麦中,HMW-GS存在着丰富的等位变异,2份材料在Glu-A1位点表达稀有亚基1Axl’,在Glu-B1位点和Glu-D1位点分别发现一个未知的亚基(暂命名为Y亚基和X亚基),并发现了一些新的亚基组合;此外,1份材料Glu-B1位点缺失lBy型亚基,表达1Bx7亚基:1份材料表现为Glu-A1禾WGlu-B1位点共同缺失;2份材料在Glu-D1位点缺失1Dx亚基,表达1Dyl0亚基。在供试的普通六倍体小麦中,3份材料表现为Glu-D1位点完全缺失,3份材料表现为Glu-A1和Glu-D1位点共同缺失,其中拉花9650在Glu-B1位点同时表达4种不同亚基类型。2份转基因小麦分别表现为Glu-D1位点1Dx5亚基缺失和Glu-1位点HMW-GS完全缺失。
     2、 HMW-GS不同缺失类型的遗传:普通六倍体小麦2GS0414-10Glu-A1和Glu-D1位点共同缺失、拉花9650Glu-D1位点缺失,在Fl代均表现为隐性;在F2代表现为3:1或9:3:3:1的分离比例;BC1F1代不表达HMW-GS缺失。人工合成小麦SYN351Glu-A1和Glu-B1位点共同缺失在F1代表现为隐性;在F2代不符合3:1或9:3:3:1的理论比例,出现1By8缺失现象;BC1F1代未表达HMW-GS缺失。2份转基因小麦1Dx5缺失和HMW-GS完全缺失在F1代均表现为显性遗传;由于外源小RNA基因对1Dx5亚基的表达有特异性抑制作用,导致1Dx5缺失在F2代表现出13(不表达1Dx5):3(表达1Dx5)的分离比例,在BC1F1代表现出3(不表达1Dx5):1(表达1Dx5)的分离比例;HMW-GS完全缺失在F2代表现出3(不表达HMW-GS)1(表达HMW-GS)的分离比例,在BC1F1代表现出1(不表达HMW-GS)1(表达HMW-GS)的分离比例。
     3、供体亲本的品质指标:在普通六倍体小麦2GS0414-10、拉花9650、转基因小麦Glu-1Dx5-RNAi和Glu-1-RNAi中,均表现较低的麦谷蛋白含量和较高的醇溶蛋白含量;较低的SDS沉淀值和水SRC,较短的面团形成时间和稳定时间,较低的粉质质量指数;与转化受体品种Bobwhite相比较,转基因小麦蛋白质含量显著增加,饼干直径增大。人工合成小麦SYN351具有较低的湿面筋含量和较高的面筋指数。
     4、 HMW-GS不同缺失类型杂交后代的品质指标:对以Glu-A1和Glu-D1位点共同缺失的材料2GS0414-10、HMW-GS完全缺失的材料Glu-1-RNAi为供体亲本,以扬麦13和扬麦18为受体亲本衍生的回交后代BC2F3、BC1F3和两个自交高代姊妹系F5的品质测试结果表明:与HMW-GS正常表达的籽粒品质比较,当Glu-A1位点缺失时SDS沉淀值及水SRC均无显著变化;当Glu-D1位点缺失时SDS沉淀值显著降低,水SRC无显著变化;当Glu-A1和Glu-D1位点共同缺失或Glu-1位点HMW-GS完全缺失时,SDS沉淀值和水溶剂保持力(SRC)均显著降低;另外在普通六倍体小麦2GS0414-10的杂交后代中,当Glu-A1缺失、Glu-D1缺失或Glu-A1和Glu-D1位点共同缺失,籽粒蛋白质含量差异不显著。
     5、综合本研究结果,HMW-GS缺失降低了麦谷蛋白含量,增加了醇溶蛋白含量;降低了SDS沉淀值和水溶剂保持力,缩短了面团形成时间和稳定时间,这有利于降低面筋含量和面团筋力强度,增大面团的延展性,增加饼干的直径。表明,HMW-GS缺失对改善弱筋小麦的加工品质可能有一定的贡献,可以考虑将不同HMW-GS缺失材料应用于弱筋小麦的品质改良工作。
HMW-GS (high molecular weight glutenin subunits) is important in determining the viscoelastic properties of wheat. Distribution and variation of HMW-GS are also related with the processing quality of wheat. In this study, HMW-GS distribution in wheat germplasm resources was firstly analyzed. Then, wheat lines with different types of HMW-GS deletion were selected and crossed with two soft wheat varieties Yangmai13and Yangmai18to generate advanced backcross and inbred population. To investigate the potential of HMW-GS deletion in soft wheat breeding, genetic behavior and quality effect of different types of HMW-GS deletion were analyzed. The results were described in detail as followings.
     1. Screening of wheat germplasm resources with HMW-GS deletion. The HMW-GS distribution of432wheat materials, including a mini core set of wheat lines with261members and54application-core collection germplasms,97synthetic wheat lines from CIMMYT,20common wheat lines and two transgenetic wheat lines, were analyzed by the SDS-PAGE technique. The Glu-Al, Glu-B1and Glu-D1loci in a mini core set of wheat lines mainly consist of Null,7+8and2+12subunits. However, some wheat core lines show a certain HMW-GS deletion. Five lines possess1Bx7type or1Bx22subunits but lack1By type subunits at the Glu-B1loci. Other three lines have1Dx2or1Dy12type subunits but lack1Dy or1Dx type subunits at the Glu-D1loci. High variation of HMW-GS constitution was observed in synthetic wheat lines. A rare subunit temporarily named1Ax1' was identified. Two unknown subunits temporarily named Y and X type subunits were also found in synthetic wheat lines. Additionally, some new subunit combinations were detected in synthetic wheat lines. One synthetic wheat line contains1Bx7type subunit but lacks1By type subunit at the Glu-B1locus. Two synthetic wheat lines possess1Dy10type subunits but lack1Dx type subunits at the Glu-D1loci. Both Glu-Al and Glu-B1loci were absent in one synthetic wheat line. The Glu-Dl loci were lack in three common wheat lines. Both Glu-A1and Glu-D1loci were lost from three common wheat lines. The Glu-B1loci contains four type subunits in Lahua9650. The1Dx5subunit at the Glu-D1locus and whole Glu-D1locus were lack in two transgenetic wheat lines, respectively.
     2. Genetic behavior of different types of HMW-GS deletion. The double-deletion of Glu-A1and Glu-D1loci of HMW-GS in common wheat line2GS0414-10and Glu-D1loci absence in Lahua9650all inherit recessively in F1progeny. HMW-GS composition in F2progenies is coincident with the3(HMW-GS expression):1(HMW-GS silence) ratio of Mendelian inheritance. HMW-GS absence was not observed in BC1F1lines. The double-deletion of Glu-A1and Glu-B1loci of HMW-GS in synthetic wheat line SYN351inherits recessively in F1progeny. HMW-GS distribution in F2progenies is inconsistent with the theoretical ratio3:1or9:3:3:1. HMW-GS absence was not observed in BC1F1plants. The silent effect of HMW-GS is dominant in two transgenetic wheat. Due to the suppression of1Dx5subunit by small RNA, HMW-GS distribution in F2and BC1F1progenies shows13(1Dx5subunit silence):3HMW-GS (1Dx5subunit expression) and3(1Dx5subunit silence):1(1Dx5subunit expression) ratios, respectively. The whole HMW-GS silent effect in F2and BC1F1progenies shows3(HMW-GS silence):1(HMW-GS expression) and1(HMW-GS silence):1(HMW-GS expression) ratios, respectively.
     3. Quality evaluation of donor parents. Donor parents2GS0414-10, Lahua9605and Glu-1Dx5-RNA,Glu-1-RNAi all have comparatively low gluten content and high gliadin content, have relatively low SDS sedimentation value, water solvent retention capacity, development time, stability time and the index of flour quality. Compared with that of receptor line Bobwhite, Protein content increases significantly in transgenetic lines. Additionally, diameter of biscuits increases significantly due to all HMW-GS silence. Lower wet gluten content and higher gluten index due to the double-deletion of Glu-A1and Glu-B1loci in SYN351.
     4. Quality analysis of progenies derived from different types of HMW-GS deletion. The wheat line2GS0414-10with the double-deletion of Glu-A1and Glu-Dl loci, and HMW-GS silence in transgenetic wheat lines were adopted as donor parent. Two soft wheat varieties Yangmai13and Yangmai18were used as receptor parents and crossed to generate BC2F3、BC1F3and F5progenies. Quality of parents and their progenies were tested. Results indicated that Glu-A1absence has little effect on protein content, SDS sedimentation value and water solvent retention capacity. The Glu-D1absence does not influence protein content and water solvent retention capacity but significantly influences the SDS sedimentation value. Intriguingly, double-deletion of Glu-A1and Glu-D1loci has little effect on protein content but significantly influence the SDS sedimentation value and water solvent retention capacity. Both the SDS sedimentation value and water solvent retention capacity decrease significantly owing to whole HMW-GS silence.
     5. Results presented in this study indicated that wheat lines with HMW-GS deletion have comparatively low gluten content and high gliadin content, which is benefical to decrease the dough strength and increase the dough extensibility. Wheat lines with HMW-GS deletion also have relatively low SDS sedimentation value, water solvent retention capacity, development time and stability time. The HMW-GS deletion effect may be useful in quality improvement in soft wheat.
引文
[1]2009-2012年中国烘焙食品市场现状及行业趋势调研报告[C],2009.
    [2]庄巧生.主编.中国小麦品种改良及系谱分析中国小麦品种改良及系谱分析[M].北京,中国农业出版社,2003.
    [3]姚金宝.中国小麦品质育种现状、存在问题及改良策略[J].南京农业学报,2006,16:7-10
    [4]李宗智.小麦品质改良进展[J].农牧情报研究.1988,7:17-21.
    [5]李鸿思,张玉良.我国小麦种质资源主要品质特性鉴定结果及评价[J].中国农业科学,1995,28:29-37.
    [6]王胜军,宋保谦,张传中,等.谈优质小麦的开发利用[J].河南农业科学,1999,9:5-6.
    [7]徐兆飞,张惠叶,张定一.主编.小麦品质及其改良[M].北京,气象出版社,2000.
    [8]李硕碧,任志龙,王光瑞.小麦品种出粉率与其品质性状关系的研究[J].西北植物学报,1996.16:392-398.
    [9]刘广田,李保云.小麦品质性状的遗传及遗传改良[J].农业生物技术学报,2000,8:307-317.
    [10]魏益民.主编.谷物品质与食品品质[M].陕西,陕西人民出版社,2002.
    [11]潘志芬,邓光兵,刘毅,等.小麦高分子量麦谷蛋白亚基组成及其对小麦烘烤品质的影响[[J].应用与环境生物学报,2006,12:155-159.
    [12]王瑞.小麦胚乳贮藏蛋白的组成遗传特点及其与面包品质的关系[J].国外农学一麦类作物,1995:34-37
    [13]毛沛.小麦高分子量(HMW)麦谷蛋白亚基组成及其与面包烘烤品质关系的研究[J].小麦育种通讯,1992,:13-14.
    [14]毛沛,李宗智,卢少源.小麦高分子量麦谷蛋白亚基对面包加工品质效应的分析[J].华北农学报,1995,10:55-59.
    [15]李硕碧,毛建昌,王光瑞.小麦品种面包烘烤品质与其他品质性状关系之研究[J].西北农业学报,1996,4:25-30.
    [16]杨学举,卢少源,张荣芝.小麦子粒蛋白组分与面包烘焙品质性状关系的研究[J].中国粮油学报,1999,14:1-5.
    [17]中华人民共和国国家标准-优质小麦弱筋小麦GB/T17893-1999[S].
    [18]马传喜.软质小麦的品质研究[J].国外农学-麦类作物,1994,4:37-40.
    [19]Jolly CJ, Rahman S, Kortt V, et al. Characterization of the wheat Mr.15000 grain protein and analysis of the relationship between its accumulation in the whole seed and grain softness [J]. Theor Appl Genet,1993,86:589-597.
    [20]吴宏亚,朱冬梅,张伯桥,等.江苏弱筋小麦品种表现及存在问题探析[J],中国农学通报,2006.22:169-172.
    [21]Orth RA, Bushuk W. A comparative study of the proteins of wheat of diverse baking qualities [J]. Cereal Chem,1972,49:268-275.
    [22]Shewry PR, Halford NG. Cereal seed storage proteins:structures, properties and role in grain utilization [J]. J Exp Bot,2002,53:947-958.
    [23]傅宾孝,赵友梅,秦礼谦.小麦麦谷蛋白与面粉品质[J].郑州粮食学院学报,1988,33:1-10.
    [24]周青文.麦胚乳贮藏蛋白组分遗传研究进展[J].麦类作物学报,2000,20:78-83.
    [25]Tatham AA, Shewry PR. The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of alpha-,beta-,gamma-and omega-gliadins [J]. J Cereal Sci,1985,3: 103-113.
    [26]Gupta RB, Paul JG, Cornish GB, et al. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1,of common wheats. I. Its additive and interaction effects on dough properties [J]. J Cereal Sci,1994,19:9-17.
    [27]Harberd NP, Barrels D, Thompson RD. Analysis of the gliadin muhigene loci in bread wheat using nullisomic-tetrasomic lines [J]. Mol Gen Genet,1985,198:234-242.
    [28]Shewry PR, Tatham AS, Forde J, et al. The classification and nomenclature of wheat gluten protein:a reassessment [J]. Cereal Sci,1986,4:97-106.
    [29]Payne PI. Genetics of wheat storage proteins and the effect of allelic variation on bread making quality [J]. Annu Rev Plant Physiol,1987,38:141-153.
    [30]Bietz JA. Genetic and biochemical studies of non-enzymatic endosperm proteins [J]. Wheat Wheat improv-Agron Mono,1987,2:215-241.
    [31]Lawrence GJ, Shepherd KW. Chromosomal location of genes controlling seed protein in species related to wheat [J]. Theor Appl Genet,1981,59:25-31.
    [32]Rooke L, Bekes F, Fido R, et al. Overexpression of a gluten protein wheat results in greatly increased dough strength [J]. Cereal Sci,1999,30:115-120.
    [33]Harberd NP, Barrels D, Thompson RD. Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines [J]. Genet,1997,95:59-65.
    [34]Payne PI, Lawrence CN, Muddy EE. Control by homologous group Ⅰ chromosomes of the high-molecular-weight subunits of glutenin, a major proteine of wheat endosperm [J]. Theor Appl Cenet,1980,58:113-120.
    [35]Robin GA, Monica B, Terence AB. Evolution of the high molecular weight glutenin loci of the A, B, D and G genomes of wheat [J]. Genome,1999,42:296-307.
    [36]Weegel PL, Hamer RJ, Schofield JD. Critical review functional properties of wheat glutenin [J]. J Cereal Sci,1996,23:1-18
    [37]Bietz JA, Wall JS. Wheat gluten subunits:molecular weights determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis [J]. Cereal Chem,1972,49:416-430.
    [38]Payne PI, Corfield KG. Subunit Composition of wheat glutenin proteins isolated by gel filtration in a dissociating medium [J]. Planta,1979,145:83-88.
    [39]Gupta RB, Shepherd KW. Inheritence of noval high-molecular-weight glutenin subunits in the Tunisian bread wheat BT-2288[J]. Genome,1988,30:442-445.
    [40]Bietz JA, Wall JS. The effect of various extractants on the subunit composition and as-sociation of wheat glutenin [J]. Cereal Chem,1975,52:145-155.
    [41]Payne PI, Lawrence GJ. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat [J]. Cereal Res Communications,1983,11:29-35.
    [42]Gupta RB, MacRitchie F. A rapid one-step one-dimensional SDS-PAGE procedure for analysis of subunits composition of glutenin in wheat [J]. Cereal Sci,1991,14:105-109.
    [43]Payne PI, Holt LM. Law CN. Structural and neticat studies on the high-molecular weight suhunits of wheat glutenin [J]. Theor Appl Genet,1981,80:229-236.
    [44]Payne PI, Holt LM, Krattiger AF, et al. Relationship between HMW glutenin subunit composition and measures of the bread-making quality of wheat varieties grown in Spain [J]. J Cereal Sci,1988,7:229-236.
    [45]Shewry P.R., Tatham A.S.:Disulphide bonds in wheat gluten proteins [J]. Journal of Cereal Science 1997,25:207-227.
    [46]Shewry PR, Halford NG, Tatham AS. The high molecular weight subunits of wheat glutenin [J]. J Cereal Sci,1992,15:105-120.
    [47]Halford NG, Ford J, Anderson OD et al. The nucleotide and deduced amino acid sequences of a HMW glutenin subunit gene from chromosome 1B of bread wheat (Triticum aestivum L.) and comparison with those of genes from chromosome 1A and 1D [J]. Theor Appl Genet,1987,75: 117-126.
    [48]Shewry PR, Tatham AS, Halford NG. Genetic modification and plant food allergens:risks and benefits [J]. J Chromatogra B,2001,756:327-335.
    [49]Gupta RB, Singh NK, Shepherd KW. The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats [J]. Theor Appl Genet,1989,77:57-64.
    [50]Popineau Y, Deshayes G, Lefebvre J, et al. Prolamin aggregation, gluten viscoelasticity, and mixing properties of transgenic wheat lines expressing lAx and 1Dx high molecular weight glutenin subunit transgenes [J]. J Agr Food Chem,2001,491:395-401.
    [51]Shewry PR, Haford NG, Tatham AS. The High-molecular-weight subunits of wheat, barley and rye:genetics molecular biology, chemistry and role in wheat gluten structure and functionality [J]. Plant Mol Cell Biol,1989,6:163-219
    [52]D'Ovidio R, Porceddu E, Lafiandra D. PCR analysis of genes encoding allelic variants of highmolecular weight glutenin subunits at the Glu-D1 locus [J]. Theor Appl Genet,1994, 88:175-180.
    [53]D'Ovidio R, Lafiandra D, Porceddu E. Identification and molecular characterization insertion within the repetitive domain of a high-molecular-weight glutenin subunit gene from wheat [J]. Theor Appl Genet,1996,93:1048-1053.
    [54]Roland C, Thierry A, Larbi R, et al. Homology modeling and molecular dynamics simulations of the N-terminal domain of wheat high molecular weight glutenin subunit 10 [J]. Plant Sci, 2003,12:34-43.
    [55]郝春燕,李建国,李雅轩,等.小麦醇溶蛋白基因克隆研究进展[J].首都师范大学学报(自然科学版),2006,27:67-70.
    [56]Margiotta B, Urbano M, Colaprico G, et al. Detection of y-type subunit at the Glu-A1 locus in some Swedish bread wheat lines[J]. J Cereal Sci,1996,23:203-211.
    [57]刘广田,李保云.小麦品质性状的遗传及遗传改良[J].农业生物技术学报,2000,8:307-317.
    [58]李保云,王岳光,刘凤鸣,等.小麦高分了量谷蛋白亚基与小麦品质性状关系的研究[J].作物学报,2000,26:322-326.
    [59]马传喜,吴兆苏.我国小麦推广品种的高分了量麦谷蛋白亚基变异分析[J].安徽农业大学学报,1993,20:298-302.
    [60]毛沛.小麦高分子量谷蛋白亚基组成及其与面包烘烤品质的关系[D].保定:河北农业大学,1992.
    [61]荆奇,戴廷波,姜东,等.小麦籽粒蛋白质组分的变异及其与面粉品质的关系[J].麦类作物学报.2005,25:90-93.
    [62]陆燕,马传喜.高分子量谷蛋白亚基变异与加工品质的研究[J].麦类作物学报.2000,20:32-36.
    [63]马长德.中国北部冬麦区与英国太平洋北部冬麦区小麦品种加工品质的分析比较[J].作物学报,1987,13:129-133.
    [64]马传喜,吴兆苏.小麦胚乳蛋白质组分及高分子量麦谷蛋白亚基与烘烤品质的关系[J].作物学报,1993,29:562-567.
    [65]Anderson OD, Greene FC. The characterization and comparative analysis of high molecular weight glutenin genes from genomes A and B of a hexaploid bread wheat [J]. Theor Appl Genet, 1989,77:689-700.
    [66]Payne PL, Holt LM, Jackson EA, et al. Wheat storage proteins:their potential for manipulation by plant breeding [J]. Philos T R Soc B,1984,304:359-371.
    [67]李硕碧,单明珠,李必运.陕西省小麦品种资源高分了量谷蛋白亚基组成研究[J].西北农林科技大学学报(自然科学版),2002:1-50.
    [68]张莉丽,张延滨,赵海滨,等.小麦Glu-A1位点HMW-GS Null与1,Glu-B1位点7与7+8近等基因系间品质差异的初步研究[J].黑龙江农业科学,2006,:8-10.
    [69]刘伟,张延滨,张宝石,等.小麦Glu-A1位点1和2*亚基近等基因系间品质差异的研究[J].麦类作物学报,2005,25:47-50.
    [70]张延滨.一对普通六倍体小麦姊妹系及它们杂交后代衍生的HMW-GS近等基因系中Glu-A1位点1和2亚基对烘烤品质的影响[J].黑龙江农业科学,2001,4:1-4.
    [71]毛沛.小麦胚乳储藏蛋白遗传及其等位变异对面包品质的影响[J].河北农作物研究,1994,2:1-5.
    [72]高翔,董健,张改生,等.黄淮麦区小麦品种高分子量谷蛋白亚基及亚基组成与品质性状关系的研究[J].中国农学通报,2005,21:121-123.
    [73]李硕碧,高翔编著.小麦高分子量谷蛋白亚基与加工品质[M].北京,中国农业出版社,2001.
    [74]张延滨,辛文利,孙连发,等.小麦2+12和5+10亚基近等基因系间面粉品质差异的研究[J].作物学报,2003,29:93-96.
    [75]Lawrence GJ. Dough and baking quality of wheat line deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci [J]. J Cereal Sci,1988,7:109-112.
    [76]关正君.小麦骨干种质HMW-GS与面包品质关系的研究[D].硕十学位论文,保定:河北农业大学,2003.
    [77]Branlard G, Dardcvet M, Saccomano R, et al. Genetics diversity of wheat storage proteins and bread wheat quality [J]. Euphytica,2001,119:59-67.
    [78]Halford NQ Field JM, Blair H, et.al. Analysis of HMW glutenin subunits encoded by chromosome 1 A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality [J]. Theor Appl Genet,1992,83:373-378.
    [79]Ammar K, Lukaszewski AJ, Banowetr GM. Effect of Glu-Dl(5+10) on gluten strength and polymeric protein composition in durum wheat [J]. Cereal Foods World,1997,42:610.
    [80]吕晓波,张延滨,宋庆杰.等.5+10亚基对超强面筋小麦品质的影响[J].麦类作物学报,2004,24:15-18.
    [81]Bekes F, Gras PW, Gupta RB, et al. Effects of the high Molecular glutenin subunit (1Bx20) on the dough mixing properties of wheat flour [J]. J Cereal Sci,1994,19:3-7.
    [82]Gupta RB, MacRitchie F. Allelic variation at glutenin subunit and gliadin loci,Glu-1, Glu-3 and GII-1 of common wheats. Ⅱ.Biochemical basis of the allelic effects on dough properties [J]. J Cereal Sci,1994,19:19-29.
    [83]Anderson OD, Green FC, Yip RE, et al. Nucleotide sequences of the two high-molecular-weight glutenin genes from the D-genome of hexaploid wheat, Triticum aestivum L.cv Cheyenne [J]. Nucleic Acids Res,1989,17:461-462.
    [84]Kasarda DD. Glutenin polymers:The in vifro toinvivo transition [J]. Cereal Foods World,1999, 44:566-571.
    [85]Miles MJ, Carr HJ, MacMaster TC, et.al. Scanning tunnelling microscopy of a wheat gluten protein reveals details of an unusual super-secondary structure [J]. Proc Nat Acad Sci USA, 1991,88:68-71.
    [86]Vasil V, Castillo AM, Fromm ME, et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus[J]. Biotechnology, 1992,10:667-674.
    [87]He GY, Lazzeri PA, Cannel ME. Fertile transgenic plants obtained from Tritordeum inflorescences by tissue elecroporation [J]. Plant Cell Rep,2001,20:67-72.
    [88]成卓敏,吴茂森,夏光敏,等.应用基因枪法获得抗大麦黄矮病毒转基因小麦[J].2000,30:116-121.
    [89]陈红敏,陈明,魏安智,等.抗逆相关基因GmAREB转基因小麦的获得与鉴定[J].植物遗 传资源学报,2010,11:18-21.
    [90]吴宏亚,张伯桥,高德荣.等.转复制酶基因抗小麦黄花叶病新品系的评价与利用[J].作物杂志,2005,6:12-13.
    [91]Vasill K, Bean S, Zhao T, et al. Evaluation of baking properties and gluten protein composition of field grown transgenic wheat lines expressing high molecular weight glutenin gene 1Ax1 [J]. J Plant Physiol,2001,158:521-528.
    [92]张晓东,李冬梅,徐文英,等.用基因枪将除草剂Basta抗性基因与小麦HMW谷蛋白亚基基因导入小麦获得转基因植株[J].华北农学报,1997,12:133-136.
    [93]Barro F, Rooke L, Bekes F, et al. Transformation of wheat with high-molecular-weight subunit genes results in improved functional properties [J]. Nature Biot,1997,15:1295-1299.
    [94]Altpeter F, Vasil V, Srivastava V, et al. Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat [J]. Nature Biot,1996,14:1155-1159.
    [95]Ortiz JPA, Reggiardo MI, Ravizzni RA, et al. Hygromycin resistance as an efficient selectable marker for wheat stable transformation [J].Plant Cell Rep,1996,15:877-881.
    [96]Alvarez ML, Guelman S, Halford NG, et al. Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits [J].Theor ApplGenet,2000,100:319-327.
    [97]吴宏亚,张伯桥,高德荣.等.转WYMV-Nib8基因抗黄花叶病小麦的鉴定及优良株系的选育[J].麦类作物学报,2006,26:11-14.
    [98]张晓祥,张伯桥,吴宏亚,等.滚动回交与遗传标记辅助选择相结合聚合Pmm21、Nib8和Wx基因[J].麦类作物学报,2010,30:215-222.
    [99]黄承彦,楚秀生,杨平平,等.外源DNA导入技术培育抗旱耐盐小麦新品种[J].山东农业科学,2000:4-6.
    [100]孙宝启,郭天财,曹广才.中国北方专用小麦[M].北京:气象出版社,2004.
    [101]Payne PI, Corfield KG. Subunit composition of wheat glutenin proteins isolated by gel filtration in a dissociating medium [J]. Planta,1979,145:83-88.
    [102]茹岩岩,晏月明.小麦谷蛋白亚基基因的PCR鉴定及其在品质改良中的应用[J].生物工程进展,2001,21:58-61.
    [103]Lawrence GJ. Dough and baking quality of wheat line deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci [J].. J Cereal Sci,1988,7:109-112.
    [104]Mondal S, Tilley M, Alviola JN, et al. Use of near-isogenic wheat lines to determine the glutenin composition and functionality requirements for flour tortillas [J].. J Agric Food Chem, 2008,56:179-184.
    [105]Rogers WJ, Sayers EJ, Ru KL. Deficiency of individual high molecular weight glutenin subunits affords flexibility in breeding strategies for bread-making quality in wheat Triticum aestivum L [J]. Euphytica,2001,117:99-109.
    [106]Ram S, Shoran J, Mishra B. Nap Hal, an Indian landrace of wheat, contains unique genes for better biscuit making quality [J]. J Plant Biochem Biot,2007,16:83-86.
    [107]Yue SJ, Li H, Li YW, et al. Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference [J]. J Cereal Sci,2008, 47:153-161.
    [108]杨玉双,庞斌双,王兰芬,等.小麦高分子量谷蛋白亚基间的互补效应对面包加工品质的影响[J].作物学报,2009,35:1379-1385.
    [109]Zhang L, Zhang Y, Song Q. Study on the quality of NILs of wheat cv. Longfumai 3 possessing HMW-GS Null and 1 Subunits [J]. China Agricultural Science,2008,7:140-147.
    [110]Hoseney RC. Wheat hardness [J]. Cereal Foods World,1987,32:320-322.
    [111]Symes KJ. The inheritance of grain hardness in wheat as measured by the partical size index [J].Aust JAgri Res,1965,16:113-123.
    [112]Mattern PJ, Morris R, Schmidt JW, et al. Locations of genes for kernel properties in the wheat variety'Cheyenne'using chromosome substitution lines[J]. Proc.4th Int Wheat Genet Symp Mossouri Agricutural Experiment Station:Columbia, MO,1973:703-707.
    [113]Morrison W R, Law CN, Wylie LJ, et al. The effect of group-5 chromosome on the free polar lipids and bread making quality of wheat [J]. J Cereal Sci,1989,9:41-51.
    [114]Sourdille P, Perretant MR, Joudrier P. Linkage between RFLP markers and gene affecting kernel hardness in wheat [J]. Theor Appl Genet,1996,93:580-586.
    [115]Campbell KG, Bergman CJ, Gualberto DG, et al. Quantitative trait loci associated with kernel traits in a softxhard wheat cross [J]. Crop Sci,1999,39:1184-1195.
    [116]Greenwell P, Schofield JD. A starch granule protein protein as-sociated with endosperm softness in wheat [J]. Cereal Chem,1986,63:379-380.
    [117]Jolley C J, Rahman S, Kortt AA, et al. Characterization of the wheat Mr 15000 grain softness protein and analysis of the relationship between its accumulation in the whole seed and grain softness [J]. Theor Appl Genet,1993,86:589-597.
    [118]Henery RJ, Kettlewell PS. Cereal grain quality: Wheat [C]. London,1996.
    [119]Morris CF, Bettge AD, Greenblatt GA, et al. The biochemical basis of endosperm texture in wheat[J]. Cereal Foods World,1994,39:641-645.
    [120]Dubreil L, Compoint J, Marion D. Internaction of puroindolines with wheat flour polar lipids determines their foaming properties [J]. J Agric Food Chem,1997,45:108-116.
    [121]Jolly C. The biochemistry and molecular genetics of grain softness and hardness in wheat[C], Triticum aestivum. Ph.D. dissertation, Macquarie University, Sydney, Australia.1991.
    [122]Finney K.F, Yamazaki WT, Youngs L et al. Quality of hard, soft, and durum wheats[M]. In Heyne E.G. (ed.) Wheat and wheat improvement (the second edition). ASA, CSSA, SSSA. Madison, Wisconsin, USA,1987.
    [123]Gaines CS, Kassuba A, Finney PL. Using wire-cut and sugar-snap formula cookie test baking methods to evaluate distinctive soft wheat flour sets:implications for quality testing [J]. Cereal foods world,1996,41:155-160.
    [124]Gaines CS. Associations among soft wheat flour particle size, protein content, chlorine response, kernel hardness, milling quality, white layer cake volume, and sugar-snap cookie spread [J]. Cereal Chem,1985,62:290-292.
    [125]Abboud AM. Factors of flour lipids on cookie flour quality [J]. Cereal Chem,1985,62: 130-133.
    [126]Gaines CS. Influence of chemical and physical modification of soft wheat protein on sugar-snap cookie dough consistency, cookie size and hardness [J]. Cereal Chem,1990,67: 73-77.
    [127]赵海滨,肖志敏.不同HMW麦谷蛋白亚基类型小麦品种(系)的沉淀值及其与面筋质和量的关系[J].麦类作物学报,1999,19:17-20.
    [128]白玉龙,林作揖,金茂国.冬小麦品质性状于蛋糕酥饼烘烤品质性状关系研究[J].中国农业科学,1993,26:24-30.
    [129]赖菁茹,王光瑞,林作揖,等.软质小麦品质与饼干烘焙品质关系研究[J].中国粮油学报,1997,4:1-5.
    [130]马传喜,徐凤,蒋国梁.面包小麦SDS沉降值的变异及其与蛋白质含量的关系[J].南京农业大学学报,1997,20:110-113.
    [131]张彩英,常文锁.不同类别冬小麦品种品质性状的研究[J].河北农业大学学报,1998,21:12-15.
    [132]杨金,张艳,何中虎,等.小麦品质性状与面包和面条品质关系分析[J].作物学报,2004,30:739-744.
    [133]王建设,刘广田.小麦籽粒品质性状的遗传及早代选择效应[J].北京农业大学学报,1994,20:239-245.
    [134]常成.软质小麦品质指标的研究[D].硕士学位论文,合肥:安徽农业大学,2002.
    [135]陈满峰.弱筋小麦面粉理化品质性状遗传变异、肥料运筹及其与酥性饼干品质的关系[D].硕士学位论文,扬州:扬州大学,2008.
    [136]张岐军.软质小麦品种饼干品质评价[D].硕士学位论文,北京:中国农业科学院,2004.
    [137]Gaines CS. Collaborative study of methods for solvent retetion capacity profile (AACC Method 56-11) [J]. Cereal Food World,2000,45:303-306.
    [138]Guttieri MJ, Bowen D, Gannon D, et al. Solvent retention capacities of irrigated soft white spring wheat flours [J]. Crop Sci,2001,41:1054-1061.
    [139]Guttieri MJ, Souza E. Sources of variation in the solvent retention capacity test of wheat flour [J]. Crop Sci,2003,43:1628-1633.
    [140]张岐军,张艳.软质小麦品质性状与酥性饼干品质参数的关系研究[J].作物学报,2005,31:1125-1131.
    [141]Bettge AD, Morris CF, DeMacon VL et al. Adaptation of AACC method 56-11, solvent retention capacity, for use as an early generation selection tool for cultivar development [J]. Cereal Chem,2002,79:670-674.
    [142]张岐军,何中虎.溶剂保持能力在软质小麦品质评价中的应用[J].麦类作物学报,2004,24:140-142.
    [143]王光瑞.我国小麦主要优良品种的面包烘烤品质研究[C].1985-1987年总结报告.庄巧生论文集,中国农业科学院,1999:422-460.
    [144]魏益民,张国权,欧阳韶晖,等.陕西关中小麦品种品质改良现状研究[J].麦类作物学报,2000,20:3-9.
    [145]Antes S, Wieser H. Effects of high and low molecular weight-glutenin subunits on Theological dough properties and bread-making quality of wheat [J]. Cereal Chem,2001,78:157-159.
    [146]曾浙荣,李英蝉,孙芳华.37个小麦品种面包烘烤品质的评价和聚类分析[J].作物学报,1994,20:642-643.
    [147]李宗智.冬小麦若干品质性状及相关的研究[J].作物学报,1990,16:8-18.
    [148]田纪春.主编.谷物品质测试理论与方法[M].北京:科学出版社,2006.
    [149]Yamamoto H, Worthington ST, Hou G, et al. Rheological properties and baking qualities of selected soft wheats grown in the United States [J]. Cereal Chem,1996,73:215-221.
    [150]张岐军,张艳,何中虎,等.软质小麦品质性状与酥性饼干品质参数的关系研究[J].作物学报,2005,31:1125-1131.
    [151]高德荣.2010年第六届全国小麦遗传育种学术研讨会论文集[C],扬州,2010.
    [152]中国小麦品质区划方案.2001.
    [153]全国优质专用小麦优势区域发展规划.2002
    [154]优势农产品区域布局规划.2003
    [155]吕国锋,张伯桥,程顺和.中国小麦微核心种质中弱筋种质的鉴定筛选[J].农艺科学.2008.10(24):260-263
    [156]王辉,马志强,曹莉,等.我国冬小麦品种品质现状与问题[J].西北农林科技大学学报,2003,31:34-40.
    [157]赵莉,汪建来,赵竹,等.我国冬小麦品种(系)主要品质性状的表现及其相关性[J].麦类作物学报,2006,26:87-91,
    [158]杨华,尚海英,李伟,等.四川小麦新品种(系)农艺和品质性状分析[J].西南农业学报,2006,19:170-176.
    [159]昝香存,周桂英,吴丽娜,等.我国小麦品质现状分析[J].麦类作物学报,2006,26:46-49.
    [160]2008年农业部谷物品质监督检验测试中心全国抽样检测报告[C].
    [161]2010年农业部谷物品质监督检验测试中心全国抽样检测报告[C].
    [162]林作楫,雷振生,杨攀,等.中国小麦品质育种进展与问题[J].河南农业科学,2007:5-8.
    [163]李宗智.我国小麦品质现状及其改良目标初探中国农业科学[J].1989,22:14-21.
    [164]张岐军.软质小麦品种饼干品质评价[D].硕十学位论文,北京:中国农业科学院,2004.
    [165]吴宏亚,朱冬梅,张伯桥,等.江苏弱筋小麦品种表现及存在问题探析[J].中国农学通报,2006,22:169-172.
    [166]兰涛,姜东,王连臻,等.不同类型小麦品种品质性状的生态变异[J].南京农业大学学报,2004,27:7-10.
    [167]Vallega V, Waines JG. High molecular weight glutenin subunit variation in Triticum turgidum var. dicoccum [J]. Theor Appl Genet,1987,74:706-710
    [168]Zhu YF, Li YW, Chen Y, et al. Generation and characterization of a high molecular weight glutenin 1Bx14-deficient mutant in common wheat [J]. Plant Breeding,2009,124:421-427.
    [169]姚金保,马鸿翔,张平平,等.中国弱筋小麦品质研究进展[J].江苏农业学报.2009,25:919-924.
    [1]Payne PI. Genetics of wheat storage proteins and the effect of allelic variation on bread making quality [J]. Annu Rev Plant Physiol,1987,38:141-153.
    [2]Bietz JA. Genetic and biochemical studies of non-enzymatic endosperm proteins [J]. Wheat, Wheat improv-Agron Mono,1987,2:215-241.
    [3]Lawrence GJ, Shepherd KW. Chromosomal location of genes controlling seed protein in species related to wheat [J]. Theor Appl Genet,1981,59:25-31.
    [4]毛沛.小麦高分子量谷蛋白亚基组成及其与面包烘烤品质的关系[D].博士学位论文,河北农业大学,1992.
    [5]李保云,王乐光,刘凤鸣,等.小麦高分了量谷蛋白亚基与小麦品质性状关系的研究[J].作物学报,2000,26:322-326.
    [6]高翔,李硕碧.小麦高分子量谷蛋白亚基对加工品质影响的效应分析[J].西北植物学报,2002,22:771-779.
    [7]陆燕,马传喜.高分子量谷蛋白亚基变异与加工品质的研究[J].麦类作物学报,2000,20:32-36.
    [8]Payne PI, Holt LM, Krattiger AF, et al. Relationship between HMW glutenin subunit composition and measures of the bread-making quality of wheat varieties grown in spain[J]. J Cereal Sci,1988,7:229-236.
    [9]Payne PI, Lawrence GJ. Catalogue of alleles for the complex gene loci, Glu-Al, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat[J]. Cereal Research Communications,1983,11:29-35.
    [10]Lawrence GJ, Payne PI. Detection by gel electrophoresis of oligomers formed by the association of high-molecular-weight glutein protein subunits of wheat endosperm[J]. J Exp Bot, 1983,34:254-267.
    [11]李保云,刘桂芳,王岳光,等.小麦高分子量谷蛋白亚基的遗传规律研究[J].中国农业大学学报,2000,5:58-62.
    [12]Halford NG, Field JM, Blair H, et al. Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat(Triticum aestivum L.) indicates quantitative effects on grain quality[J]. Theor Appl Genet,1992,83:373-378.
    [13]Wang G, Snape JW, Hu H. The high-molecular-weight glutenin subunit compositions of Chinese bread wheat varieties and their relationship with bread-making quality[J]. Euphytica,1993,68: 205-212.
    [14]Payne PI, Nightingale MA, Kattiger AF. The relationship between HMW glutenin subunit composition and the bread-making quality of British grown wheat varieties[J]. J Sci Food Agric, 1987,40:51-65.
    [15]Gianibellit MC, Masci S, Larroque R, et al. Polymorphism of high molecular glutenin subunits in Trdwum tauschii[J]. J Cereal Sci,2001,33:39-52.
    [16]Rodriguez-Ouijano M, Nieto-Taladriz MT, Carrillo JM. Polymorphism of high molecular weight glutenin subunits in three species of Aegilops[J]. Genet Resour and Crop Evo,2001,48: 599-607.
    [17]倪中福,孙其信,张义荣,等.斯卑尔脱小麦高分子量谷蛋白亚基组成分析[J].农业生物技术学报,2002,10:108-112.
    [18]张义荣,倪中福,梁荣奇,等.从CIMMYT引进的人工合成六倍体小麦高分子量谷蛋白亚基组成分析[J].中国农业大学学报,2001,6:38-43.
    [19]陈国跃,李立会.人工合成六倍体小麦的高分子量谷蛋白亚基组成分析[J].麦类作物学报,2005,25:94-97.
    [20]Rodriguez-Ouijano M, Nieto-Taladriz MT, Carrillo JM. Polymorphism of high molecular weight glutenin subunits in three species of Aegilops[J]. Genet Resour and Crop Evo,2001,48: 599-607.
    [21]王丽敏,林志珊,张增艳,等.人工人工合成小麦高分子量谷蛋白亚基组成分析及新亚基的发现[J].西南农业学报,2006,19:1-4.
    [22]Ram S, Shoran J, Mishra B. Nap Hal, an Indian landrace of wheat, contains unique genes for better biscuit making quality[J]. J Plant Biochem Biot,2007,16:83-86.
    [23]Lawrence GJ. Dough and baking quality of wheat line deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci[J]. J Cereal Sci,1988,7:109-112.
    [24]Yue SJ, Li H, Li Y, et al. Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference[J]. J Cereal Sci,2008,47: 153-161.
    [25]Field JM, Bhandari D, Bonet A, et al. Introgression of transgenes into a commercial cultivar confirms differential effects of HMW subunits lAxl and 1Dx5 on gluten properties[J]. J Cereal Sci,48:457-463.
    [26]Alvarez ML, Guelman S, Halford NG, et al. Silencing of HMW glutenin transgenic wheat expressing extra HMW subunits[J]. Theor Appl Genet,2000,100:319-327.
    [1]Payne PI. Genetics of wheat storage proteins and the effect of allelic variation on bread making quality[J]. Annu Rev Plant Physiol,1987,38:141-153.
    [2]Bietz JA. Genetic and biochemical studies of non-enzymatic endosperm proteins[J]. Wheat Wheat improv-Agron Mono,1987,2:215-241.
    [3]Lawrence GJ, Shepherd KW. Chromosomal location of genes controlling seed protein in species related to wheat[J]. Theor Appl Genet,1981,59:25-31.
    [4]Payne PI, Lawrence GJ. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat[J]. Cereal Research Communications,1983,11:29-35.
    [5]傅宾孝,赵友梅,秦礼谦.小麦麦谷蛋白与面粉品质[J].郑州粮食学院学报,1988,33(3):1-10.
    [6]毛沛.小麦高分子量谷蛋白亚基组成及其与面包烘烤品质的关系[D].博士学位论文,河北农业大学,1992.
    [7]李保云,王乐光,刘凤鸣,等.小麦高分了量谷蛋白亚基与小麦品质性状关系的研究[J].作物学报,2000,26:322-326.
    [8]高翔,李硕碧.小麦高分了量谷蛋白亚基对加工品质影响的效应分析[J].西北植物学报,2002.22:771-779.
    [9]陆燕,马传喜.高分子量谷蛋白亚基变异与加工品质的研究[J].麦类作物学报,2000,20:32-36.
    [10]Lawrence GJ, Payne PI. Detection by gel electrophoresis of oligomers formed by the association of high-molecular-weight glutein protein subunits of wheat endosperm[J]. J Exp Bot, 1983,34:254-267.
    [11]Lawrence GJ. Dough and baking quality of wheat line deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci[J]. J Cereal Sci,1988,7:109-112.
    [12]Rogers WJ, Sayers EJ, Ru KL. Deficiency of individual high molecular weight glutenin subunits affords flexibility in breeding strategies for bread-making quality in wheat Triticum aestivum L[J]. Euphytica,2001,117:99-109.
    [13]杨玉双,庞斌双,王兰芬,等.小麦高分子量谷蛋白亚基间的互补效应对面包加工品质的影响[J].作物学报,2009,35:1379-1385.
    [14]Ram S, Shoran J, Mishra B. Nap Hal, an Indian landrace of wheat, contains unique genes for better biscuit making quality[J]. J Plant Biochem and Biot,2007,16:83-86.
    [15]张莉丽,张延滨,李集临,等.龙97-586小麦品系Glu-B1位点HMW-GS 7和7+8亚基近等基因系间的品质差异[J].中国科学C辑:生命科学,2009,39:303-309.
    [16]张延滨,祁适雨,肖志敏,等.适用于我国小麦品质育种的SDS-PAGE方法[J].哈尔滨师范大学自然科学学报,1997,13:60-63.
    [17]郭饶君.主编.蛋白质的凝胶电泳实践方法(第二版)[M].北京:科学出版社,2005,1-44.
    [18]盖钧镒.主编.试验统计方法[M].北京,中国农业出版社,2000.
    [19]李保云,刘桂芳,王岳光,等.小麦高分子量谷蛋白亚基的遗传规律研究[J].中国农业大学学报,2000,5:58-62.
    [20]李俊,魏会廷,彭正松,等.分子标记所揭示的人工人工合成小麦与推广品种杂交后代中出现的新变异[J].云南植物研究,2006,28:529-533.
    [21]聂利红,韩宗福,逯腊虎,等.人工合成六倍体小麦(AABBDD)与亲本种之间基因组与基因区域的序列变异分析[J].自然科学进展,2008,18:7-12.
    [22]相微微,张怀刚,王道文,等.转基因小麦沉默的HMW-GS基因的遗传及表达[J].麦类作物学报,2009,29:185-188
    [23]柳觐,相微微,刘宝龙,等.小麦HMW-GS转基因沉默效应的遗传分析[J].西北植物学报,2009,29:452-457.
    [24]陆燕,马传喜.小麦品种麦谷蛋白亚基的遗传变异分析[J].安徽农业大学学报,2000,27:126-130.
    [25]李宗智.冬小麦若干品质性状遗传及相关的研究[J].作物学报,1990,16:8-18.
    [26]李学军,王辉,于新智,等.陕西关中不同时期小麦品种高分子量麦谷蛋白亚基变异分析[J].西北农林科技大学学报(自然科学版),2003,31:41-44.
    [1]马传喜,吴兆苏.小麦胚乳蛋白质组成及高分了量麦谷蛋白亚基与烘烤品质的关系[J].作物学报,1993,19:562-566.
    [2]李志西,魏益民,张国权.小麦蛋白质组分与面团特性和培烤品质关系的研究[J].中国粮油学报,1998,13:1-5.
    [3]我国饼干商业部概况及发展趋势[C],饼干烘焙协会,2005.
    [4]我国饼干商业部概况及发展趋势[C],中国焙烤食品及糖制品协会,2008.
    [5]Payne PI, Holt M, Krattiger AF, et al. Relationships between seed quality characteristics and HMW glutenin subumit compasition determined sing heats grown in Spain[J]. J Cereal Sci,1988, 7:229-235.
    [6]Ammar K, Kronstad WE, Morris CF. Breadmaling quality of selected durum wheat its relationship with high molecular weight glutenin subunits allelic variation and polymeric composition[J]. Cereal Chem,2000,77:230-236.
    [7]Lorenzo A, Kronstad WE, Vieira LEG. Relationship between high molecular weight glutenin subunits and loaf volume in wheat as measured by the sodium dodecy sulphate sedimentation test[J]. Crop Sci,1987,27:253-257.
    [8]程国旺,徐凤,马传喜,等.小麦高分子量谷蛋白亚基组成与面包烘烤品质关系的研究[J].安徽农业大学学报,2002,29:369-372.
    [9]陆燕,马传喜.高分子量谷蛋白亚基变异与加工品质的研究[J].麦类作物学报,2000,20:32-36.
    [10]高翔,李硕碧.小麦高分子量谷蛋白亚基对加工品质影响的效应分析[J].西北植物学报,2002,22:771-779.
    [11]Lawrence GJ. Dough and baking quality of wheat line deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-Dl loci[J]. J Cereal Sci,1988,7:109-112.
    [12]Rogers WJ, Sayers EJ, Ru KL. Deficiency of individual high molecular weight glutenin subunits affords flexibility in breeding strategies for bread-making quality in wheat Triticum aestivum L[J]. Euphytica,2001,117:99-109.
    [13]杨玉双,庞斌双,王兰芬,等.小麦高分子量谷蛋白亚基间的互补效应对面包加工品质的影响[J].作物学报,2009,35:1379-1385.
    [14]Ram S, Jag S, Mishra B. Nap Hal, an Indian landrace of wheat, contains unique genes for better biscuit making quality[J]. J Plant Biochem Biot,2007 16:83-86.
    [15]中华人民共和国国家标准-优质小麦弱筋小麦,GB/T17893-1999[s].
    [16]贾俊仙,潘登魁,潘幸来.小麦高分子量谷蛋白亚基近等基因系的研究[J].山西农业大学学报,2003,23:185-187.
    [17]苏佩,蒋纪云,王春虎.小麦蛋白质组分的连续提取分离法及提取时间的选择[J].河南职技师院学报,1993,21:1-4.
    [18]Dick JW, Quick JS. A modified screening-test for rapid estimation of gluten strength in early-generation durum-wheat breeding lines[J]. Cereal Chem,1983,60:315.
    [19]张岐军,何中虎,闫俊,等.溶剂保持力在软质小麦品质评价中的应用[J].麦类作物学报,2004,24:140-142.
    [20]田纪春.谷物品质测定理论与方法[M],科学出版社,2006.
    [21]陈满峰.弱筋小麦面粉理化品质性状遗传变异、肥料运筹及其与酥性饼干品质的关系[D].硕士学位论文,扬州:扬州大学,2008.
    [22]Rogers WJ, Sayers EJ, Ru KL. Deficiency of individual high molecular weight glutenin subunits affords flexibility in breeding strategies for bread-making quality in wheat[J] Triticum aestivum L. Euphytica,2001,117:99-109.
    [23]Lawrence GJ. Dough and baking quality of wheat line deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci[J]. J Cereal Sci,1988,7:109-112.
    [24]王恕.从湿面筋含量和面筋指数来评价中国河南和法国小麦面筋[J].中国粮油学报,1999,14:5-7.
    [25]刘广田,李保云,等.小麦品质遗传改良的目标和方法[M].北京:中国农业大学出版社,2003.
    [26]Ram S, Jag S, Mishra B. Nap Hal, an Indian landrace of wheat, contains unique genes for better biscuit making quality[J]. J Plant Biochem Biot,2007 16:83-86.
    [27]Mondal S, Tilley M, Alviola JN, et al. Use of near-isogenic wheat lines to determine the glutenin composition and functionality requirements for flour tortillas[J]. J Agr Food Chem, 2008,56:179-184.
    [28]张莉丽,张延滨,宋庆杰,等.龙辐麦3号小麦品种HMW-GS Null和1近等基因系间品质差异的研究[J].中国农业科学,2007,40:1864-1870.
    [29]张岐军,张艳,何中虎,等.软质小麦品质性状与酥性饼干品质参数的关系研究[J].作物学报,2005,31:1125-1131.
    [30]周淼平,吴宏亚,余桂红,等.软质小麦品种的辅助选择[J].麦类作物学报,2007,27:445-450.
    [31]夏云祥,马传喜,司红起,等.溶剂保持力与小麦部分品质性状的关系[J].中国粮油学报,2009,24:7-10.
    [32]罗勤贵张娜张国权弱筋小麦SRC特性与饼干品质关系的研究[J].粮食加工.2007,32(6):20-24
    [33]Field JM, Bhandari D, Bonet A, et al. Introgression of transgenes into a commercial cultivar confirms differential effects of HMW subunits lAxl and 1Dx5 on gluten properties[J]. J Cereal Sci,2008,48:457-463.
    [34]Alvarez ML, Guelman S, Halford NG, et al. Silencing of HMW glutenin transgenic wheat expressing extra HMW subunits[J]. Theor Appl Genet,2000,100:319-327.
    [35]Yue SJ, Li H, Li Y, et al. Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference[J]. J Cereal Sci,2008,47: 153-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700