用户名: 密码: 验证码:
两个水稻株高突变体变异机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻株高是与产量、光合效率和抗倒性密切相关的重要农艺性状。赤霉素(GA)对株高建成有重要的调控作用。GA调控植物生长发育是通过GA信号调控与生长发育相关基因表达实现的。从GA合成到GA信号传递的任一步阻断,都能影响植物正常的生长和发育,并从表型上表现出来。因而,通过水稻株高突变体研究,不仅可以鉴定在GA代谢途径和信号转导途径中起作用的新基因,而且可以了解GA调控禾本科植物株高建成机理,后者对理想株型育种具有重要的理论和实践意义。
     9311HR-T是从半矮秆品系9311HR中自然突变获得的高秆突变体。鉴于株高突变体在研究植物激素代谢、信号转导以及植物激素调控株高建成机理等方面有重要价值,本研究对高秆突变体9311HR-T株高变异机制进行了研究。9311HR-T的株高为210.8±4.9cm,是野生型的1.8倍。与野生型相比,高秆突变体9311HR-T地上部各伸长节间均极显著伸长,第1至第6节间的长度分别是野生型9311HR的1.4倍、1.8倍、1.6倍、2.1倍、2.8倍和4.5倍,这是导致其株高增加的主要原因。解剖学研究发现,9311HR-T节间伸长是细胞伸长所致,暗示该突变体可能与GA有关。用不同浓度外源GA3对野生型和突变体第二叶鞘、幼苗进行处理,并对无胚半粒种子α-淀粉酶进行诱导。结果发现,突变体第二叶鞘、苗高及α-淀粉酶诱导对外源GA3的敏感性没有改变。GA合成抑制剂uniconazole能使突变体第二叶鞘长度和苗高恢复为野生型,且uniconazole对高秆突变体9311HR-T苗高抑制作用能被外源GA3解除,表明高秆突变体株高增加是内源活性GA含量增加所致。内源GA含量测定表明,高秆突变体9311HR-T中内源活性GA1含量是野生型的2.6倍,为内源活性GA含量增加导致9311HR-T高秆表型提供了直接证据。为探究引起9311HR-T内源GA增加的内在原因,利用半定量RT-PCR分析了GA合成途径中关键限速酶基因的表达,结果发现GA20ox2表达明显上调,而GA2ox3表达下调,表明GA代谢途径中这2个关键基因未受活性GA调控。序列分析表明,在9311HR中,GA20ox2CDS第1026个碱基C颠换为G,形成一个终止密码子TAG,使翻译提前终止;而在9311HR-T中,GA20ox2CDS第1026个碱基G又颠换为C,使翻译能够正常进行;而GA2ox3序列未发生改变。上述结果表明,GA20ox2恢复突变和表达上调及GA2ox3表达下调共同导致高秆突变体9311HR-T内源GA含量增加,进而导致高秆表型。
     02428h系从半矮秆水稻02428体细胞培养后代中发现的隐性高秆突变体,其高秆性状受elongated uppermost internode (eui)控制。之后,我们又在02428h中发现一个半矮秆突变体02428ha,该突变体仍然携有eui基因。本研究对半矮秆突变体02428ha矮化机制进行了研究。02428ha的株高为127.3±2.6cm,比野生型02428h矮29.7cm,差异达极显著水平。节间调查表明,第1节间缩短是导致02428ha株高矮化的主要因素。为研究引起02428ha节间缩短的原因,本研究将野生型和突变体最上节间平均分成5段,进行解剖学观察,结果表明:02428ha最上节间细胞长度较02428h相应的细胞长度缩短;从下至上,02428ha细胞长度较野生型02428h缩短的比率分别为36.4%,37.5%,37.1%,40.3%和29.4%。02428ha最上节间较02428h显著缩短,缩短的比率是24.1%。故细胞长度缩短是导致02428ha最上节间缩短的直接原因。外源GA,处理表明,1×10-8M GA3就能促进野生型02428h第二叶鞘伸长生长,而促进突变体02428ha第二叶鞘伸长生长所需的最小GA,浓度为1×10-6M;而且,1×10-4M GA3饱和处理亦不能使02428ha矮化表型完全恢复为野生型。上述结果表明,02428ha对外源GA3敏感性发生改变。内源GA含量测定表明,突变体02428ha中活性GA1含量为15.96ng.g-1F W,是野生型的6倍,进一步证实02428ha株高矮化是对GA敏感性降低所致。因02428ha对外源GA3敏感性降低,故推测其株高矮化与GA信号途径损坏有关。对GA信号转导途径基因表达分析后发现,GA信号转导途径中正调控因子F-box蛋白基因GTD2表达明显下调,表明该突变体对GA敏感性降低是GID2抑制表达所致。对该基因克隆测序后发现,在GID2基因编码区(coding sequence,CDS)第594和595碱基之间插入了15个碱基。插入位点恰好位于GID2的LSL结构域中,而该结构域对GID2是必须的。故插入突变可能改变其功能。上述结果表明,GID2表达下调导致突变体对GA敏感性发生改变,另一方面插入突变亦可能影响GID2功能导致突变体对GA敏感性改变,进而导致半矮化表型。本文还讨论了02428ha在杂交水稻育种中的潜在应用价值。
Rice plant height is one of the important agronomic traits, which is closely related to grain yield, photosynthesis efficiency and lodging resistance. Gibberellin (GA) plays an important role in controlling plant height. GA regulated growth and development by converting the GA signal into alterations in expression of the genes controlling plant growth and development. When GA biosynthesis was blocked or GA signaling was impaired, the plant growth and development could be affected and plant morphology could be altered. Thus, the plant height mutants were not only used to identify novel genes related to GA biosynthesis and GA signaling, but also to understand the mechanism of plant height morphogenesis, which had important significance in plant ideotype breeding.
     The rice tall mutant,9311HR-T, was obtained from a natural occurrence in a semidwarf strain,9311HR. Because plant height mutants can be used to understand phytohormone metabolism, phytohormone signal transduction and the mechanism of plant height morphogenesis, this study aimed to reveal the mechanism that governed the tall phenotype in9311HR-T. The final height of9311HR-T was210.8±4.9cm from the ground to the top of the panicle, which was1.8times as long as wild type. Compared to wild type, the extra plant height of9311HR-T was mainly caused by an increase in length of each elongated internode. The length of the first, second, third, fourth, fifth, and sixth internodes in9311HR-T was1.4,1.8,1.6,2.1,2.8and4.5times longer than those in9311HR, respectively. Microscopic observation of internode was made to find that the cell length in the mutant enhanced compared to the wild type, which indicated that the mutant was related to GA. To investigate the response of9311HR-T to GA, the role of GA in second leaf sheath elongation and in shoot elongation and agar plate assays for amylases were examined. The sensitivity of mutant to GA3application was found to be similar to that of wild type. To determine whether or not the tall phenotype of9311HR-T was caused by abnormal endogenous GA level, uniconazole, inhibitor for GA biosynthesis, was used to pretreat the plants, and then the response to exogenous GA3was investigated. The wild type phenotype of9311HR-T could be rescued by uniconazole treatment. The dwarf phenotype of9311HR-T retarded by uniconazole treatment can be restored by exogenous GA3. These results suggested that the tall phenotype of9311HR-T may be caused by elevating endogenous bioactive GA levels. To determine the specific cause of the elongating of the internodes length in9311HR-T, we measured endogenous GA1levels in the elongating internodes of both wild type and9311HR-T plants. The results showed that endogenous GA1levels in mutant9311HR-T was2.6times over that in wild type9311HR, which directly supported the conclusion that the mutant9311HR-T displayed a tall phenotype, owing to enhanced endogenous bioactive GA levels. To explore the intrinsic reasons for enhanced endogenous GA levels in9311HR-T, the expression of key GA metabolism genes were analyzed by semi-quantitative RT-PCR. The results show that the expression of two key GA metabolism genes was not regulated by endogenous GA. The expression of GA20ox2was obviously up-regulated, while the expression of GA2ox3was obviously down-regulated. Sequence analysis revealed a C to G transversion at position1026in GA20ox2coding region in9311HR, which led to the production of a stop codon TAG and translation termination. A novel G to C transversion was observed at position1026in GA20ox2coding region in9311HR-T, which restored translation of the full-length gene product. However, the coding sequence of GA2ox3in9311HR-T was identical to that in9311HR. Taken together, up-regulation and restorer mutation of GA20ox2and down-regulation of GA2ox3led to elevated GA levels in9311HR-T, which made9311HR-T exhibit a tall phenotype.
     The rice strain,02428h derived from a semidwarf material02428in somatic cell culture was a recessive tall mutant, and the recessive tall culm was controlled by elongated uppermost internode (eui).02428ha derived from02428h was a semi-dwarf mutant in eui background. Because semidwarf varieties possess high yield potential, the present study aimed to further characterize the dwarfing mechanism in the mutant. The plant height of02428ha was significantly shorter than that of the wild-type02428h plants, and the final height from the ground to the top of the panicle was127.3±2.6cm, which was29.7cm shorter than that of02428h. The dwarfed plant phenotype of02428ha was mainly caused by a decrease in length of the first internode. To investigate the shorten internode of02428ha was caused by abnormal cell elongation and/or cell division, five equally divided sections of the uppermost internode in wild-type and mutant plants were subjected to microscopic observation. In each section, the cell length of02428ha was shorter than that of the wild type, and the cell length decreased ratios were36.4%,37.5%,37.1%,40.3%and29.4%from bottom to top, respectively. The uppermost internode length decreased ratio was24.1%. Therefore, the shortening of the uppermost internode length in02428ha was due to longitudinally decreased cell lengths. To determine whether or not the dwarf phenotype of02428ha was caused by abnormal endogenous GA level or altered sensitivity to GA, the response to exogenous GA3was investigated. When the second leaf sheaths of wild type and02428ha plants were treated with various concentrations of GA3, the wild type elongated at GA3concentrations of1x10-8M or higher, but the mutant02428ha did at GA3concentrations of1×10-6M or higher. Importantly, the dwarf phenotype of02428ha could be incompletely rescued by1x10-4M GA3treatment. The results suggested that mutant02428ha showed decreased sensitivity to exogenous GA3. Endogenous GA1levels in mutant02428ha were15.96ng.g-1fresh weight, which was6times over that in wild type02428h. The results also supported the conclusion that the mutant altered sensitivity to GA. Because02428ha showed a reduced sensitivity to GA, it was necessary to investigate whether or not the GA signaling genes are affected in02428ha. The expression of the F-box gene GID2was down-regulated in02428ha, which was responsible for the reduced sensitivity to GA in the mutant. Especially, gene clone and sequence analysis revealed that a15base pair insertion between base594and595in its coding region from the translation start site was found in the mutant. The insertion mutation just altered the LSL domain, which was essential to GID2. Thus, the insertion mutation might altered its function. The results firstly suggested that the down-regulation.expression was responsible for the phenotype of the mutant02428ha, and that sequence variation of GID2gene might be related to it. The utilization potential of02428ha in hybrid rice breeding was also discussed.
引文
陈金桂,杨军,周燮(2001)植物激素对微管和纤维素微纤丝排列方向的调节.生命科学.13:139-141
    谷福林,翟虎渠,万建民,张红生(2003)水稻矮秆性状研究及矮源育种利用.江苏农业学报,19:48-54
    顾铭洪,朱立宏(1984)几个矮秆籼稻矮秆基因等位关系的初步分析.遗传1:10-13
    何祖华,申宗坦(1994)水稻长节间基因对GA3的敏感性和不育系的改良.作物学报20:161-167
    黄荣华,杨仁崔,梁康迳,王乃元,章清杞,张书标(2001)籼稻长穗颈不育系协青早eA(2)选育.福建农业学报16:11-15
    黄先忠,蒋才富,廖立力,傅向东(2006)赤霉素作用机理的分子基础与调控模式研究进展.植物学通报23:499-510
    季兰,杨仁崔(2002)水稻茎伸长生长与植物激素.植物学通报19:109-115
    季兰,杨淑琴,马洪丽,杨仁崔(2005)长穗颈(eui)水稻上部节间伸长与植物激素的关系.应用与环境生物学报11:660-664
    李和标,邹江石,李传国,陈忠明,孙立华(1992)水稻隐性高秆广亲和种质02428h的鉴定与研究.江苏农业学报8:48-50
    梁康迳,王乃元,杨仁崔(1992)水稻穗伸出度的遗传及其在育种上的应用.福建农学院学报21:380-385
    廖昌礼,倪克鱼,刘远坤,黄宗洪(1988)高杆隐性水稻Grlc的遗传与利用研究:Grlc及其测交F1的株高等特征和秆型.西南农业学报1:43-46
    钱前主编(2007)水稻基因设计育种,科学出版社p69-78
    汪堃仁,薛绍白,柳惠图主编(1998)细胞生物学(第二版).北京师范大学社p675-680
    吴世弼,张琦华.(1988)水稻诱变获得隐性高秆基因.福建农学院学报3:41-45
    杨蜀岚,杨仁崔,曲雪萍,章清杞,黄荣华,王斌(2001)水稻长穗颈高秆隐性基因eui2的遗传及其微卫星分析.植物学报43:67-71
    万平,阮洪家(1998)水稻矮秆基因遗传学和分子遗传学研究利用.安徽农业科学26:198-204
    熊振民,闵绍楷,程式华(1988)我国水稻矮源的研究与利用.水稻文摘7:1-5
    张桂权,卢永根(1997)第三次水稻育种革命展望.世界农业218:21-22
    张书标,杨仁崔,黄荣华,章清杞(2001)水稻长穗颈光温敏核不育系培矮64eS(1)的选育.核农学报15:193-198
    章清杞,黄荣华,张书标,梁康迳,王乃元,杨仁崔(2000)长穗颈不育系协青早eA(1)的选育. 福建农业大学学报29:411-415
    张毅,何光华,杨光伟,向娟,沈福成,杨正林(2004)水稻长穗颈性状的一种新遗传行为的发现与分析.中国水稻科学18:213-217
    朱立宏,顾铭洪,薛元龙(1980)籼稻矮秆遗传及其利用.南京农学院学报(2):1-7
    朱旭东,陈红旗,闵绍楷(2003)水稻高秆突变体株高及其构成的比较和等位性分析.作物学报29:591-594
    Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush G, Kitano H, Matsuoka M (2002) Loss-of-function of a Rice Gibberellin Biosynthetic Gene, GA20 oxidase (GA20ox-2), Led to the Rice'Green Revolution'. Breeding Sci 52:143-150
    Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf l encodes the a-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96: 10284-10289
    Bleecker AB, Schuette JL, Kende H (1986) Anatomical analysis of growth and developmental patterns in the internode of deep water rice. Planta 169:490-497
    CHANG TT, ZURO C, MARCIANO-ROMENA A, LORESTO GC (1984) Semidwarfing genes in rice germplasm collection. Rice Genet Newsl 1:94-95
    Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the Slenderl Locus of Barley cv Himalaya. Molecular and Physiological Characterization. Plant Physiol 129:181-190
    Cho HT, Kende H (1997) Expression of Expansin Genes Is Correlated with Growth in Deepwater Rice. Plant Cell 9:1661-1671
    Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321-326
    Dai M, Zhao Y, Ma Q, Hu Y, Hedden P, Zhang Q, Zhou DX (2007) The rice YABBYl gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol 144:121-133
    Davies, PJ (2004) Plant Hormones Biosynthesis, Signal Transduction, Action! Springer Netherlands: p63-94
    Desgagne-Penix I, Sponsel VM (2008) Expression of gibberellin 20-oxidasel (AtGA20oxl) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels. J Exp Bot 59: 2057-2070
    Dill A, Jung HS, Sun TP (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci U S A 98:14162-14167
    Fan LM, Feng XY, Wang Y, Deng XW (2007) Gibberellin Signal Transduction in Rice. J Integr Plant Biol 49:731-741
    Fu X, Richards DE, Ait-ali T, Hynes LW, Ougham H, Peng J, Harberd NP (2002) Gibberellin-Mediated Proteasome-Dependent Degradation of the Barley DELLA Protein SLN1 Repressor. Plant Cell 14:3191-3200
    Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y (2000) REPRESSION OF SHOOT GROWTH, a bZIP Transcriptional Activator, Regulates Cell Elongation by Controlling the Level of Gibberellins. Plant Cell 12:901-915
    Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M (2004) GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLRl protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J 37:626-634
    Grenna A K (2006) Gibberellin metabolism enzymes in rice. Plant Physiol 141:524-526
    Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5-9.
    Hirano K, Ueguchi-Tanaka M, Matsuoka M (2008) GID1-mediated gibberellin signaling in plants. Trends Plant Sci 13:192-199
    Hooley R, Beale MH, Smith SJ (1991) Gibberellin perception at the plasma membrane of Avena fatua aleurone protoplasts. Planta 183:274-280
    Huang S, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol 118: 773-781
    Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLRl gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999-1010
    Ishida S, Fukazawa J, Yuasa T, Takahashi Y (2004) Involvement of 14-3-3 Signaling Protein Binding in the Functional Regulation of the Transcriptional Activator REPRESSION OF SHOOT GROWTH by Gibberellins. Plant Cell 16:2641-2651
    Itoh H, Sasaki A, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Hasegawa Y, Minami E, Ashikari M, Matsuoka M (2005) Dissection of the Phosphorylation of Rice DELLA Protein, SLENDER RICE 1. Plant Cell Physiol 46:1392-1399
    Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICEl in nuclei. Plant Cell 14:57-70
    Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54:533-547
    Jiang C, Fu X (2007) GA action:turning on de-DELLA repressing signaling. Curr Opin Plant Biol 10: 461-465
    Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Gene Dev 16:646-658
    Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C (2006) EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol 47:181-191
    Margret S, Sergei LM, Hans K (1995) Gibberellin promotes histone HI kinase activity and the expression of cdc2 and cyclin genes during the induction of rapid growth in deepwater rice internodes. Plant J 7:623-632
    Matsushita A, Furumoto T, Ishida S, Takahashi Y (2007) AGF1, an AT-Hook Protein, Is Necessary for the Negative Feedback of AtGA3oxl Encoding GA 3-Oxidase. Plant Physiol.143: 1152-1162
    McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP, Steber CM (2003) The Arabidopsis SLEEPYl gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15:1120-1130
    Mitsunaga S, Tashiro T, Yamaguchi J (1994) Identification and characterization of gibberellin-insensitive mutants selected from among dwarf mutants of rice. Theor Appl Genet 87:705-712
    Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1:rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11-17
    Ogawa S, Toyomasu T, Yamane H, Murofushi N, Ikeda R, Morimoto Y, Nishimura Y, Omori T (1996) A Step in the Biosynthesis of Gibberellins that Is Controlled by the Mutation in the Semi-Dwarf Rice Cultivar Tan-Ginbozu. Plant Cell Physiol 37:363-368
    Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M (2004) A role of OsGA20oxl, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Mol Biol 55: 687-700
    Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Gene Dev 11:3194-3205
    Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400:256-261
    Rutger J N, Carnahan H L (1981) A fourth genetic element to facilitate hybrid cereal production-a recessive tall in rice. Crop Sci 21:373-376
    Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642-1653
    Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21:909-913
    Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution:a mutant gibberellin-synthesis gene in rice. Nature 416:701-702
    Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896-1898
    Schwechheimer C (2008) Understanding gibberellic acid signaling--are we there yet? Curr Opin Plant Biol 11:9-15
    Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A 99:9043-9048
    Sun TP (2008) Gibberellin Metabolism, Perception and Signaling Pathways in Arabidopsis. The Arabidopsis Book:1-28
    Takahashi M, Takeda K. (1969) Genetical studies on rice plant. Grouping of rice cultivars based on their internode-length patterns of culms. Memoirs Fac Agri Hokkaido Univ 7:32-43
    Takeda K (1977) Internode elongation and dwarfism in some gramineous plants. Gamma Field Sym 16: 1-18
    Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARFl encodes a soluble receptor for gibberellin. Nature 437:693-698
    Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant dl, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci U S A 97:11638-11643
    Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19:2140-2155
    Uozu S, Tanaka-Ueguchi M, Kitano H, Hattori K, Matsuoka M (2000) Characterization of XET-Related Genes of Rice. Plant Physiol 122:853-860
    Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma CJ, Noel JP, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E (2007) Methylation of Gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 19:32-45
    Wang Y, Li J (2005) The plant architecture of rice (Oryza sativa). Plant Mol Biol 59:75-84
    Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253-279
    Wen CK, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14:87-100
    Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann EM, Maier A, Schwechheimer C (2007) The DELLA Domain of GA INSENSITIVE Mediates the Interaction with the GA INSENSITIVE DWARFlA Gibberellin Receptor of Arabidopsis. Plant Cell 19:1209-1220
    Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225-251
    Zhang Y, Zhu Y, Peng Y, Yan D, Li Q, Wang J, Wang L, He Z (2008) Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Cell Res 18:412-421
    Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442-456
    J.萨姆布鲁克D.W.拉塞尔著黄培堂等译(2002)分子克隆实验指南(第三版).科学出版社p96-99
    王才林,赵凌,朱镇,张亚东(2008)籼稻9311HR显性高秆突变体的遗传分析.江苏农业学报24:1-4
    Asano K, Takashi T, Miura K, Qian Q, Kitano H, Matsuoka M, Ashikari M (2007) Genetic and Molecular Analysis of Utility of sdl Alleles in Rice Breeding. Breeding Sci 57:53-58
    Ashikari M, Sakamoto T (2008) Rice yeilding and plant hormones. In Hirano HY, Sano Y, Hirai A, Sasaki T, ed, Rice Biology in the Genomics Era. Vol.62. Springer Berlin Heidelberg, pp 309-320
    Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush G, Kitano H, Matsuoka M (2002) Loss-of-function of a Rice Gibberellin Biosynthetic Gene, GA20 oxidase (GA20ox-2), Led to the Rice'Green Revolution'. Breeding Sci 52:143-150
    Dai M, Zhao Y, Ma Q, Hu Y, Hedden P, Zhang Q, Zhou DX (2007) The rice YABBYl gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol 144:121-133
    Desgagne-Penix I, Sponsel VM (2008) Expression of gibberellin 20-oxidasel (AtGA20oxl) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels. J Exp Bot 59: 2057-2070
    Hedden P, Phillips AL (2000) Gibberellin metabolism:new insights revealed by the genes. Trends Plant Sci 5:523-530
    Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900-2910
    Huang S, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol 118: 773-781
    Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999-1010
    Ishii T, Nishijima T (1995) Inhibition of gibberellin-induced elongation growth of rice by feruloyl oligosaccharides. Plant Cell Physiol 36:1447-1451
    Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54:533-547
    Itoh H, Ueguchi-Tanaka M, Sakamoto T, Kayano T, Tanaka H, Ashikari M, Matsuoka M (2002) Modification of Rice Plant Height by Suppressing the Height-Controlling Gene, D18, in Rice. Breeding Sci 52:215-218
    Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin 3 beta-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci U S A 98:8909-8914
    Jan A, Kitano H, Matsumoto H, Komatsu S (2006) The rice OsGAEl is a novel gibberellin-regulated gene and involved in rice growth. Plant Mol Biol 62:439-452
    Kobayashi M, Yamaguchi I, Murofushi N, Ota Y, Takahashi N (1988) Fluctuation and Localization of Endogenous Gibberellins in Rice. Agr Biol Chem 52:1189-1194
    Kusaba S, Fukumoto M, Honda C, Yamaguchi I, Sakamoto T, Kano-Murakami Y (1998) Decreased GA1 content caused by the overexpression of OSH1 is accompanied by suppression of GA 20-oxidase gene expression. Plant Physiol 117:1179-1184
    Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C (2006) EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol 47:181-191
    Mitsunaga S, Tashiro T, Yamaguchi J (1994) Identification and characterization of gibberellin-insensitive mutants selected from among dwarf mutants of rice. Theor Appl Genet 87:705-712
    Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1:rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11-17
    Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508-1516
    Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642-1653
    Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21:909-913
    Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution:a mutant gibberellin-synthesis gene in rice. Nature 416:701-702
    Sauter M, Kende H (1992) Gibberellin-induced growth and regulation of the cell division cycle in deepwater rice. Planta 188:362-368
    Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A 99:9043-9048
    Sun TP (2008) Gibberellin Metabolism, Perception and Signaling Pathways in Arabidopsis. The Arabidopsis Book:1-28
    Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarfll, with reduced seed length. Plant Cell 17:776-790
    Wang Y, Li J (2005) The plant architecture of rice (Oryza sativa). Plant Mol Biol 59:75-84
    Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253-279
    Wu J, Mizuno H, Sasaki T, Matsumoto T (2008) Comparative Analysis of Rice Genome Sequence to Understand the Molecular Basis of Genome Evolution. Rice 1:119-126
    Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225-251
    Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitivel homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591-1606
    Zhang Y, Zhu Y, Peng Y, Yan D, Li Q, Wang J, Wang L, He Z (2008) Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Cell Res 18:412-421
    Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442-456
    申宗坦,杨长登,何祖华(1987)消除籼型野败不育系包颈现象的研究.中国水稻科学1:95-97
    杨孚初(1998)“九二0”对杂交稻种子质量的影响.杂交水稻14"20-21
    张书标,杨仁崔(2004)水稻eui基因研究进展,作物学报30:729-734
    张所兵,赵凌,朱镇,张亚东,陈涛,林静,王才林(2006)水稻含eui基因的半矮秆突变体02428ha株高遗传分析.江苏农业学报22:100-104
    Asano K, Hirano K, Ueguchi-Tanaka M, Angeles-Shim RB, Komura T, Satoh H, Kitano H, Matsuoka M, Ashikari M (2009) Isolation and characterization of dominant dwarf mutants, Slrl-d, in rice. Mol Genet Genomics 281:223-231
    Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY (2007) Progress in research and development on hybrid rice:a super-domesticate in China. Ann Bot (Lond) 100:959-966
    Daviere JM, de Lucas M, Prat S (2008) Transcriptional factor interaction:a central step in DELLA function. Curr Opin Genet Dev 18:295-303
    Eckardt NA (2007) GA perception and signal transduction:molecular interactions of the GA receptor GIDl with GA and the DELLA protein SLRl in rice. Plant Cell 19:2095-2097
    Fan LM, Feng XY, Wang Y, Deng XW (2007) Gibberellin Signal Transduction in Rice. J Integr Plant Biol 49:731-741
    Gangashetti MG, Jena KK, Shenoy VV, H. FW (2004) Inheritance of elongated uppermost internode and identification of RAPD marker linked to eui gene in rice. Curr sci 87:469-475
    Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M (2004) GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J 37:626-634
    Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5-9
    Hirano K, Ueguchi-Tanaka M, Matsuoka M (2008) GIDl-mediated gibberellin signaling in plants. Trends Plant Sci 13:192-199
    Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900-2910
    Hoshikawa K (1989) Stem. In The Growing Rice Plant (Tokyo:Nobunkyo). pp.123-148
    Huq E (2006) Degradation of negative regulators:a common theme in hormone and light signaling networks? Trends Plant Sci 11:4-7
    Ichii M, Hong DL, Ohara Y, Zhao CM, Taketa S (2003) Characterization of CMS and maintainer lines in indica rice (Oryza sativa L.) based on RAPD marker analysis. Euphytica 129:249-252
    Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999-1010
    Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57-70
    Jiang C, Fu X (2007) GA action:turning on de-DELLA repressing signaling. Curr Opin Plant Biol 10: 461-465
    Jiang H, Guo LB, Qian Q (2007) Recent progress on rice genetics in china. J Integr Plant Biol 49: 776-790
    Jing RC, Li XM, Yi P, Zhu YG (2001) Mapping fertility-restoring genes of rice WA cytopiasmic male sterility using SSLP markers. Bot Bull Acad Sin 42:167-171
    Kobayashi M, Yamaguchi I, Murofushi N, Ota Y, Takahashi N (1988) Fluctuation and Localization of Endogenous Gibberellins in Rice. Agric Biol Chem 52:1189-1194
    Komorisono M, Ueguchi-Tanaka M, Aichi I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M, Sazuka T (2005) Analysis of the rice mutant dwarf and gladius leaf 1. Aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling. Plant Physiol 138:1982-1993
    Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C (2006) EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol 47:181-191
    McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15:1120-1130
    Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M (2006) Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol 141:924-931
    Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194-3205
    Rutger JN, Carnahan HL (1981) A Fourth Genetic Element to Facilitate Hybrid Cereal Production A Recessive Tall in Rice. Crop Sci 21:373-376
    Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896-1898
    Schwechheimer C (2008) Understanding gibberellic acid signaling--are we there yet? Curr Opin Plant Biol11:9-15
    Silverstone AL, Ciampaglio CN, Sun T (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155-169
    Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197-223
    Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARFl encodes a soluble receptor for gibberellin. Nature 437:693-698
    Ueguchi-Tanaka M, Hirano K, Hasegawa Y, Kitano H, Matsuoka M (2008) Release of the repressive activity of rice DELLA protein SLRl by gibberellin does not require SLRl degradation in the gid2 mutant. Plant Cell 20:2437-2446
    Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLRl, and gibberellin. Plant Cell 19:2140-2155
    Wang Y, Li J (2005) The plant architecture of rice (Oryza sativa). Plant Mol Biol 59:75-84
    Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253-279
    Yang J, Zhang J, Wang Z, Zhu Q, Wang W (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127:315-323
    Yin C, Gan L, Ng D, Zhou X, Xia K (2007) Decreased panicle-derived indole-3-acetic acid reduces gibberellin Al level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A. J Exp Bot 58:2441-2449
    Zhang Y, Ni Z, Yao Y, Nie X, Sun Q (2007) Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genet 8:40
    Zhang Y, Zhu Y, Peng Y, Yan D, Li Q, Wang J, Wang L, He Z (2008) Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Cell Res 18:412-421
    Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X,
    Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442-456

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700