用户名: 密码: 验证码:
陕西省泾惠渠灌区农业节水对地下水空间分布影响及模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业节水对保障中国用水安全、粮食安全、生态安全及农业可持续发展具有非常重要的战略地位和作用,在灌区发展农业节水势在必行。泾惠渠灌区是陕西省渠井结合的大型灌区之一,也是陕西省粮食主产区。随着灌区社会经济的迅速发展,水资源需求量急剧增加,水资源供需矛盾突出,迫使大规模超采地下水,导致灌区地下水环境劣变日益严峻。灌区节水改造工程实施后,地下水位下降趋势得到一定的控制。本文通过灌区水文系统模拟,定量评价了不同农业节水措施对灌区地下水空间分布的影响,寻求适宜的农业节水措施和合理地下水开发利用模式,为灌区水资源科学有效管理提供参考。通过研究,取得如下主要结果:
     (1)利用Mann-Kendall非参数趋势检验法、RS重新标度极差法等,对灌区降水、蒸发、河川径流等水文时间序列趋势进行了分析,近50年灌区降水量经历了“少—多—少”的变化过程,年平均降水量变异的时间大约为1969年、1976年、1984年,在70年代后期灌区年平均降水量产生了突发性的下降变化,下降幅度大约为45.20mm,降水量减少应该是对全球气候变暖背景下季风势力增强的响应。灌区年蒸发量变异的时间大约为1969年、1976年,在70年代灌区年蒸发量产生了突发性的下降变化,下降幅度大约为228.4mm,蒸发量呈递减变化趋势。泾河年径流量从1976年开始出现下降,而1998年开始显著下降,1998年为气温升高转折点,气温升高和降水减少所表现的气候变化可能是年径流减少的主要原因之一。灌区平均气温、最低气温和最高气温呈增加趋势,风速、日照时数和相对湿度呈减少趋势。年降水量和年蒸发量的总体变化呈减少趋势,相对湿度无一致变化趋势。灌区气候呈暖干趋势发展,原因可能是灌区位于西北地区东部的边缘,毗邻华中地区,造成其气候变化与西北地区气候变化的总体趋势有所不同。
     (2)灌区渠道衬砌节水改造工程实施后,渠系水利用系数增加,灌区地下水补给量明显下降,对地下水补给减少约16.9%。田间节水措施减少地下水开采量约33.4%。灌区种植结构调整对地下水影响作用甚小。通过对灌区地下水位变化影响因素的主成分分析,认为渠首引水量和田间灌溉用水量的减少、地下水开采量的增加是灌区地下水位下降变化驱动的主要因子,其次井渠灌水比例、灌溉水利用系数、降水量等因子也不同程度影响地下水位变化。
     (3)泾惠渠灌区地下水埋深空间相关程度呈减弱趋势,空间异质性增大,主要原因是灌区节水改造工程实施和农业种植结构调整,井渠灌溉出现竞争局面,地下水和渠水管理严重脱节,使得局部地区地下水开采强度空间分布发生较大变化。根据2010年地下
     水水质资料分析,表明灌区多数地区地下水属于Ⅳ类水质(45%)和Ⅴ类水质(28%),其中部分地区地下水TDS含量和总硬度已超出生活饮用水标准。
     (4)根据灌区钻孔资料利用GMS建立含水层空间结构可视化模型,灌区自西北向东南倾斜,灌区内岩相变化不大,岩性比较单一,主要为第四系松散沉积物,岩性颗粒自西向东由粗变细。灌区南部以粗砂、砂砾石为主,上部亚砂土、亚粘土,局部夹粉细砂,灌区北部以亚粘土、亚砂土为主,局部夹砂砾石层,上覆新黄土、老黄土。
     (5)分析灌区水文地质条件的基础上,选择在灌溉面积、渠灌引水量、地下水开采量、工程设施现状等方面具有代表性及其它资料比较完整的10年(2001年11月1日至2009年10月底),对泾惠渠区地下水资源进行计算评价,计算结果与区内潜水动态变化规律基本一致。水均衡计算分析,近年多年平均总补给量为2.6767亿m3/a,平均开采地下水资源量为1.6139亿m3/a。
     (6)综合应用GMS、PMWIN和ArcGIS软件对泾惠渠灌区农业节水对地下水位空间分布的影响进行了模拟分析。灌区田间节水工程可减少18.5%~33.4%的井灌水量,对抑制地下水位下降效果明显;控制地下水位下降的最有效措施是加大田间节水的工程投入来减少井灌水量,其次是通过渠系节水工程增加渠首引水量。农业种植结构合理调整也不容忽视,灌溉水质污染应得到有效控制以提高水资源利用率。
Agricultural water saving has very important strategic position and role to ensure the national watersecurity, food security, ecological security and sustainable development of agriculture, the development ofagricultural water saving irrigation is imperative. Jing Hui Canal Irrigation District is one of channel wellcombined with large-scale irrigation district, and also one of major grain producing areas in shaanxiprovince. with the rapid development of social economy in the irrigation area, water resources demand hasincreased dramatically, the obvious contradiction between supply and demand of water resources appeared,forcing large-scale over-exploited groundwater, which lead to groundwater environmental deterioration inthe irrigation area is more and more serious. After water-saving improvement project carried out, theunderground water level decline have been controlled. This paper through hydrology system simulation inthe irrigation area, to quantitatively evaluated the influence of groundwater spatial distribution on differentagricultural water saving measures in the irrigation area, to seek suitable agricultural water-saving measuresand reasonable development and utilization mode of groundwater, to provide reference for irrigation waterresources scientific and effective management. Through the study, the main results obtained are as follows:
     (1)Precipitation, evaporation, runoff, etc hydrological time series trend is analyzed by usingMann-Kendall nonparametric trend test, RS rescaled range analysis method and so on in the irrigation area.Nearly50years precipitation in the irrigation area experienced the " less-much-less " change process,annual average precipitation mutation time is about1969,1976,1984, in the late1970s average annualprecipitation produced a sudden drop change, the decline range is about45.20mm, the reduction ofprecipitation should be response on the global climate warming background monsoon forces increased.Annual average evaporation mutation time is approximately1969, and1976, in the1970s annual averageevaporation produced a sudden drop change, the decline range is about228.4mm, presented theevaporation decrease trend. Jing river annual runoff began to decline from1976, and started significantly in1998, temperature increase and rainfall decrease performanced by climate change is probable one of themain reasons lead to runoff reduction. The average temperature in the irrigation area, the lowesttemperature and highest temperature is increasing, wind speed, sunshine duration and relative humiditydecreased. The annual precipitation and the annual evaporation decreased overall, relative humidity has noconsistent tendency. The climate drought-affected development trend appeared because of the irrigationarea is located the edge of the east in the northwest area, adjacent to central China, and cause its climatechange and the northwest region of climate change the overall trend is different.
     (2)After the implementation of irrigation channel lining water-saving improvement project, canalwater use coefficient increases, the irrigation water supply declined obviously, and the groundwaterrecharge reduced about16.9%. The field water-saving measures to reduce groundwater resources about33.4%. The effect planting structure adjustment on groundwater is very small. Based on principalcomponent analysis groundwater level in the irrigation area change influence factors were analyzed, it is considered that the canal water intake and field irrigation water consumption reduction, the increase ofgroundwater exploitation is the main factors underground water level decline change drive in the irrigationarea, and secondly well canal irrigation water ratio, irrigation water use coefficient, the amount ofprecipitation factors and differently influences on underground water level change.
     (3) Groundwater depth spatial correlation degree embedded the weakening trend in Jing hui canalirrigation district, spatial heterogeneity increases, the main reason is the implementation of water-savingimprovement project and the adjustment of agricultural planting structure, and the competition situation ofthe well canal irrigation appeared, groundwater and canal water management seriously disrupted, greatchanges of local groundwater exploitation space distribution had taken place. According to analysis ofgroundwater water quality data in2010, show that most of groundwater in the irrigation area belongs to Ⅳclass water quality (45%) and Ⅴ class water quality (28%), some of the region groundwater TDS contentand total hardness is beyond life drinking water standard.
     (4) According to the borehole data of the irrigation area, using GMS established visualization model ofaquifer space structure, the irrigation area is the northwest tilt to the southeast, in irrigation area, lithofacieschange is not big, lithology is more onefold, mainly the quaternary unconsolidated sediments, lithologicparticles from the west coarse to the east slim. In southern irrigation area coarse sand, sand gravel is themain part, upper sand loam, and clay, local clamps silty sand, in northern irrigation area the clay, sand loamis the main part, local clamps sandy gravel layer, overlying new loess, old loess.
     (5) On the basis of analysis of hydrogeological conditions in the irrigation area, selected canalirrigation water intake, groundwater exploitation quantity, engineering facilities such as present situationhas representative and other material relatively complete10years in irrigation area,(November1,2001tothe end of October2009), groundwater resources evaluation calculated, and the results of calculation andphreatic dynamic change keeps the basic consistent. Throuh water balance calculation and analysis, inrecent years many years average total recharge for267.67million m3/a, average groundwater resources for161.39million m3/a.
     (6) The effect simulation of agricultural watersaving to groundwater level spatial distribution wasanalyzed by comprehensive application GMS、PMWIN and ArcGIS software. Irrigation field water-savingprojects can reduced well irrigation water of18.5%~33.4%, to control the ground water levels fall effect isobvious; the most effective measures to control groundwater level decline is to increase the fieldwatersaving projects investment to reduce well irrigation water, the second is through the canalwater-saving irrigation system projects to increase canal water intake. Agricultural planting structurereasonable adjustment also do not allow to ignore, irrigation water pollution should be effective control inorder to improve the utilization ratio of water resources.
引文
Ahmad, Z., A. Ashraf, A. Fryar and G. Akhter,2011: Composite use of numerical groundwater flowmodeling and geoinformatics techniques for monitoring Indus Basin aquifer, Pakistan. Environmentalmonitoring and assessment173,447-457.
    Ahmed, J. A. and S. B. Santra,2012: Flooding transition in the topography of toppling surfaces ofstochastic and rotational sandpile models. Physical review. E, Statistical, nonlinear, and soft matterphysics85,031-051.
    Ajami, H., T. Maddock,3rd, T. Meixner, J. F. Hogan and D. P. Guertin,2012: RIPGIS-NET: a GIS tool forriparian groundwater evapotranspiration in MODFLOW. Ground Water50,154-158.
    Allan, J. A.,1998: Virtual water: A strategic resource global solutions to regional deficits. Ground Water36,545-546.
    Anderson, D. L. and C. Rosendahl,1998: Development and management of land/water resources: TheEverglades, agriculture, and South Florida. Journal of the American Water Resources Association34,235-249.
    Ashraf, A. and Z. Ahmad,2008: Regional groundwater flow modelling of Upper Chaj Doab of Indus Basin,Pakistan using finite element model (Feflow) and geoinformatics. Geophysical Journal International173,17-24.
    Ataie-Ashtiani, B.,2006: MODSHARP: Regional-scale numerical model for quantifying groundwater fluxand contaminant discharge into the coastal zone. Journal of Coastal Research1875-1878.
    Ataie-Ashtiani, B.,2007: MODSharp: Regional-scale numerical model for quantifying groundwater fluxand contaminant discharge into the coastal zone. Environmental Modelling&Software22,1307-1315.
    Barazzuoli, P., M. Nocchi, R. Rigati and M. Salleolini,2008: A conceptual and numerical model forgroundwater management: a case study on a coastal aquifer in southern Tuscany, Italy. HydrogeologyJournal16,1557-1576.
    Bhavsar, S. P., E. Awad, R. Fletcher, A. Hayton, K. M. Somers, T. Kolic, K. MacPherson and E. J. Reiner,2008: Temporal trends and spatial distribution of dioxins and furans in lake trout or lake whitefishfrom the Canadian Great Lakes. Chemosphere73, S158-165.
    Borgia A, Cattaneo L, Marconi D, el at.2011: Using a MODFLOW grid, generated with GMS, to solve atransport problem with TOUGH2in complex geological environments: The intertidal deposits of theVenetian Lagoon [J]. Computers&Geosciences,37(6):783-790.
    Brainwood M A, Burgin S, Maheshwari B.2004: Temporal variations in water quality of farm dams:impacts of land use and water sources [J]. Agricultural Water Management,70(2):151-175.
    Casper, A. F., B. Dixon, E. T. Steimle, M. L. Hall and R. N. Conmy,2012: Scales of heterogeneity of waterquality in rivers: Insights from high resolution maps based on integrated geospatial, sensor and ROVtechnologies. Applied Geography32,455-464.
    Chapagain, A. K., A. Y. Hoekstra and H. H. G. Savenije,2006: Water saving through international trade ofagricultural products. Hydrology and Earth System Sciences10,455-468.
    Chen, Z. Q. and W. F. Mcternan,1992: Multi-Substrate, Multi-Option Groundwater Transport Model.Journal of Contaminant Hydrology11,215-244.
    Christiaens, K. and J. Feyen,2002: Use of sensitivity and uncertainty measures in distributed hydrologicalmodeling with an application to the MIKE SHE model. Water Resource Research38,115-144.
    Coppola, A., A. Comegna, G. Dragonetti, N. Lamaddalena, A. M. Kader and V. Comegna,2011: Averagemoisture saturation effects on temporal stability of soil water spatial distribution at field scale. Soiland Tillage Research114,155-164.
    Dai, Z., C. Li, C. Trettin, G. Sun, D. Amatya and H. Li,2010: Bi-criteria evaluation of the MIKE SHEmodel for a forested watershed on the South Carolina coastal plain. Hydrology and Earth SystemSciences14,1033-1046.
    Daroub, S. H., T. A. Lang, O. A. Diaz and S. Grunwald,2009: Long-term water quality trends afterimplementing best management practices in South Florida. Journal of Environmental Quality38,1683-1693.
    Davison, R. M. and D. N. Lerner,2000: Evaluating natural attenuation of groundwater pollution from acoal-carbonisation plant: Developing a local-scale model using MODFLOW, MODTMR and MT3D.Journal of the Chartered Institution of Water and Environmental Management14,419-426.
    De Lannoy G J M, Verhoest N E C, Houser P R.2006: Spatial and temporal characteristics of soil moisturein an intensively monitored agricultural field (OPE3)[J]. Journal of Hydrology,331(3-4):719-730.
    Demetriou, C. and J. F. Punthakey,1998: Evaluating sustainable groundwater management options usingthe MIKE SHE integrated hydrogeological modelling package. Environmental Modelling&Software14,129-140.
    Diersch, H. J. G., D. Bauer, W. Heidemann, W. Ruhaak and P. Schatzl,2011: Finite element modeling ofborehole heat exchanger systems Part2. Numerical simulation. Computer Geosci-Uk37,1136-1147.
    Diodato, D. M.,1998: The MODFLOW Help File. Ground Water36,3-3.
    El Harrouni, K., D. Ouazar, L. C. Wrobel and A. H. D. Cheng,1997: Uncertainty analysis of groundwaterflow with DRBEM. Engineering Analysis with Boundary Elements19,217-221.
    Engesgaard, P. and K. L. Kipp,1992: A Geochemical Transport Model for Redox-Controlled Movement ofMineral Fronts in Groundwater-Flow Systems-a Case of Nitrate Removal by Oxidation of Pyrite.Water Resource Research28,2829-2843.
    Fehr, E., D. Kadau, N. A. Araujo, J. S. Andrade, Jr. and H. J. Herrmann,2011: Scaling relations forwatersheds. Physical review. E, Statistical, Nonlinear, and Soft Matter Physics84,036116.
    Feng, S. Y., Z. L. Huo, S. Z. Kang, Z. J. Tang and F. X. Wang,2011: Groundwater simulation using anumerical model under different water resources management scenarios in an arid region of China.Environmental Earth Sciences62,961-971.
    Fereres, E. and M. A. Soriano,2007: Deficit irrigation for reducing agricultural water use. Journal ofExperimental Botany58,147-159.
    Ginn, T. R. and J. H. Cushman,1992: A Continuous-Time Inverse Operator for Groundwater andContaminant Transport Modeling-Model Identifiability. Water Resource Research28,539-549.
    Gomiero, T., D. Pimentel and M. G. Paoletti,2011: Is There a Need for a More Sustainable Agriculture?Critical Reviews in Plant Sciences30,6-23.
    Guan, W. H., M. K. Sun and Y. Q. Lu,2011:[Changes of regional environment quality pattern in Chinasince1986-2008]. Huan jing ke xue=Huanjing kexue]32,609-618.
    Gunawardhana L N, Kazama S.2012: Statistical and numerical analyses of the influence of climatevariability on aquifer water levels and groundwater temperatures: The impacts of climate change onaquifer thermal regimes [J]. Global and Planetary Change,86–87(0):66-78.
    Herbst M, Diekkrüger B.2003: Modelling the spatial variability of soil moisture in a micro-scale catchmentand comparison with field data using geostatistics [J]. Physics and Chemistry of the Earth, Parts A/B/C,28(6–7):239-245.
    Huo, Z. L., S. Y. Feng, S. Z. Kang, S. J. Cen and Y. Ma,2007: Simulation of-effects of agriculturalactivities on groundwater level by combining FEFLOW and GIS. New Zealand Journal of AgriculturalResearch50,839-846.
    Im, S., H. Kim, C. Kim and C. Jang,2009: Assessing the impacts of land use changes on watershedhydrology using MIKE SHE. Environmental Geology57,231-239.
    Ireson, A., C. Makropoulos and C. Maksimovic,2006: Water resources modelling under data scarcity:Coupling MIKE BASIN and ASM groundwater model. Water Resource Management20,567-590.
    Jayatilaka, C. J., B. Storm and L. B. Mudgway,1998: Simulation of water flow on irrigation bay scale withMIKE-SHE. Journal of Hydrology208,108-130.
    Kalra, A. and S. Ahmad,2011: Evaluating changes and estimating seasonal precipitation for the ColoradoRiver Basin using a stochastic nonparametric disaggregation technique. Water Resource Research47.101-121.
    Kendy, E., Y. Q. Zhang, C. M. Liu, J. X. Wang and T. Steenhuis,2004: Groundwater recharge fromirrigated cropland in the North China Plain: case study of Luancheng County, Hebei Province,1949-2000. Hydrological Processes18,2289-2302.
    Keshari, A. K. and M. H. Koo,2007: A numerical model for estimating groundwater flux from subsurfacetemperature profiles. Hydrological Processes21,3440-3448.
    Kinzelbach, W.,1992: Applied groundwater modeling—Simulation of flow and advective transport: ByM.P. Journal of Hydrology140,393-394.
    Koutsoyiannis, D.,2011: Hurst-Kolmogorov Dynamics and Uncertainty. Journal of the American WaterResources Association47,481-495.
    Lavigne, M. A., M. Nastev and R. Lefebvre,2010: Numerical Simulation of Groundwater Flow in theChateauguay River Aquifers. Canadian Water Resources Journal35,469-485.
    Lee, S. S. and H. P. In,2005: Simulating groundwater transport process using a vertical heterogeneitymodel: A case study. Systems Modeling and Simulation: Theory and Applications3398,536-544.
    Lin, L., J. Z. Yang, B. Zhang and Y. Zhu,2010: A Simplified Numerical Model of3-D Groundwater andSolute Transport at Large Scale Area. Journal of Hydrodynamics22,319-328.
    Liu Y, Stanturf J, Goodrick S.2010: Wildfire potential evaluation during a drought event with a regionalclimate model and NDVI [J]. Ecological Informatics,5(5):418-428.
    Lo Russo, S., G. Taddia, G. Baccino and V. Verda,2011: Different design scenarios related to an open loopgroundwater heat pump in a large building: Impact on subsurface and primary energy consumption.Energy Buildings43,347-357.
    Loudyi, D., R. A. Falconer and B. Lin,2007: Mathematical development and verification of anon-orthogonal finite volume model for groundwater flow applications. Advances in Water Resources30,29-42.
    Luo, P., B. He, K. Takara, B. H. Razafindrabe, D. Nover and Y. Yamashiki,2011: Spatiotemporal trendanalysis of recent river water quality conditions in Japan. Journal of Environmental Monitoring: JEM13,2819-2829.
    Mane, M. S., D. K. Singh, A. K. Singh and A. K. Bhattacharya,2007: Development of GIS interfaceConegrid for groundwater model. Current Science92,1297-1302.
    McDonald M G, Harbaugh A W.2003: The history of MODFLOW [J]. Ground Water,41(2):280-283.
    Merchant, J. W.,1994: Gis-Based Groundwater Pollution Hazard Assessment-a Critical-Review of theDrastic Model. Photogrammetric Engineering and Remote Sensing60,1416-1416.
    Mirlas, V.,2012: Assessing soil salinity hazard in cultivated areas using MODFLOW model and GIS tools:A case study from the Jezre’el Valley, Israel. Agricultural Water Management109,144-154.
    Mose, R., P. Siegel, P. Ackerer and G. Chavent,1994: Application of the Mixed Hybrid Finite-ElementApproximation in a Groundwater-Flow Model-Luxury or Necessity. Water Resource Research30,3001-3012.
    Neupauer, R. M. and J. L. Wilson,2004: Numerical implementation of a backward probabilistic model ofground water contamination. Ground Water42,175-189.
    Nyakudya, I. W. and L. Stroosnijder,2011: Water management options based on rainfall analysis for rainfedmaize (Zea mays L.) production in Rushinga district, Zimbabwe. Agricultural Water Management98,1649-1659.
    Odemis, B., M. K. Sangun and F. Evrendilek,2010: Quantifying long-term changes in water quality andquantity of Euphrates and Tigris rivers, Turkey. Environmental Monitoring and Assessment170,475-490.
    Okkonen, J. and B. Kl ve,2011: A sequential modelling approach to assess groundwater–surface waterresources in a snow dominated region of Finland. Journal of Hydrology411,91-107.
    Osiensky, J. L. and R. E. Williams,1996: A two-dimensional MODFLOW numerical approximation ofmise-a-la-masse electrical flow through porous media. Ground Water34,727-733.
    Osiensky, J. L. and R. E. Williams,1997: Potential inaccuracies in MODFLOW simulations involving theSIP and SSOR methods for matrix solution. Ground Water35,229-232.
    Osnes, H. and H. P. Langtangen,1998: An efficient probabilistic finite element method for stochasticgroundwater flow. Advances in Water Resources22,185-195.
    Pang S, Li T-X, Zhang X-F.2011: Spatial variability of cropland lead and its influencing factors: A casestudy in Shuangliu county, Sichuan province, China [J]. Geoderma,162(3-4):223-230.
    Peters, O. and K. Christensen,2002: Rain: relaxations in the sky. Physical review. E, Statistical, Nonlinear,and Soft matter Physics66,036120.
    Satish, M. G. and J. Zhu,1992: Stochastic approach for groundwater flow in a semiconfined aquifer subjectto random boundary conditions. Advances in Water Resources15,329-339.
    Schot P P, Pieber S M.2012: Spatial and temporal variations in shallow wetland groundwater quality [J].Journal of Hydrology,422–423(0):43-52.
    Sileika, A. S., P. Stalnacke, S. Kutra, K. Gaigalis and L. Berankiene,2006: Temporal and spatial variationof nutrient levels in the Nemunas River (Lithuania and Belarus). Environmental Monitoring andAssessment122,335-354.
    Singh, R., K. Subramanian and J. C. Refsgaard,1999: Hydrological modelling of a small watershed usingMIKE SHE for irrigation planning. Agricultural Water Management41,149-166.
    Sleep, B. E. and J. F. Sykes,1993a: Compositional Simulation of Groundwater Contamination byOrganic-Compounds.1. Model Development and Verification. Water Resource Research29,1697-1708.
    Sleep, B. E. and J. F. Sykes,1993b: Compositional Simulation of Groundwater Contamination byOrganic-Compounds.2. Model Applications. Water Resource Research29,1709-1718.
    Sleep, B. E.,1995: A Method of Characteristics Model for Equation of State Compositional Simulation ofOrganic-Compounds in Groundwater. Journal of Contaminant Hydrology17,189-212.
    Sophocleous M. The evolution of groundwater management paradigms in Kansas and possible new stepstowards water sustainability [J]. Journal of Hydrology,2012,414–415(0):550-559.
    Stauffer, F.,2005: Uncertainty estimation of pathlines in ground water models. Ground Water43,843-849.
    Stoll, S., H. J. H. Franssen, M. Butts and W. Kinzelbach,2011: Analysis of the impact of climate change ongroundwater related hydrological fluxes: a multi-model approach including different downscalingmethods. Hydrology and Earth System Sciences15,21-38.
    Strazimiri, D. L. and L. H. Motz,1997: Groundwater flow model of the northern part of the Lushnjaaquifer in Albania. Hydrological Sciences Journal-journal Des Sciences Hydrologiques42,679-691.
    Sultana, Z. and P. Coulibaly,2011: Distributed modelling of future changes in hydrological processes ofSpencer Creek watershed. Hydrological Processes25,1254-1270.
    Sun, M. and C. M. Zheng,1999: Long-term groundwater management by a MODFLOW based dynamicoptimization tool. Journal of the American Water Resources Association35,99-111.
    Tabari, H., S. Marofi and M. Ahmadi,2011: Long-term variations of water quality parameters in theMaroon River, Iran. Environmental Monitoring and Assessment177,273-287.
    Tesfagiorgis, K., T. Gebreyohannes, F. De Smedt, J. Moeyersons, M. Hagos, J. Nyssen and J. Deckers,2011: Evaluation of groundwater resources in the Geba basin, Ethiopia. Bulletin of EngineeringGeology and the Environment70,461-466.
    Uhan, J., G. Vizintin and J. Pezdic,2011: Groundwater nitrate vulnerability assessment in alluvial aquiferusing process-based models and weights-of-evidence method: Lower Savinja Valley case study(Slovenia). Environmental Earth Sciences64,97-105.
    Valderrama, J. M., J. Ibanez, F. J. Alcala, A. Dominguez, M. Yassin and J. Puigdefabregas,2011: The use ofa hydrological-economic model to assess sustainability in groundwater-dependent agriculture indrylands. Journal of Hydrology402,80-91.
    Wen-Hsing Chiang.2005:3D-Groundwater Modeling with PMWIN [M]. NewYork: Springer BerlinHeidelberg,110-150.
    Wichelns, D.,2001: The role of 'virtual water' in efforts to achieve food security and other national goals,with an example from Egypt. Agricultural Water Management49,131-151.
    Wichelns, D.,2004: The policy relevance of virtual water can be enhanced by considering comparativeadvantages. Agricultural Water Management66,49-63.
    Wu, Y. J., W. Q. Wang, M. Toll, W. Alkhoury, M. Sauter and O. Kolditz,2011: Development of a3Dgroundwater model based on scarce data: the Wadi Kafrein catchment/Jordan. Environmental EarthSciences64,771-785.
    Xu, X., G. H. Huang and Z. Y. Qu,2009: Integrating MODFLOW and GIS technologies for assessingimpacts of irrigation management and groundwater use in the Hetao Irrigation District, Yellow Riverbasin. Science in China Series E-Technological Sciences52,3257-3263.
    Xu, X., G. H. Huang, Z. Y. Qu and L. S. Pereira,2011: Using MODFLOW and GIS to Assess Changes inGroundwater Dynamics in Response to Water Saving Measures in Irrigation Districts of the UpperYellow River Basin. Water Resource Management25,2035-2059.
    Xu, X., G. Huang, H. Zhan, Z. Qu and Q. Huang,2012: Integration of SWAP and MODFLOW-2000formodeling groundwater dynamics in shallow water table areas. Journal of Hydrology412,170-181.
    Xu, X., G. Huang, Z. Qu and L. S. Pereira,2010: Assessing the groundwater dynamics and impacts of watersaving in the Hetao Irrigation District, Yellow River basin. Agricultural Water Management98,301-313.
    Yatagai, A.,2001: Estimation of precipitable water and relative humidity over the Tibetan Plateau fromGMS-5water vapor channel data. Journal of the Meteorological Society of Japan79,589-598.
    Yonghui Yang, Masataka Watanabe, Xiying Zhang.2006: Optimizing irrigation management for wheat toreduce groundwater depletion in the piedmont region of the Taihang Mountains in the North ChinaPlain[J].Agricultural Water Management.(82):25-44.
    Yu, R., T. Liu, Y. Xu, C. Zhu, Q. Zhang, Z. Qu, X. Liu and C. Li,2010: Analysis of salinization dynamicsby remote sensing in Hetao Irrigation District of North China. Agricultural Water Management.97,1952-1960.
    Yukun Hu, Juana Paul Moiwo,2010: Yonghui Yang.Agricultural water-saving and sustainable groundwatermanagementin Shijiazhuang Irrigation District, North China Plain[J].Journal of Hydrology.(393):219-232.
    Zehnder, A. J. B., H. Yang and R. Schertenleib,2003: Water issues: the need for action at different levels.Aquatic Sciences65,1-20.
    Zghibi A, Zouhri L, Tarhouni J.2011: Groundwater modelling and marine intrusion in the semi-aridsystems (Cap-Bon, Tunisia)[J]. Hydrological Processes,25(11):1822-1836.
    Zhang, H. P. and T. Oweis,1999: Water-yield relations and optimal irrigation scheduling of wheat in theMediterranean region. Agricultural Water Management38,195-211.
    Zhang, Q., P. Sun, V. P. Singh and X. Chen,2012: Spatial-temporal precipitation changes (1956–2000) andtheir implications for agriculture in China. Global Planet Change82–83,86-95.
    Zhang, Y. F., J. L. Deng, D. X. Guan, C. J. Jin, A. Z. Wang, J. B. Wu and F. H. Yuan,2011:[Spatiotemporalchanges of potential evapotranspiration in Songnen Plain of Northeast China]. Ying yong sheng taixue bao22,1702-1710.
    Zhao, C. Y., Y. C. Wang, X. Chen and B. G. Li,2005: Simulation of the effects of groundwater level onvegetation change by combining FEFLOW software. Ecological Modelling187,341-351.
    Zhao, P. P., M. A. Shao and T. J. Wang,2010: Spatial Distributions of Soil Surface-Layer SaturatedHydraulic Conductivity and Controlling Factors on Dam Farmlands. Water Resource Management24,2247-2266.
    Zwart, S. J. and W. G. M. Bastiaanssen,2004: Review of measured crop water productivity values forirrigated wheat, rice, cotton and maize. Agricultural Water Management69,115-133.
    包和平,王晓波,李春成.2010.吉林省中部地区水稻土主要肥力指标的主成分分析[J].灌溉排水学报,(01):64-67.
    鲍卫锋,黄介生,孔祥元.2007.基于主成分分析法的流域水循环效应[J].武汉大学学报(工学版),40(02):29-33.
    蔡甲冰,刘钰,许迪,等.2008.基于通径分析原理的冬小麦缺水诊断指标敏感性分析[J].水利学报,39(01):83-90.
    蔡甲冰,许迪,刘钰,等.2011.冬小麦返青后腾发量时空尺度效应的通径分析[J].农业工程学报,27(08):69-76.
    蔡明科,胡国杰,许义和,等.2011.宝鸡市地下水位动态变化驱动因子主成分分析[J].人民黄河,33(04):38-39.
    陈崇希,王旭升,胡立堂.2007.地下水流数值模拟中抽水井水位的校正[J].水利学报.38(04):481-485.
    陈亚新,屈忠义,高占义.2009.基于ANN技术的大型灌区节水改造后农田水环境预测[J].农业工程学报,25(01):1-5.
    陈玉民,郭国双,王广兴,等.1995.中国主要作物需水量与灌溉,北京:水利电力出版社.
    陈悦刘则渊.2005.悄然兴起的科学知识图谱[J].科学学研究,23(02):149-154.
    程满金,申利刚,步丰湖,等.2011.内蒙古河套灌区节水改造工程综合节水技术研究[J].灌溉排水学报,30(06):69-72.
    程强,孙宇瑞,林剑辉,等.2009.牧场土壤含水率与坚实度空间变异与相关性分析[J].农业机械学报,40(3):103-107.
    程旭学,陈崇希,闫成云等,2008.河西走廊疏勒河流域地下水资源合理开发利用调查评价.北京:地质出版社:47-48.
    代锋刚,蔡焕杰,刘晓明,等.2012.利用地下水模型模拟分析灌区适宜井渠灌水比例[J].农业工程学报,28(15):45-51.
    党占海,赵蓉英,陈瑞,等.2011.油料作物研究的知识图谱分析[J].中国农业大学学报,16(03):178-186.
    地矿部水文地质工程地质技术方法研究所,1978:水文地质手册北京:地质出版社.
    董丕业,李群智,杨成忠,等.2010.位山灌区续建配套与节水改造有关问题的探讨[J].节水灌溉,(02):64-65.
    杜军,杨培岭,任树梅,等.2011.河套灌区干渠衬砌对地下水及生态环境的影响[J].应用生态学报,(01):144-150.
    杜丽娟,刘钰,雷波.2010.灌区节水改造环境效应评价研究进展[J].水利学报,41(5):613-618.
    段家旺,孙景生,刘钰,等.2004.北方地区主要农作物灌溉用水定额,北京:中国农业科学技术出版社.
    段青梅.2006.西辽河平原三维地质建模及地下水数值模拟研究.[博士学位论文].北京:中国地质大学
    冯广志.2001.“九五”节水灌溉工作综述[J].中国农村水利水电,(07):5-8.
    高雪,薛晓芳,郑俊杰,等.2011.基于知识图谱的蛋白质组学发展研究[J].军事医学,35(11):837-841.
    宫辉力,潘云,李小娟,等.2007.地下水流场三维可视化研究进展与前景[J].吉林大学学报(地球科学版),37(02):384-392.
    管孝艳,王少丽,高占义,等.2012.盐渍化灌区土壤盐分的时空变异特征及其与地下水埋深的关系[J].生态学报,(04)):1202-1210.
    国家冶金工业局,2001:供水水文地质勘察规范北京:中国计划出版社.
    贺屹,祝田多娃.2011.基于随机-确定模型的渠井结合灌区用水优化配置[J].干旱区研究,28(3):421-426.
    侯海燕,刘则渊,陈悦,等.2006.当代国际科学学研究热点演进趋势知识图谱[J].科研管理,27(03):90-96.
    侯海燕,刘则渊,栾春娟.2009.基于知识图谱的国际科学计量学研究前沿计量分析[J].科研管理,30(01):165-170.
    胡立堂.2004.地下水三维流多边形有限差分模拟软件开发研究及实例应用.[博士学位论文].武汉:中国地质大学
    纪鹏.2010.泾惠渠灌区浅层地下水水质空间分布特征及水质预测研究[硕士学位论文].西安:长安大学.
    贾大林.2002.21世纪初期农业节水的目标和任务[J].节水灌溉,(01):9-10.
    江思珉,朱国荣,王浩然,等.2006. FAC方法在地下水数值模拟中的应用[J].水利学报,37(11):1389-1392.
    姜春林.2011.科学知识图谱:别样视角扫描《编辑学报》[J].编辑学报,23:460-462.
    蒋艳,彭期冬,骆辉煌,等.2011.淮河流域水质污染时空变异特征分析[J].水利学报,42(11):1283-1288.
    焦养泉,朱培民,雷新荣,等,2006.地学空间信息三维建模与可视化—鄂尔多斯盆地及相关领域的实践,北京:科学出版社.
    康绍忠许迪.2001.我国现代农业节水高新技术发展战略的思考[J].中国农村水利水电,(10):25-29.
    康绍忠,蔡焕杰,冯绍元.2004.现代农业与生态节水的技术创新与未来研究重点[J].农业工程学报,20(01):1-6.
    康绍忠,胡笑涛,蔡焕杰,等.2004.现代农业与生态节水的理论创新及研究重点[J].水利学报,(12):1-7.
    雷波,刘钰,杜丽娟.2011.灌区节水改造环境效应综合评价研究初探[J].灌溉排水学报,30(3):100-103.
    李新波,郝晋珉,胡克林,等.2008.集约化农业生产区浅层地下水埋深的时空变异规律[J].农业工程学报,24(4):95-98.
    林学钰,方燕娜,廖资生.2009.全球气候变暖和人类活动对地下水温度的影响[J].北京师范大学学报(自然科学版).(05):452-457.
    刘昌明,何希吾.1996.中国21世纪水资源方略,北京:科学出版社.
    刘科伟,李夕兵,刘希灵,等.2011.复杂空区群露天开采境界三维可视化及其应用[J].中南大学学报(自然科学版),42(10):3118-3124.
    刘林青.2005.作品共被引分析与科学地图的绘制[J].科学学研究,23(02):155-159.
    刘路广,崔远来,冯跃华.2010.基于SWAP和MODFLOW模型的引黄灌区用水管理策略[J].农业工程学报,26(4):9-17.
    刘兴权,许晶玉,江丽华,等.2010.山东省种植区地下水硝酸盐污染空间变异及分布规律研究[J].农业环境科学学报,29(6):1172-1179.
    刘燕,朱红艳.2011.泾惠渠灌区水环境劣变特征及地下水调蓄能力分析[J].农业工程学报,27(6):19-24.
    刘钰,汪林,倪广恒,等.2009.中国主要作物灌溉需水量空间分布特征[J].农业工程学报,(12):6-12.
    刘则渊,胡志刚,王贤文.2010.30年中国科学学历程的知识图谱展现——为《科学学与科学技术管理》杂志创刊30周年而作[J].科学学与科学技术管理,(05):17-23.
    刘中培.2010.农业活动对区域地下水变化影响研究.[博士学位论文].北京:中国地质科学院.
    麻荣永,郑二伟,王魁,等.2008.基于主成分分析法的广西水资源可持续利用综合评价[J].广西大学学报(自然科学版),33(01):16-19.
    马金慧,杨树青,张武军.2011.河套灌区节水改造对地下水环境的影响[J].人民黄河,33(1):68-69.
    马乐平.2011.基于Modeflow下的地下水动态分析三维可视化研究与应用[J].水利水电技术,42(07):11-14.
    莫淑红.2006.宝鸡市径流演变特性分析[J].西安建筑科技大学学报(自然科学版).38(6)38:765-770.
    彭家中,司建华,冯起,等.2011.基于地统计的额济纳绿洲地下水位埋深空间异质性研究[J].干旱区资源与环境,25(04):94-99.
    邱均平,张晓培.2011.基于CSSCI的国内知识管理领域作者共被引分析[J].情报科学,29(10):1441-1445.
    邱均平.2000.信息计量学(五)第五讲文献信息词频分布规律——齐普夫定律[J].情报理论与实践,23(05):396-400.
    屈忠义,陈亚新,史海滨,等.2003.内蒙古河套灌区节水灌溉工程实施后地下水变化的BP模型预测[J].农业工程学报,(01):59-62.
    任国玉,姜彤,李维京,等.2008.气候变化对中国水资源情势影响综合分析[J].水科学进展,(06):772-779.
    阮本清,许凤冉,蒋任飞.2008.基于球状模型参数的地下水水位空间变异特性及其演化规律分析[J].水利学报,39(5):573-579.
    阮本清,韩宇平,蒋任飞,等.2007.灌区生态用水研究,北京:中国水利水电出版社.
    陕西省泾惠渠灌区地下水调查研究组.1983.泾惠渠灌区浅层地下水资源调查研究成果报告[R].
    陕西省水利水电勘测设计院.2000.陕西省泾惠渠灌区续建配套与节水改造规划报告[R].陕西:陕西水利水电勘测设计院,
    陕西省水利水土保持厅,西北农业大学.1992.陕西省作物需水量及分区灌溉模式,北京:水利电力出版社.
    邵景力,赵宗壮,崔亚莉.2009.华北平原地下水流模拟及地下水资源评价[J].资源科学,31(3):361-367.
    宋海良,王帅,刘杰,等.2007.大型地下洞室群地质信息三维可视化分析与应用[J].水利水电科技进展,27(06):80-84.
    孙红梅,贾瑞生,王萍.2008.基于钻孔数据的地层三维可视化改进算法[J].测绘科学,33(03):85-86.
    孙讷正.1981.地下水流的数学模型和数值方法,北京:地质出版社.
    谭秀翠,杨金忠.2012.石津灌区地下水潜在补给量时空分布及影响因素分析[J].水利学报,43(02):143-152.
    唐登银,于强.2000.农业节水的科学基础[J].灌溉排水,19(02):1-9.
    万伟锋.2008.西安市地下水开采—地面沉降数值模拟及防治方案研究.[博士学位论文].西安:长安大学.
    王贵玲,蔺文静,陈浩.2005.农业节水缓解地下水位下降效应的模拟[J].水利学报,36(3):0286-0290.
    王国庆,张建云,贺瑞敏,等.2007.黄河中游气温变化趋势及其对蒸发能力的影响[J].水资源与水工程学报,18(04):32-36.
    王浩,陆垂裕,秦大庸,等.2010.地下水数值计算与应用研究进展综述[J].地学前缘,(06):1-12.
    王浩然,赵金熙.2003.基于区域分解法的地下水有限元与边界元耦合模型——淄博市王旺庄水源地地下水数值模拟[J].地质论评,49(01):48-52.
    王景雷,吴景社,齐学斌,等.2002.节水灌溉评价研究进展[J].水科学进展,13(4):521-525.
    王俊梅,刘海宁.2011.水库蓄水引发的地下水位抬升和渗控措施研究[J].水文地质工程地质,38(05):115-119.
    王丽霞,刘芳,唐泽军.2011.基于GMS的石羊河流域含水层空间结构变化的可视化研究[J].干旱区地理,34(01):62-69.
    王书吉,费良军,雷雁斌,等.2008.综合集成赋权法在灌区节水改造效益评价中的应用[J].农业工程学报,24(12):48-51.
    王卫光,薛绪掌,耿伟.2007.河套灌区地下水位的空间变异性及其克里金估值[J].灌溉排水学报,26(1):18-21.
    王亚东.2002.河套灌区节水改造工程实施前后区域地下水位变化的分析[J].节水灌溉,(1):15-17.
    魏加华,陈良程,张远东,等.2003.地下水数值模型三维可视化研究[J].煤田地质与勘探,31(04):33-36.
    吴冲龙,何珍文,翁正平,等.2011.地质数据三维可视化的属性、分类和关键技术[J].地质通报,31(05):642-649.
    吴景社,康绍忠,王景雷,等.2003.节水灌溉综合效应评价研究进展[J].灌溉排水学报,22(5):42-46.
    吴普特,冯浩.2005.中国节水农业发展战略初探[J].农业工程学报,21(06):152-157.
    吴学华,钱会,郁冬梅,等.2008.银川平原地下水资源合理配置调查评价[M].北京:地质出版社,174-194.
    肖树铁.1981.包气带水分运移问题讲座(三)——地面入渗水分在包气带的运动[J],水文地质工程地质.45-50.
    谢平.2010.水文变异诊断系统[J].水力发电学报,(1):85-91.
    徐宗学,李占玲,史晓崑.2007.石羊河流域主要气象要素及径流变化趋势分析[J].资源科学,29(05):121-128.
    徐宗学,孟翠玲,赵芳芳.2007.山东省近40a来的气温和降水变化趋势分析[J].气象科学,27(04):387-393.
    徐宗学,米艳娇,李占玲,等.2008.和田河流域气温与降水量长期变化趋势及其持续性分析[J].资源科学,30(12):1833-1838.
    许迪,龚时宏.2007.大型灌区节水改造技术支撑体系及研究重点[J].水利学报,38(7):806-811.
    许义和,魏晓妹,蔡明科,等.2011.基于地统计学的宝鸡市区地下水位空间变异特征研究[J].水土保持研究,18(1):210-214.
    薛禹群,谢春红.2007.地下水数值模拟,北京:科学出版社.
    薛禹群,谢春红,吴吉春.1996.地下水数值模拟和电模拟中存在的问题[J].水文地质工程地质,(06):49-51.
    薛禹群.2010.中国地下水数值模拟的现状与展望[J].高校地质学报,(01),1-6.
    闫金凤,陈曦,周可法.2008.土地利用变化对绿洲区地下水硝酸盐空间变异特征的影响[J].农业环境科学学报,27(4):1476-1481.
    燕爱玲.2007. R/S法的径流时序复杂特性研究[J].应用科学学报,25(2):214-217.
    杨路华,沈荣开,曹秀玲.2003.内蒙古河套灌区地下水合理利用的方案分析[J].农业工程学报,19(5):56-59.
    姚杰,郭宗楼,陆琦.2004.灌区节水改造技术经济指标的综合主成分分析[J].水利学报,10(10):106-111.
    姚荣江,杨劲松.2007.黄河三角洲典型地区地下水位与土壤盐分空间分布的指示克立格评价[J].农业环境科学学报,26(6):2118-2124.
    姚顽强.2008.矿山开采沉陷GIS三维可视化基础构建[J].西安科技大学学报,28(01):81-85.
    叶思源,吴树仁,欧阳永龙.2011.地质三维可视化建模与其剖面自动制图应用研究[J].地质与勘探,47(03):498-504.
    叶遇春.1991.泾惠渠志[M],陕西:三秦出版社.
    于军,苏小四,朱琳,等.2007.苏锡常地区地面沉降地质结构三维可视化模型虚拟现实系统研究[J].吉林大学学报(地球科学版),37(02):393-399.
    张光辉,费宇红,严明疆,等.2009.灌溉农田节水增产对地下水开采量影响研究[J].水科学进展,20(3):350-355.
    张会敏,李占斌,姚文艺,等.2008.灌区续建配套与节水改造效果多层次多目标模糊评价[J].水利学报,39(2):212-217.
    张力小,胡秋红,王长波.2011.中国农村能源消费的时空分布特征及其政策演变[J].农业工程学报,27(01):1-9.
    张体彬,康跃虎,胡伟,等.2012.基于主成分分析的宁夏银北地区龟裂碱土盐分特征研究[J].干旱地区农业研究,30(02):39-46.
    张蔚榛.2001.农业节水问题的几点认识[J].中国水利,(08):40-43.
    张艳,徐斌.2010.信息技术支持下的灌区地下水水质调查评价[J].水资源保护,26(4):30-34.
    张永波.2001.水工环研究的现状与趋势,北京:地质出版社.
    张永波,杨钦,等.2007.地下水三维可视化系统开发与应用,北京:地质出版社.
    张志杰,杨树青,史海滨,等.2011.内蒙古河套灌区灌溉入渗对地下水的补给规律及补给系数[J].农业工程学报,(03):61-66.
    赵芳芳,徐宗学.2006.黄河兰州以上气候要素长期变化趋势和变异特征分析[J].气象学报,64(02):246-255.
    赵洁,徐宗学,周剑.2011.黑河中游过去20年地下水位空间变异性分析[J].干旱区资源与环境,25(8):172-178.
    赵伟霞,蔡焕杰,单志杰,等.2009.无压灌溉日光温室番茄高产指标[J].农业工程学报,25(03):16-31.
    郑健,蔡焕杰,王健,等.2009.日光温室西瓜产量影响因素通径分析及水分生产函数[J].农业工程学报,(10):30-34.
    钟登华,李明超,王刚.2004.大型水电工程地质信息三维可视化分析理论与应用[J].天津大学学报,37(12):1046-1052.
    钟登华,李明超.2006.水利水电工程地质三维建模与分析理论及实践,北京:中国水利水电出版社.
    周自江,朱燕君,鞠晓慧.2007.长江三角洲地区的浓雾事件及其气候特征[J].自然科学进展,17(01):66-71.
    朱学愚,钱孝星.2005.地下水水文学,北京:中国环境科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700